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MULTIGRID FOR THE MORTAR FINITE ELEMENT METHOD

JAYADEEP GOPALAKRISHNAN AND JOSEPH E. PASCIAK

ABSTRACT. A multigrid technique for uniformly preconditioning linear sys-
tems arising from a mortar finite element discretization of second order el-
liptic boundary value problems is described and analyzed. These problems
are posed on domains partitioned into subdomains, each of which is inde-
pendently triangulated in a multilevel fashion. The multilevel mortar finite
element spaces based on such triangulations (which need not align across sub-
domain interfaces) are in general not nested. Suitable grid transfer operators
and smoothers are developed which lead to a variable V-cycle preconditioner
resulting in a uniformly preconditioned algebraic systems. Computational re-
sults illustrating the theory are also presented.

1. INTRODUCTION

The mortar finite element method is a non-conforming domain decomposition
technique tailored to handle problems posed on domains that are partitioned into
independently triangulated subdomains. The meshes on different subdomains need
not align across subdomain interfaces. The flexibility this technique offers by al-
lowing sub-structures of a complicated domain to be meshed independently of each
other is well recognized. In this paper we consider preconditioned iteration for the
solution of the resulting algebraic system. Our preconditioner is a non-variational
multigrid procedure.

The mortar finite element discretization is a discontinuous Galerkin approxima-
tion. The functions in the approximation subspaces have jumps across subdomain
interfaces and are standard finite element functions when restricted to the sub-
domains. The jumps across subdomain interfaces are constrained by conditions
associated with one of the two neighboring meshes. Bernardi, Maday and Patera
(see [2, 3]) proved the coercivity of the associated bilinear form on the mortar finite
element space, thus implying existence and uniqueness of solutions to the discrete
problem. They also showed that the mortar finite element method is as accurate
as the usual finite element method. Recently, stability and convergence estimates
for an hp version of the mortar finite element method were proved [16].

When each subdomain has a multilevel mesh, preconditioners for the linear sys-
tem arising from the mortar discretization can be developed by multilevel tech-
niques. A hierarchical preconditioner with conditioning which grows like the square
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of the number of levels is described in [8]. In this paper, we show that a variable
V-cycle may be used to develop a preconditioned system whose condition number
remains bounded independently of the number of levels.

One of the difficulties in constructing a multigrid preconditioner for the mor-
tar finite element method arises due to the fact that the multilevel mortar finite
element spaces are, in general, not nested. Multigrid theory for nonnested spaces
[5] may be employed to construct a variable V-cycle preconditioner, provided a
suitable prolongation operator can be designed. We construct such a prolongation
operator and prove that it satisfies the “regularity and approximation” property
(Condition (C.2)) required for application of the multigrid theory.

The next difficulty is in the design of a smoother. Our smoother is based on the
point Jacobi method. Its analysis is nonstandard since the constraints at subdomain
interface gives rise to mortar basis functions with non-local support. We prove that
these basis functions decay exponentially away from their nodal vertex. This leads
to a strengthened Cauchy-Schwarz inequality which is used to verify the smoothing
hypothesis (Condition (C.1)).

The remainder of the paper is organized as follows. Section 2 introduces most of
the notation in the paper. Section 3 describes the multilevel mortar finite element
spaces. In Section 4 the variable V-cycle multigrid algorithm is given and the
main result (Theorem 4.1) is stated and proved. Section 5 provides proofs of some
technical lemmas. Implementation issues are considered in Section 6 while the
results of numerical experiments illustrating the theory are given in Section 7.

2. PRELIMINARIES

In this section, we provide some preliminaries and notation which will be used in
the remainder of the paper. In addition, we describe the continuous problem and
impose an assumption on the regularity of its solution.

Let Q be an open subset of the plane. For non-negative integers s, the Sobolev
space H?(Q) (see [7, 11]) is the set of functions in L?(Q) with distributional deriva-
tives up to order s also in L?(Q). If s is a positive real number between non-negative
integers m and m + 1, H*(Q) is the space obtained by interpolation (by the real
method [13]) between H™(2) and H™1(Q). The Sobolev norm on H?*(Q) is de-
noted by |||, o and the corresponding Sobolev seminorm is denoted by || ¢, . For

¢ € H*(), and a segment 7 contained in 2, the trace of ¢ on 7 is denoted by @) .
We will often write |||, , and |¢],. ., for the H"(7) norm and seminorm respectively,
of the trace ¢|,.

Assume that €2 is connected and that its boundary, 012, is polygonal. Let 9 be
split into 9Qp and Ny such that 90 = Iy UINp and IQx NONp is empty and
assume that 9Qp has nonzero measure. Denote by V the subspace of the Sobolev
space H'(2) consisting of functions in H'(£2) whose trace on Qp is zero. Denote
by V' the dual of the normed linear space V. The dual norm ||-|_, ¢ is defined by

| — sup <u.é>
—Le Y ||¢||1Q .
where < -, > denotes the duality pairing. Note that L?(Q) is contained in V' if we
identify the functional < v,¢ >= (v,¢), for all v € L*(2). Here (-,-) denotes the
inner product in L?(2). For —1 < s < 0, ||-||, , is the norm on the space defined
by interpolation between V' and L?((2).



MULTIGRID FOR THE MORTAR FINITE ELEMENT METHOD 3

We seek an approximate solution to the problem
(2.1) A(U,¢) = F(¢), forall ¢ €V,
where A(-,-) is bilinear form on V x V defined by
A(u,v) = / Vu - Vo dz,
Q
and F is a given continuous linear functional on H*(f2). This problem has a unique

solution. For the mortar finite element method, we restrict our attention to F' of
the form

(2.2) Fv) = /va dx

for f € L*(Q). This is the variational form of the boundary value problem

—AU = fin Q,
U =0ondNp,
6_U =0on 00y.
on

Although our results are stated for this model problem, extension to more gen-
eral second order elliptic partial differential equations with more general boundary
conditions are straightforward.

