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MULTIGRID FOR THE MORTAR FINITE ELEMENT METHOD

JAYADEEP GOPALAKRISHNAN AND JOSEPH E� PASCIAK

Abstract� A multigrid technique for uniformly preconditioning linear sys�
tems arising from a mortar �nite element discretization of second order el�
liptic boundary value problems is described and analyzed� These problems
are posed on domains partitioned into subdomains� each of which is inde�
pendently triangulated in a multilevel fashion� The multilevel mortar �nite
element spaces based on such triangulations �which need not align across sub�
domain interfaces� are in general not nested� Suitable grid transfer operators
and smoothers are developed which lead to a variable V�cycle preconditioner
resulting in a uniformly preconditioned algebraic systems� Computational re�
sults illustrating the theory are also presented�

�� Introduction

The mortar �nite element method is a non�conforming domain decomposition
technique tailored to handle problems posed on domains that are partitioned into
independently triangulated subdomains� The meshes on di�erent subdomains need
not align across subdomain interfaces� The �exibility this technique o�ers by al�
lowing sub�structures of a complicated domain to be meshed independently of each
other is well recognized� In this paper we consider preconditioned iteration for the
solution of the resulting algebraic system� Our preconditioner is a non�variational
multigrid procedure�

The mortar �nite element discretization is a discontinuous Galerkin approxima�
tion� The functions in the approximation subspaces have jumps across subdomain
interfaces and are standard �nite element functions when restricted to the sub�
domains� The jumps across subdomain interfaces are constrained by conditions
associated with one of the two neighboring meshes� Bernardi� Maday and Patera
�see �	� 
�� proved the coercivity of the associated bilinear form on the mortar �nite
element space� thus implying existence and uniqueness of solutions to the discrete
problem� They also showed that the mortar �nite element method is as accurate
as the usual �nite element method� Recently� stability and convergence estimates
for an hp version of the mortar �nite element method were proved ����

When each subdomain has a multilevel mesh� preconditioners for the linear sys�
tem arising from the mortar discretization can be developed by multilevel tech�
niques� A hierarchical preconditioner with conditioning which grows like the square
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of the number of levels is described in ���� In this paper� we show that a variable
V�cycle may be used to develop a preconditioned system whose condition number
remains bounded independently of the number of levels�

One of the di�culties in constructing a multigrid preconditioner for the mor�
tar �nite element method arises due to the fact that the multilevel mortar �nite
element spaces are� in general� not nested� Multigrid theory for nonnested spaces
��� may be employed to construct a variable V�cycle preconditioner� provided a
suitable prolongation operator can be designed� We construct such a prolongation
operator and prove that it satis�es the �regularity and approximation� property
�Condition �C���� required for application of the multigrid theory�

The next di�culty is in the design of a smoother� Our smoother is based on the
point Jacobi method� Its analysis is nonstandard since the constraints at subdomain
interface gives rise to mortar basis functions with non�local support� We prove that
these basis functions decay exponentially away from their nodal vertex� This leads
to a strengthened Cauchy�Schwarz inequality which is used to verify the smoothing
hypothesis �Condition �C�����

The remainder of the paper is organized as follows� Section 	 introduces most of
the notation in the paper� Section 
 describes the multilevel mortar �nite element
spaces� In Section � the variable V�cycle multigrid algorithm is given and the
main result �Theorem ���� is stated and proved� Section � provides proofs of some
technical lemmas� Implementation issues are considered in Section  while the
results of numerical experiments illustrating the theory are given in Section ��

	� Preliminaries

In this section� we provide some preliminaries and notation which will be used in
the remainder of the paper� In addition� we describe the continuous problem and
impose an assumption on the regularity of its solution�

Let � be an open subset of the plane� For non�negative integers s� the Sobolev
space Hs��� �see ��� ���� is the set of functions in L���� with distributional deriva�
tives up to order s also in L����� If s is a positive real number between non�negative
integers m and m � �� Hs��� is the space obtained by interpolation �by the real
method ��
�� between Hm��� and Hm������ The Sobolev norm on Hs��� is de�
noted by k�ks�� and the corresponding Sobolev seminorm is denoted by j�js�� � For

� � Hs���� and a segment � contained in �� the trace of � on � is denoted by �j� �
We will often write k�kr�� and j�jr�� for the Hr��� norm and seminorm respectively�

of the trace �j� �
Assume that � is connected and that its boundary� ��� is polygonal� Let �� be

split into ��D and ��N such that �� � ��N ���D and ��N ���D is empty and
assume that ��D has nonzero measure� Denote by V the subspace of the Sobolev
space H���� consisting of functions in H���� whose trace on ��D is zero� Denote
by V � the dual of the normed linear space V � The dual norm k�k���� is de�ned by

kuk���� � sup
��V

� u� � �

k�k���
�

where � �� � � denotes the duality pairing� Note that L���� is contained in V � if we
identify the functional � v� � �� �v� ��� for all v � L����� Here ��� �� denotes the
inner product in L����� For �� � s � �� k�ks�� is the norm on the space de�ned

by interpolation between V � and L�����
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We seek an approximate solution to the problem