We will need to assume some regularity for solutions of Problem (2.1). We
formalize it here into Assumption (A.1).

(A.1): There exists a 3 in the interval (1/2,1] for which

10150 < CIFI 1 a0
holds for solutions U to the problem (2.1).

This is known to hold for wide class of domains [11, 12]. Note that we do not
require full elliptic regularity (8 = 1 case).

3. THE MORTAR FINITE ELEMENT METHOD

In this section, we first provide notation for sub-domains and triangulations.
Next multilevel mortar finite element spaces are introduced and the mortar finite
element problem is defined.

Partition Q into non-overlapping polygonal sub-domains €;, i = 1,... K. The
interface I' = UK | 90,;\ 09 is broken into a set of disjoint open straight line segments
vk each of which is contained in 99Q; N 0 for some ¢ and j. The collection of these
edges will be denoted by Z, i.e., Z = {v1, ¥y2,---,7YL}

Each Q; is triangulated to produce a quasi-uniform mesh 7; of size h;. The
triangulations generally do not align at the subdomain interfaces. We assume that
the endpoints of each interface segment in Z are vertices of 7{ and T7;! where p
and ¢ are such that v C 9Q, N 9,. Denote the global mesh U;7; by 7;. To set
up the multigrid algorithm, we need a sequence of refinements of 7;. We refine the
triangulation 77 to produce 73 by splitting each triangle of 77 into four triangles
by joining the mid-points of the edges of the triangle. The triangulation 73 is
then quasi-uniform of size ho = hy /2. Repeating this process, we get a sequence of
triangulations T, k = 1,...J, each quasi-uniform of size hy = hy /2% 1.
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We next define the mortar finite element spaces following 3 (1, 2, 3, 16] (our nota-
tion is close to that in [16]). First, we define spaces V and My by

(3.1) V={v:v|g, € H'(Q),Vi=1,...K,u=0o0n dQp}

and
M, = {ve V : v is linear on each triangle of Tr}-

Throughout this paper we will use piecewise linear finite element spaces for con-
venience of notation. The results extend to higher order finite elements without
difficulty [10].

For every straight line segment v € Z, there is an ¢ and j such that v C 9Q;N0Q;.
Assign one of i and j to be the mortar index, M (v), and the other then is the non-
mortar index, NM (7). Let Qys(,) denote the mortar domain of v and Qnz(,) be

the non-mortar domain of ~y. For every u € V define v}’ and u/’™ to be the trace
of ula,,,, on v and the trace of u|o,,,., on v respectively.

We now define two discrete spaces Si(y) and Wi(y) on an interface segment
v. Every v € Z can be divided into sub-intervals in two ways: by the vertices of
the mesh in the mortar domain of «v and by those of the non-mortar domain of ~.
Consider 7 as partitioned into sub-intervals by the vertices of the triangulation on
non-mortar side. Let these vertices be denoted by :rfw, it =0,...N.Denote the sub-
intervals [a:k 7 ,:rk v] by wg,, ¢ =1,... N, where w1 and wy, y are the sub-intervals
that are at the ends of . The dlscrete space Si(7y) is defined as follows.

v is linear on each wy;, 1 =1,... N,
Sk(y) =< v: vis constant on w1 and on wy N,
and v is continuous on 7.

We also define the space Wi, (vy) by

v is linear on each wy;, ¢ =1,... N,
- . ; ; 0 N
Wi (v) = { v: v vanishes at end-points of v, namely zy ., and zy
and v is continuous on 7.

The multilevel mortar finite element spaces My, k = 1,...J are now defined by:

on each v € Z, fv(u“]}/j —ulM)xds =0 }

(3:2) My = {u € My: for all x € Sk (7).

The “mortaring” is done by constraining the jump across interfaces by the integral
equality above. We will call this constraint the weak continuity of functions in Mjy.
Note that though the spaces { M} are nested,

M; C ... My C My C ... My,

the multilevel spaces {M},} are generally non-nested.

We next state the error estimates for the mortar finite element method. The
mortar finite element approximation of the solution U of Problem (2.1) (with F
given by (2.2)) is the function Uy € M}, satisfying

(3.3) AUy, ) / fodr, forall ¢e My,
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where A(u,v) is the bilinear form on V x V defined by

K
A(u,v) = Z/ Vu - Vo dz.
i=1 Q;
It is shown in [2] that
lull < CA(u,u) for all u € M,

where |Jv])* = Zf; ||v||? q, - Here and in the remainder of this paper, we will use
C' to denote a generic constant independent of hj, which can be different at different
occurrences. It follows that (3.3) has a unique solution. It is also known (see [2])
that the mortar finite element approximation satisfies

(3.4) llu — Ukll < CRY Jfully 5.0 -

We now define a projection, Iy o : L?(y) — Wi(7), which will be very useful
in our analysis. For u € L?(y), it can be shown [3] that there exists a unique
v € Wi(y) satisfying

(3.5) /UX ds = /ux ds  for all x € Sg(v).
v v
We define I, ,u to be v. This projection is known to be stable in L?(v) and Hg (v),
ie.,
(3.6) 1Tkl Cllully,, for all u € L?(7) and
(3.7) Mgl , <0 Cllully, for all u € H}(v),

IA

under some weak assumptions on meshes (see [16]) which hold for the meshes
defined above. .

The projector I}, is clearly related to the weak continuity condition. Let {y; }
denote the nodes of 7; and the operator & - : V- Mk be defined by (also see
Figures 1, 2, 3 and 4)

~0dy (Hm(ﬂ% - %NM) ) (yi') if yi € YN Anm(y),
(3:8) Erniye) = { 0 otherwise .
It is easy to see that if @ is in My, then u= U+ ez Efﬂﬂ is an element of Mj.
We next define a basis for M. Let {¢% : i = 1,... N} be the nodal basis for

M. There are more than one basis element associated with a node which appears
in multiple subdomains. The basis for M}, consists of functions of the form

(3.9) Ok = B+ D Ern(0h)-
YEZ

For every vertex y! located in the open segment v € Z and belonging to the non-
mortar side mesh, the corresponding ¢)§c as defined above is zero. Every remaining
vertex yfc leads to a nonzero gzﬁﬁﬂ since d)fc and 556 have the same nonzero value at
yk. Also, the values of ¢} and % at all nodes which are not nodes from non-mortar
mesh lying in the interior of some v € Z are the same. This implies that nonzero
functions in {¢} are linearly independent. It is not difficult to check that these

also form a basis for M. Since at y, ¢!, is one and all other ¢¢ i # [ are zero, these
functions, in fact, form a nodal basis. Denote by Ny the total number of nonzero
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FIGURE 1. Two subdo- FIGURE 2. A discontin-
mains with meshes that uous u, which is 1 on a
do not align at interface. mortar node and 0 on the
remaining nodes.
1
Mortar trace

08
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FIGuRE 3. The thick FIGURE 4. Plot shows
line shows @)’ and U+ Ep . Ek,~ U is formed
the thin line shows by extending IIj ,u}! as
I, (@ —0). described by (3.8).

Mlustrating the action of & 4.

P . We now re-index {‘52 i=1,.. M} in such a way that every nonzero ¢i is in
{#% :i=1,...Ni}. Also re-index {y}} in this new ordering.

Now that we have a nodal basis for M}, we may speak of the corresponding
vertices of T as degrees of freedom for Mj,. Consider an interface segment v € Z.
All vertices on 7 are degrees of freedom except: (i) those on 9p, and (ii) those on
v and are from the nonmortar mesh. These are the vertices yi, i =1,..., Ng.

4. MULTIGRID ALGORITHM FOR THE MORTAR FEM

We will apply multigrid theory for non-nested spaces [5] to construct a variable V-
cycle preconditioner. Before giving the algorithm, we define a prolongation operator
and smoother. Later in this section, we will prove that our algorithm gives a
preconditioner which results in a preconditioned system with uniformly bounded
condition number.
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First let us establish some notation: Ay, will denote the operator on Mj,, gener-
ated by the form A(-,-) i.e., A is defined by

(Agu,v) = A(u,v) for all u,v € M.

The largest eigenvalue of Ay, is denoted by Ai. For each basis element ¢}, we define
M,i, i =1,...Ng, to be the one dimensional subspace of M) spanned by gb};. Then

Ni
M= M,
i=1
provides a direct sum decomposition of Mjy.

4.1. Smoothing and Prolongation operators. We will use a smoother Ry, given
by a scaled Jacobi method i.e.,

Ny,
(4.1) Ry =a) A iQi

i=1
where « is a positive constant to be chosen later. Here, A ; : M,z — M,z and
Q% : L?(Q) — M} are defined by

(Apiv,x) = A(v,x)  forall x € My,
and
(Qkvsx) = (v,x)  forall x € My,

respectively. Ry, is symmetric in the (-,-) inner-product.
It will be proved in Section 5 that

(C.1): There exists a positive number Cg independent of k such that

2
lullo.o

k

(4.2) < Cr(Ryu,u), for all u € Mj.

In addition, I — Ry Ay is non-negative.
We now define “prolongation operators” I : Myp_1 — My, for k = 2,...J.

Clearly, I;u needs to satisfy the weak continuity constraint (see Definition 3.2).
We define Iu by:

(4.3) Lu=u+ Y Exy(u).
YEZ

In the next section we show that I} satisfies:
(C.2): There exists a constant Cg independent of k such that

8/
gl o imsp
44 ((T = L Pe_1)u,u)| < C3 (TOQ (Aw,w)

for all w in Mj.
Here P is the Z—adjoint of Iy, i.e., P, : Mypy1 — My, k=1,...J — 1, satisfies
A(Pyu,¢) = A(u, Iypr¢)  for all ¢ € M.

Condition (C.2) is verified using the regularity of the underlying partial differential
equation.
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4.2. The algorithm. Let m(k), k = 1,...J, be positive integers depending on k
and PY_, : My — My_1 be defined by
(PY_u,v) = (u,Iv) for all u € My and v € My,_;.
The variable V-cycle preconditioner By, for k =1,....J is defined as follows:
Algorithm 4.2:
1. For k=1, set By = A]".
2. For k=2...J, Byg for g € My, is defined recursively by:
(a) Set z° = 0.
(b) Define z!, for I = 1,...m(k) by
ol =2+ Rp(g — Agz' ).
(c) Set y° = 2™®) 4+ I,q, where ¢ is given by
q= DBy 1P)_,(g— Apz™®)),
(d) Define 4! for I =1,...m(k) by
y' =yt + Ri(g — Ay ).
(e) Set Brg = y™®*).
We make the usual assumption on m(k) (cf. [5]):
(A.2): The number of smoothings m(k), increases as k decreases in such a way
that
Bom(k) < m(k —1) < Bim(k)
holds with 1 < 8y < ;.
Typically 3, is chosen so that the total work required for a multigrid cycle is no
greater than the work required for application of the stiffness matrix on the finest
level. This condition is satisfied, if for instance, m (k) = 277%.
The following theorem is the main result of this paper.