A�U� �� � F ���� for all � � V ��	���

where A��� �� is bilinear form on V � V de�ned by

A�u� v� �

Z
�

ru � rv dx�

and F is a given continuous linear functional on H����� This problem has a unique
solution� For the mortar �nite element method� we restrict our attention to F of
the form

F �v� �

Z
�

fv dx�	�	�

for f � L����� This is the variational form of the boundary value problem

��U � f in ��

U � � on ��D�

�U

�n
� � on ��N �

Although our results are stated for this model problem� extension to more gen�
eral second order elliptic partial di�erential equations with more general boundary
conditions are straightforward�

We will need to assume some regularity for solutions of Problem �	���� We
formalize it here into Assumption �A����

�A���� There exists a � in the interval ���	� �� for which

kUk����� � C kFk������

holds for solutions U to the problem �	����

This is known to hold for wide class of domains ���� �	�� Note that we do not
require full elliptic regularity �� � � case��


� The Mortar Finite Element Method

In this section� we �rst provide notation for sub�domains and triangulations�
Next multilevel mortar �nite element spaces are introduced and the mortar �nite
element problem is de�ned�

Partition � into non�overlapping polygonal sub�domains �i� i � �� � � �K� The
interface � � �Ki����in�� is broken into a set of disjoint open straight line segments
�k each of which is contained in ��i ���j for some i and j� The collection of these
edges will be denoted by Z� i�e�� Z � f��� ��� � � � � �Lg�

Each �i is triangulated to produce a quasi�uniform mesh T i
� of size h�� The

triangulations generally do not align at the subdomain interfaces� We assume that
the endpoints of each interface segment in Z are vertices of T p

� and T q
� where p

and q are such that � � ��p � ��q� Denote the global mesh �iT i
� by T�� To set

up the multigrid algorithm� we need a sequence of re�nements of T�� We re�ne the
triangulation T� to produce T� by splitting each triangle of T� into four triangles
by joining the mid�points of the edges of the triangle� The triangulation T� is
then quasi�uniform of size h� � h��	� Repeating this process� we get a sequence of
triangulations Tk� k � �� � � � J� each quasi�uniform of size hk � h��	k���
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We next de�ne the mortar �nite element spaces following ��� 	� 
� �� �our nota�

tion is close to that in ����� First� we de�ne spaces eV and fMk byeV � fv � vj�i � H���i�� � i � �� � � �K� v � � on ��Dg�
���

and fMk � fv � eV � v is linear on each triangle of Tkg�

Throughout this paper we will use piecewise linear �nite element spaces for con�
venience of notation� The results extend to higher order �nite elements without
di�culty �����

For every straight line segment � � Z� there is an i and j such that � 	 ��i���j �
Assign one of i and j to be the mortar index� M���� and the other then is the non�
mortar index� NM���� Let �M��	 denote the mortar domain of � and �NM��	 be

the non�mortar domain of �� For every u � eV de�ne uM� and uNM
� to be the trace

of uj�M���
on � and the trace of uj�NM���

on � respectively�

We now de�ne two discrete spaces Sk��� and Wk��� on an interface segment
�� Every � � Z can be divided into sub�intervals in two ways� by the vertices of
the mesh in the mortar domain of � and by those of the non�mortar domain of ��
Consider � as partitioned into sub�intervals by the vertices of the triangulation on
non�mortar side� Let these vertices be denoted by xik�� � i � �� � � �N� Denote the sub�

intervals �xi��k�� � x
i
k�� � by 	k�i� i � �� � � �N� where 	k�� and 	k�N are the sub�intervals

that are at the ends of �� The discrete space Sk��� is de�ned as follows�

Sk��� �

���v �
v is linear on each 	k�i� i � �� � � �N�
v is constant on 	k�� and on 	k�N �
and v is continuous on ��

��� �

We also de�ne the space Wk��� by

Wk��� �

���v �
v is linear on each 	k�i� i � �� � � � N�
v vanishes at end�points of �� namely x
k�� and xNk�� �

and v is continuous on ��

��� �

The multilevel mortar �nite element spaces Mk� k � �� � � � J are now de�ned by�

Mk �

�
u � fMk �

on each � � Z�
R
��uM� � uNM

� �
ds � �

for all 
 � Sk����

�
��
�	�

The �mortaring� is done by constraining the jump across interfaces by the integral
equality above� We will call this constraint the weak continuity of functions in Mk�

Note that though the spaces ffMkg are nested�

fM� 	 � � �fMk 	 fMk�� 	 � � �fMJ �

the multilevel spaces fMkg are generally non�nested�
We next state the error estimates for the mortar �nite element method� The

mortar �nite element approximation of the solution U of Problem �	��� �with F
given by �	�	�� is the function Uk �Mk satisfying

eA�Uk� �� �

Z
�

f� dx� for all � �Mk��
�
�
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where eA�u� v� is the bilinear form on eV � eV de�ned by

eA�u� v� �
KX
i��

Z
�i

ru � rv dx�

It is shown in �	� that

jjjujjj � C eA�u� u� for all u � fMk

where jjjvjjj� �
PK

i�� kvk
�
���i

� Here and in the remainder of this paper� we will use
C to denote a generic constant independent of hk which can be di�erent at di�erent
occurrences� It follows that �
�
� has a unique solution� It is also known �see �	��
that the mortar �nite element approximation satis�es

jjju� Ukjjj � Ch�k kuk����� ��
���

We now de�ne a projection� �k�� � L���� 
 Wk���� which will be very useful
in our analysis� For u � L����� it can be shown �
� that there exists a unique
v �Wk��� satisfyingZ