Theorem 4.1. Assume that (A.1) and (A.2) hold. There exists an o and M > 0
independent of J such that
n ' Au,u) < A(BjAju,u) < nA(u,u)  for all u € My

. M J)B/2
with n = 7;?}()6)/2

The theorem shows that By is a uniform preconditioner for the linear system
arising from mortar finite element discretization using M even if m(J) = 1. In-
creasing m(J) gives a somewhat better rate of convergence but increases the cost
of applying B;. It suffices to choose a above so that @ < 1/Cy where C; is as in
Lemma 4.4.

We use the following lemmas to prove Theorem 4.1. Their proofs will be given

in Section 5. First we state a lemma that is a consequence of regularity which will
be used in the proof of Condition (C.2).

Lemma 4.1. If (A.1) holds, then
I(7 = I Pe—)ull < CRY | Arullg g A, u) =72
holds for all u in Mjy_1.

The next three lemmas are useful in analyzing the smoothing operator. We begin
with a lemma from the theory of additive preconditioners.
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Lemma 4.2. Let the space V' be a sum of subspaces 22:1 Vi. Fori=1,2,...,1,
let B; be a symmetric positive definite operator on V; and Q; be the L? projection
onto V;. Then for B = 22:1 B;Q;,

[
(B~ u,u) = ulfelf/ (Z(Bi_luiaui)>

u:Z’-:1 Ui =1
holds for all u in V.

Lemma 4.2 may be found stated in a different form in [14, Chapter 4] and we
do not prove it here. The following two lemmas are used in the proof of Condi-
tion (C.1).

Lemma 4.3. For Ry defined by (4.1), there exists a constant Cr = Cgr(a) inde-
pendent of k such that (4.2) holds for all u in Mj,.

Lemma 4.4. For all u in My, there is a number Cy not depending on J such that
Nk -
(Aru,u) <C1 Y A4, 61)
i=1
where u = ?2“1 cigb}; 18 the nodal basis decomposition.
We now prove the theorem.
Proof of Theorem 4.1: We apply the theorem for variable V-cycle in [4, Theo-
rem 4.6]. This requires verification of Conditions (C.1) and (C.2).

Because of Lemma 4.3, (C.1) follows if we show that I — Ry Ay is non-negative,
i.e., for all u € My,

(AR Agu,u) < (Agu,u).
This is equivalent to showing that for all v € My,
(Apu,u) < (R} 'u,u).

Fix u € My and let u = Efjl c,d)}; be its nodal basis decomposition. Applying
Lemma 4.2 gives

N N

R! _lkA,,i,i_lkzgii

(R}, u,u) = aZ( ki Cifhy Cidf) = azci (D> D)
i=1 i=1

The non-negativity of I — Ry Ay, follows provided that « is taken to be less than or
equal to 1/C; where C is as in Lemma 4.4.
Condition (C.2) is immediately seen to hold from Lemma 4.1. Indeed,

A(( = Iy Py1)u,u) < O = L Pp-y)ul] Jul

2 B/2
c ( ||Aku||0,g> Alu,u) 072,
Ak

IN

Here we have used the fact that Ay < Chj,>. This proves (C.2) and thus completes
the proof of the theorem. O
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5. PROOF OF THE LEMMAS

As a first step in proving Lemma 4.1, we prove that the operators {I}.} are
bounded operators with bound independent of k. After proving Lemma 4.1, we
state and prove two lemmas used in the proof of Lemmas 4.3 and 4.4.

Lemma 5.1. There exists a constant C independent of k such that
I Zxull < C Jul
for all u € My_.

Proof: Fix u € My_;. By definition, Iyu =u +
on every interior vertex of the mesh in Qx (),

2 i — 2
(5.1) 1€kl g, & S(Enu) W) ~ it 1€kl

i

Yk

vez €kyu. Since & yu is zero

The above sum is taken over the vertices yi of the Qnn(y) mesh that lie on 7.
Here and elsewhere ~ denotes equivalence with constants independent of hj; and
1€k yully,, denotes the L?(7) norm of the nonmortar trace of & ,u. By the L?
stability of IIy, -,

2

0,y

Tk (3" = w0

2
lEul?, )

(5.2)

IN

M NM |2
C”uv — Uy ”[m'
Since w is in My_1, denoting ul — ul/™ by e, we have
(e,e)y = (e,e — V), for all v € Sk_1(v),

where (-,-), denotes the L?(v) inner-product. Applying the Cauchy-Schwarz in-
equality to the right hand side, we have

5.3 < inf — < Chy

(53 lell, <, _dnf _lle= vl < Chulel,,

where the last inequality follows from the approximation properties of Si_1 (7).
Thus,

(5.4) 1€k ully,, < Chy ful —ulM], .

Applying the triangle inequality, an inverse inequality, and a trace theorem yields

ekl < ond ([ud]} + ™))
(5.5) < OB (g 2 ], 0%+ 7 M, 02)
<

2 2
Ol ull? gy, + Tl )

That I, is bounded now follows by the triangle inequality, (5.1) and (5.5). O

Proof of Lemma 4.1: The proof is broken into two parts. First, we prove that
(5.6) I(T = T Pr—sull < CW ARl iy g0 + P [|Akullo )
holds for all u in Mj_;. Next, we show that
(5.7) 14kull s 50 < CA(u,u) =2 | Agullg g
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holds for all w in Mj,. Clearly the lemma follows using (5.7) to bound the first term
on the right hand side of (5.6) and the fact that A\, < Chj>.
Fix u in My and set g = Aju. Then u solves

Alu,¢) = (g,¢)  forall ¢ € M.
Let w € V be the solution of
(5.8) A(w, ¢) = (g9,¢6)  forall ¢ € V.
Now w is the mortar finite element approximation to w from M} and hence by (3.4),
(5.9) llu = wll < Ch ol g -
By the triangle inequality,
(5.10) llu = L Pa—yull < OB Juwlly 5.0+ lhw = e Pyl

To estimate the second term of (5.10), we start by writing Pr_1u = vy +v2 where
v1 € My_1 solves

A(U17¢) = (gv¢)7 fOI‘ all QS S Mkfl-

The remainder v, satisfies

(5.11) A(va, ) = (g, I — Do), for all ¢ € My_;.

Here I denotes the identity operator. Then, by Lemma 5.1 and (3.4),
lw =Tk Peoaull < flw — ol + Mrv2ll + (7 = T)ou |

(5.12) < OWlwllyypq + Clloall + I = T)ou]].-

For the last term in (5.12), we proceed as in the proof of Lemma 5.1 (see (5.1))
to get

(5.13) I(7 = Tyoul* < Chit D llEkqwnll -
~EZ

Setting e = (v1)2 — (v1))M, we have as in (5.3),

5.14 Ek.v <C inf e—v .

(5.14) vl SC__int e~ v,

Let @ denote the L? projection into Si_; (7). Because of the approximation proper-
ties of Sk—1(7), [le — Qelly , < Chi [le]l; , - Trivially, we also have that [[e — Qel|, ., <
llelly - - Interpolation gives

lle = Qely,, < CR2lelly s, -

Now since w is in H(f),

IN

Chy, ||(U1 — w)M

2
¥ |

1/2,y

2 2
O (o1 =0l 250, + 100 =01 2 500, ) -

2
1€kxv1lly —(n—w

IN

Since restriction to boundary is a continuous operator this becomes

2 2 2
1€knvnlls, < Chi (llor =l g, + ot =0l gy, )-
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Thus,

2 2
Y l€konlls, < Chellor —wll

vEZ
< Ol g0,
where we have used (3.4) in the last step. This gives (recall (5.13))
I = Lownll” < O w450

which estimates the last term in (5.12).
For the middle term in (5.12), we find from (5.11) that

lo2ll* < CA(va,v2) = C(Agu, (I, — I)va)

< NAkullog 17— Tk)vallq -

As in Lemma 5.1 (see (5.2) through (5.5)), we get that

2 2
I = Twlg < Che Y lIEkyuall?,
YEZ
2 2
< Chp Y (el oy, + o2l oy,)
YEZ
< Ohilloal®

This proves that [lvz]] < Chy, ||Axully o - Combining the above estimates gives
o = LePeyull < CH lwlly 5.6 + Chi | Akl -

Using this in (5.10) and applying Assumption (A.1) proves (5.6).
We next prove (5.7). Fix u in Mj. Since [|-||_,, 5 o is the norm on the space in
the interpolation scale between V' and L?(12),

lAkull 1450 < Hkul'y o 1Akuligg -
Thus it suffices to prove that
(5.15) [Akull_y o < CA(u,u)'/2.

Given ¢ in V, we will construct ¢y, = ¥y () € My, satisfying

(5.16) Ikl < CllYll g »
and
(5.17) 1Y = Ykllo.o < ChIIYI; o -
Assuming such a )y, exists, we have
Aru,
el g = sup 31
vev 1Yl
< su (Agu, v — 9y) + sup (Agu, )

vev 1Yl vev ¥lie
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Inequality (5.15) then follows from
”AkU“o@ Iy — 1/’16“0,9 D Z(U:T/)k)

[Arull_y o < + su
b Y 141 o pev 1Yl o
< C | by | Agully o + A, uw)/? sup Welho
' vev 1Yl o
< C’hk)\,lc/zg(u,u)l/2 + CA(u,u)'/?
< CA(u,u)'’?

To complete the proof we need only construct ¥y satlsfylng (5.16) and (5.17).

For ¢ €V, let zZJk € Mk be the L? projection of ¢ into Mk This projection is local
on (2; and satisfies (see [6]),

(5.18) H“ka <Clplig,
and
(5.19) Hw - %Hm < Chy |l q -

To construct ¥y, we modify Jh so that the result is in My, i,e.,

Uk =k + Y Euy (V).

YEZ

We will now show that 1) defined above satisfies (5.16). We start with

bl < [|on]| + 3 (s
vEZ

Using (5.18) on the first term on right hand side and using (5.1) on the remaining,
we get

2
(5.20) Ikl < C | 1115 o + Ryt Ekyr
, 0,7
YEZ ’

Note that HS’“”‘Z’“HO,V <C H(J,%W - (Jk)yMHM by (5.2). Since ¢ is in H'(Q),

its trace on 7 is in L?(7). Moreover, )’ and /™ are equal. Hence,

|eeste], . < o v~ @ -
1/2
< ol ol
~ 1/2 1/2
il (T PR Tl N

where in the last step we have used a trace inequality. Using (5.18) and (5.19), we
then have,

- 1/2
(5.21) e e (TP P

Combining (5.21) and (5.20) gives (5.16).
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It now remains only to prove (5.17). By the triangle inequality,

I = Yrllpq < Hd’ - QZkaQ + HZZk - WHOQ :

The first term on the right hand side is readily bounded as required by (5.19). For
the second term, as in (5.1),

H{/;k B djk“o Q < Ch’tp Z Hgk’A’JkHO 5
: o= :

Inequality (5.17) now follows immediately from (5.21). This completes the proof of
Lemma 4.1. O

We are left to prove the lemmas involving the smoother Ry. A critical ingredient
in this analysis involves the decay properties of the projector II; ., away from the
support of the data. Specifically, we use the following lemma:

Lemma 5.2. Letv € L?(v) be supported on o C . Then there is a constant ¢ such
that for any set k C ~y disjoint from o,

1]l

dist(k, o
1Ll < Cexp (—%)

where dist(k,0) is the distance between the sets k and o.

Remark 5.1 Estimates similar to those in the above lemma for the L?-orthogonal
projection were given by Descloux [9]. Note that IIj . is not an L?-orthogonal
projection. For completeness, we include a proof for our case which is a modification
of one given in [18, Chapter 5].

Proof: Recall that a v € Z is partitioned into sub-intervals wy, ; by the vertices
w}'m, i = 0,...N of the mesh on Q). Define the set ro as the union of those
sub-intervals which intersect the support of v. Following the presentation in [18],
define r;, j = 1,2, ... recursively, by letting r,, be the union of those sub-intervals
of v that are not in Uj<,,r; and which are neighbors of the sub-intervals of this set
(see Figure 5). Further, let d,, = Ujsm 7.

We will now show that the L? norm of II; ,v on d,, can be bounded by a constant
times its L2 norm on 7,,. For all x € Si(7) with support of x disjoint from rq, we
have

(5.22) (Ikyv,x) = (v,x) = 0.
Let xm € Sk(v), for m > 1, be defined by

. I v(;gj ) for o ed
j _ k,y kv k,y m
Xm(mk,w) { 0 otherwise,

forj=1,... ,N—1. Let ¢ = wg,; Uwg, n. Clearly, (5.22) holds with x,, in place of
X- Moreover, x,(z) = Iy yv(x) for z € dy, \ €, and it vanishes on «y \ dp,—1. Then,

0= (xm, Mg Hv) = / ITTx ,0|* ds —l—/ XmIg v ds —l—/ Xm g v ds.

m \& dy,Ne Tm

Note that on each sub-interval of d,, N e, x., is constant, and it takes the value

of II; yv at the interior endpoint. Also, on the sub-intervals of ry,, Xxm is either
identically zero (if that sub-interval is part of r,, Ne) or takes the value of I, ,v on
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|
Wk, 1 Wk,3 ' Wk, N—1 |
—t : R— — PR S o
U ke ! e ! k,
: . et i
: ; &’ T1<j : i
— >

N

FIGURE 5. An interface segment

one endpoint and zero on the other endpoint. From these observations, it is easy
to conclude that

/ Xmg vds > C ||Hkﬂv||(2),smdm
dmNe

and
[ Mvlbvnlds < Ol
Thus,
C ||Hk,7v||g7dm < / |Hk¢,v|2 ds —l—/ XmIg v ds
m\e dmNe
= —/ XmIpvds < C ||kav||§’rm .
Tm
Letting ¢, = ||kav||(2)’dm, the above inequality can be rewritten as ¢, <

C(gm-1 — @m). It immediately follows that

c c_\" 2
Gm < T3 glm <...< (1-{——0> Ik 40l -

The lemma, easily follows from (3.6) and the observation that the distance between
k and o is O(mh). O

Proof of Lemma 4.3: Fix u € M}, and let u = 25\2“1 c;®% be the nodal basis
decomposition. By Lemma 4.2,

l

1 . .
(R 'u,u) = EZ(Ak,i(Ci%),Ci%)

IA
Q|3
o

Note that the L? norm of every basis function ¢ is O(h}). Indeed, this is a standard
estimate for those basis functions that coincide with a usual finite element nodal
basis function on a subdomain. For the remaining basis functions, this follows from
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the exponential decay given by Lemma 5.2. Thus,

Ah
(5.23) (R u,u) < Oy .
«
i=1
On each subdomain Q; we have that
Ny,

, .
lullg.o, ~ b | D ui)?

i=1

Combining the above inequalities gives
C
(R uw) < =22l g

The above inequality is equivalent to (4.2) and thus completes the proof of the
lemma.O

The proof of Lemma 4.4 requires a strengthened Cauchy-Schwarz inequality
which we provide in the next lemma. First, we introduce some notation. Define
the index sets NV, and N} by

NY? = {i:yleyandig¢N}}.
Also denote the set U{N : v € Z} by N}

Lemma 5.3. Let ¢ and ¢} be two basis functions of My with i,j € N} Let yi.
and yi, be the corresponding vertices. Then, A(¢, @) satisfies

A(d,0) < C exp (—c'y’l“h;yig A(0f 0) P Aoy, 01)®
k

where C' and ¢ are constants independent of k.

Proof: First, consider the case when yi and y{c are on a same open interface
segment v € Z. Let Ajys denote the set of triangles that have at least one vertex on
7 and are contained in €2ps(). Similarly let Axys denote the set of triangles that
have at least one vertex on 7% and are contained in Qnaz(y)-

(5.24) Ahd) = D A(Bin s+ D A(dh. L)

TEAM TEANM
The first sum obviously satisfies the required inequality, because this sum is zero
whenever y,’c and yj are not vertices of the same triangle in Ajy.

Now consider a triangle 7 € Anps. Recall that v was subdivided by the non-
mortar mesh into sub-intervals wy;, ¢ = 1,... N. Let w, denote the union of two
or more of these sub-intervals which have the vertices of 7 as an end-point (see
Figure 6) and let A, (u,v) = fT Vu- Vv dz. Then, because ¢} and ¢j are zero at
least on one vertex of T,

A (01, 04) < C 16k,

Al ~ni okl o4

0,w-

Now, recall that ¢! and ¢, are obtained from (bk and ¢7 respectively, as described
by (3.9). Denote by s; and s; the supports of cj)’ |y and ¢7 |y respectively. Then by
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—_— QN

Qrr(x)
A
s, Uk
4 ( .
Shaded triangles form A%}, .
I Unshaded triangles form A%, .
3 ~
Sy Ann = ARy UARY,.
k
Y
A
wr T
Y

FI1GURE 6. Illustrating the notations in the proof of Lemma 5.3.

Lemma 5.2,
Ar(9}, 8]) <C bt exp(—[dist(si,wr) + dist(sz,00)) |A4] |64
hi 0,y 0,y
C ~.
< C exp(——/[dist(s;,w;) + dist(s;, w;, ‘ v H J )
b= e aist(osor) + aist(oso) ] e

Now, if |w;| denotes the length of w,, it may easily be seen that
dist(s;, wr) + dist(s;,wr) + |wr| > dist(s;, s;5).
Further, by quasi-uniformity,
dist(ss, 55) > |yh — vil — Cha.

Split the sum over 7 € Ay in (5.24) into a sum over triangles which have a vertex
lying in between yi and y;i on 7, and a sum over the remaining triangles in Ay s.
We denote the former set of triangles as A%, and latter as AQ¥,. Note that the
number of triangles in A%, is bounded by Clyi — y;.|/ k.
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We first consider triangles in A%, . The observations of the previous paragraph

yield
> A(¢h.dh) <

TEAY

S

c ~ .
< Cexp | ——dist(s;, s; ‘ H ]H E 1
- p< by, (5 ])> L () i R COT Wyt
T NM

lyi — v lyi — v
Wk Yl — ek " Ykl ‘
I exp | —c I
i —vil\ |
C exp (—chkk ‘ %

Now, for the sum over triangles in A%, observe that one of the distances,
dist(w,, s;) or dist(w-, s;), is greater than dist(s;, s;). Hence,

. i_ j
S 4Gl < Cexp (—%—“') |
k

out
TEA,

IA

S

J
d
12 () H L2 ()

(5.25)

IA

J
o,
12 () H 12 ()

Ok

i
d
L2 () H L2 ()
dist(wy,s; U s;)
X E exp | —c————————4
hy,
Terui

The sum on the right hand side can be bounded by a summable geometric series.
So,

(5.26) Y A (¢}, ¢)) < C exp (_clyi—yﬁ) ‘

b,
TEAM,

Ok

J
o,
12 () H L2 ()

Thus, (5.25), (5.26) and (5.24) give
A(hi A lyi — Z/j| i j
R e e |

This with the coercivity of fT(, -) on Mj, x M, proves the lemma when y,@ and yi
lie on the same 7. Note that all the above arguments go through when either y;, or
yi is an endpoint of 7.

To conclude the proof, it now suffices to consider the case when yz € v and yi €
Yo with 71 # 72, and 71, v2 € Z. Then, Z(qﬁ};, ¢fc) is zero unless there is a triangle T
in Ty which has one of its edges contained in 7, and another contained in 7,. In the
latter case, defining s; and s; to be the supports of 5};“1 and aﬁw respectively,
and using similar arguments as before, it is easy to arrive at an analogue of (5.25).
Specifically, if d;; is the distance from y! to yfc when traversed along the broken
line 7, U7,, we get,

Ahood) < Comp (—egt ) [

J
%], ..,
12 () L2 ()

from which the required inequality follows as d;; > |yi — y1|. O
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Proof of Lemma 4.4: Split u into a function ug that vanishes on the interface I’
and a function ur that is a linear combination of ¢}, with i € Al. By the triangle
inequality,

A(u,u) < 2[A(ug,up) + A(ur, ur)].

On each triangle 7 in 7y,
3
— E : i(735)
Upg = ci(‘r;j) k on T,
j=1

where i(7;7), 7 = 1,2,3 are the vertices of 7. Applying the arithmetic-geometric
mean inequality gives

A(Uo,UO) = Z AT(UOaUO)

TETk

3
Z 3 Z CZZ(T;J_)AT( Z(T;J),¢;€(T;J))

T€TL Jj=1

= 3Y > A, )
igNT TETE
= 3 AL, h).

igNT

IN

All that remains is to estimate Z(ur, ur). We clearly have
Alur,ur) = Y cic A}, 61)-
i,jENT
Applying Lemma 5.3 gives
i <C |yll;:_yi;| At 62 (b1 & )L/2
(ur,ur) < Z CiCj €Xp _CT (k> Dk) (D1, D)
i,jENT
<CIM|e Y GAGG 6.
ieNT

Here M is the matrix with entries

i _ g
M;; = exp (—ch yk|>

hy
and
Ml = sup M€
CGRW};‘ ¢-¢

where [N} | denotes the cardinality of A} and ‘-’ indicates the standard dot product
in RV I,

To conclude the proof, it suffices to show that ||M]||,z is bounded by a constant
independent of hj. Note that ||M]||,2 is equal to the spectral radius of M and
consequently, can be bounded by any induced norm. So,

[M[[¢2 < max Z M;;.
1eEN, jEN{
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For every fixed i, the sum on the right hand side can be enlarged to run over all
vertices of the mesh Ty, and then one obtains

lyi — yi //
M;; < exp | —c——— | <C exp(—cly|) dy.
E ; < E p( I < . p(—clyl) dy

JENT yieT

Thus |[M|, < C. O

6. IMPLEMENTATION

This section will describe some details of implementing the mortar method and
the preconditioner B;. Since we shall be using a preconditioned iteration, all that
is necessary is the implementation of the action of the stiffness matrix and that of
the preconditioner.

Let Ay _denote the stiffness maftrix for the mortar finite element method, i.e.,

(Ar)ij = A(¢7, ¢). Let
Ny '
(6.1) v=> pidj
i=1

be an element of M. To apply A to p = (p1,...,pn, )t we first expand v in the
basis {(Efc}, apply the stiffness matrices for M, and finally accumulate A(v, %),
i =1,...,Ni. The application of the stiffness matrix corresponding to the space
M, with nodal basis {5}9} is standard. As we shall see, the first and last steps are
closely related.

The first step above involves computing the nodal representation of a function v
with respect to the basis {¢}} given the coefficients {p;} appearing in (6.1). Thus,
we seek the vector p = (p1,- .. ,ﬁﬁk)t satisfying

v=D Pt
j=1
Note that p; = p; for j =1,..., Ni. Thus, we only need to determine the values of

p; for the remaining indices. These indices appear in some set N, . corresponding
to one of the interface segments. We define the transfer matriz T by

Z T;"ZZV ¢l =& b, forallie Ny,

JENT
Then, for j € J\N/,;Y,
pi=)Y, T5p
iENY
The last step of accumulating fT(U,qﬁ};), 1 = 1,...,N} is also implemented in

terms of T*7. Given the results of the stiffness matrix evaluation on Mk, i.e., the
vector of values A(v, ¢},), we need to compute A(v, ¢}). Clearly, ¢i = ¢ for nodes

which are not on any of the interface segments so we only need to compute A(v, gb}g)
for nodes such that i € N} for some segment. This is given by

A(v,6}) = Aw, 60 + S0 S T4 A(v,8)).

Y GENT
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The sum on 7 above is over the segments with i € AV}

For convenient notation, let us denote by T}, the matrix of the linear process that
takes {p; :i=1,... ,Np} to{p;:i =1,.. ]\ka} Then, the matrix corresponding
to {A(v, 52)} — {A(v, #%)} is the transpose T .

We now discuss the implementation of the preconditioner Bj. Specifically, we
need a procedure that will compute the coefficients of Byv (in the basis {¢%}) given
the values (U,QS;;:), i = 1,...,N;. The corresponding matrix will be denoted by
By. Clearly, By = A7'. The matrix that takes a vector {(w,¢%)} to coefficients
of Riw with respect to {¢%} will be denoted by Ry. Finally, let Cj be the matrix
associated with Iy, i.e.,

N
Lighr = D (Ch)ij i

=1

Assuming Bj_; has been defined, we define By, g for an g € RV* by:

1. Compute ol for 1 =1,...m(k) by 2! = 2'=! + Rg(g — Apz!™1),

2. Set ¢ = 2™k 4 Ciq, Where q is computed by ¢ = Bj,_1Cr(g — Agz™®),
3. Compute y' for I =1,...m(k) by y' = y'~' + Ry(g — Apy'™ 1),

4. Set By, g = y™).

This algorithm is straightforward to implement as a recursive procedure provided
we have implementations of Ry, Cy, C, Ay, and At

To compute g = Clgr_1, we first let gx—1 = Tk_1qr—1. We then apply the
coarse to fine interpolation corresponding to the imbedding Mk,1 C Mk This
gives a vector which we denote by ¢x. Then g is given by the truncated vector
(@hs - )"

To compute the action of the transpose, gx—1 = Cgqr, we start by defining gy,
to be the vector which extends ¢ by @”,‘c =0 for i > Ni. Next we apply the adjoint
of the coarse to fine imbedding (Mk_l C ]\71@) to define the vector gr_;. Then
Gk-1 = T} _ 1 qe—1.

Since our codes do not assemble matrices, we use the alternative smoother

Ny,
Rug=A"D (9,61)60

i=1

where Ay is the largest eigenvalue of Aj. This avoids the computation of the diag-
onal entry A(¢i,¢i). The corresponding matrix operator Ry, is just multiplication
by A,;l.

We now show that this operator is a good smoother by showing that it satisfies
Condition (C.1). First, (4.2) holds for R, since by Lemma 4.3,

2
ollo.0
Ak

IN

CR(RkU U CRZ ¢ ¢ )
k> 7k

Rt Z C(R,v,v).

IN
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Now let v be in M}, and p be as in (6.1). Then,

Ny
(RpArv, Ago) = ALY A0, 6})
i=1

Agp - Agp
Ay
This shows that I — R, Ay, is non-negative and hence Condition (C.1) is satisfied.

SApp-p = (Apv,v).

7. NUMERICAL RESULTS

In this section we give the results of model computations which illustrate that
the condition numbers of the preconditioned system remain bounded as the num-
ber of levels increase. The code takes as input general triangulations generated
independently on subdomains, recursively refines these triangulations by breaking
each triangle into four similar ones, solves a mortar finite element problem and
implements the mortar multigrid preconditioner.

We apply the mortar finite element approximation to the problem

~AU=fonQ,

(7.1) U =0 on 99,

where () is the domain pictured in Figure 7 and f is chosen so that the solution
of (7.1) is y(y? — 1)z(z — 2)(z — 3)(y + ). The domain (2 is decomposed into sub-
domains and the subdomains are triangulated to get a coarse level mesh as shown
in Figure 7. The triangulations were done using the mesh generator TRIANGLE
[17]. The smoother used was R, defined in the previous section and m(k) = 2/~*.
Estimates of extreme eigenvalues of the operator B ;A ; were given by those of the

Level | Minimum eigen- | Maximum eigen- | Condition | Degrees of

J value of ByA 5 value of B;yA number freedom
2 0.59 1.13 1.92 67

3 0.56 1.07 1.90 343

4 0.52 1.09 2.10 1451

5 0.47 1.10 2.34 5971

6 0.45 1.10 2.48 24227

7 0.44 1.10 2.52 97603

TABLE 7.1. Conditioning of By A ;.

Lanczos matrix (see [15]). Note that the eigenvalues of B ;A ; coincide with those
of ByAy. As can be seen from Table 7.1, the condition numbers remain bounded
independently of the number of levels as predicted by the theory.
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