�

v
 ds �

Z
�

u
 ds for all 
 � Sk�����
���

We de�ne �k��u to be v� This projection is known to be stable in L���� and H�

 ����

i�e��

k�k��uk
�� � C kuk
�� for all u � L���� and�
��

k�k��uk��� � C kuk��� for all u � H�

 �����
���

under some weak assumptions on meshes �see ���� which hold for the meshes
de�ned above�

The projector �k�� is clearly related to the weak continuity condition� Let fyjkg

denote the nodes of Tk and the operator Ek�� � eV 
 fMk be de�ned by �also see
Figures �� 	� 
 and ��

Ek��eu�yjk� �

� �
�k���euM� � euNM

� �
	

�yjk� if yjk � � � �NM��	�
� otherwise �

�
���

It is easy to see that if eu is in fMk then u � eu�
P

��Z Ek��eu is an element of Mk�

We next de�ne a basis for Mk� Let fe�ik � i � �� � � � eNkg be the nodal basis forfMk� There are more than one basis element associated with a node which appears
in multiple subdomains� The basis for Mk consists of functions of the form

�ik � e�ik �
X
��Z

Ek���e�ik���
���

For every vertex ylk located in the open segment � � Z and belonging to the non�
mortar side mesh� the corresponding �lk as de�ned above is zero� Every remaining

vertex ylk leads to a nonzero �lk since �lk and e�lk have the same nonzero value at

ylk� Also� the values of �lk and e�lk at all nodes which are not nodes from non�mortar
mesh lying in the interior of some � � Z are the same� This implies that nonzero
functions in f�ikg are linearly independent� It is not di�cult to check that these
also form a basis for Mk� Since at ylk� �

l
k is one and all other �ik i �� l are zero� these

functions� in fact� form a nodal basis� Denote by Nk the total number of nonzero
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Figure �� Plot showseu�Ek��eu� Ek��eu is formed
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described by �
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Illustrating the action of Ek�� �

�ik� We now re�index fe�ik � i � �� � � � eNkg in such a way that every nonzero �ik is in
f�ik � i � �� � � �Nkg� Also re�index fyikg in this new ordering�

Now that we have a nodal basis for Mk� we may speak of the corresponding
vertices of Tk as degrees of freedom for Mk� Consider an interface segment � � Z�
All vertices on � are degrees of freedom except� �i� those on ��D� and �ii� those on
� and are from the nonmortar mesh� These are the vertices yik� i � �� � � � � Nk�

�� Multigrid algorithm for the Mortar FEM

We will apply multigrid theory for non�nested spaces ��� to construct a variable V�
cycle preconditioner� Before giving the algorithm� we de�ne a prolongation operator
and smoother� Later in this section� we will prove that our algorithm gives a
preconditioner which results in a preconditioned system with uniformly bounded
condition number�
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First let us establish some notation� Ak will denote the operator on Mk� gener�

ated by the form eA��� �� i�e�� Ak is de�ned by

�Aku� v� � eA�u� v� for all u� v �Mk�

The largest eigenvalue of Ak is denoted by �k � For each basis element �ik� we de�ne
M i

k� i � �� � � �Nk� to be the one dimensional subspace of Mk spanned by �ik� Then

Mk �

NkX
i��

M i
k�

provides a direct sum decomposition of Mk�

���� Smoothing and Prolongation operators� We will use a smootherRk given
by a scaled Jacobi method i�e��

Rk � �

NkX
i��

A��
k�iQ

i
k�����

where � is a positive constant to be chosen later� Here� Ak�i � M i
k 
 M i

k and
Qi
k � L���� 
M i

k are de�ned by

�Ak�iv� 
� � A�v� 
� for all 
 �M i
k�

and

�Qi
kv� 
� � �v� 
� for all 
 �M i

k�

respectively� Rk is symmetric in the ��� �� inner�product�
It will be proved in Section � that

�C���� There exists a positive number CR independent of k such that

kuk�
��
�k

� CR�Rku� u�� for all u �Mk����	�

In addition� I �RkAk is non�negative�

We now de�ne �prolongation operators� Ik � Mk�� 
 Mk� for k � 	� � � � J�
Clearly� Iku needs to satisfy the weak continuity constraint �see De�nition 
�	��
We de�ne Iku by�

Iku � u�
X
��Z

Ek���u�����
�

In the next section we show that Ik satis�es�

�C���� There exists a constant C� independent of k such that

jAk��I � IkPk���u� u�j � C�
�



kAkuk

�

��

�k

���� � eA�u� u�
�����

for all u in Mk�

Here Pk is the eA�adjoint of Ik� i�e�� Pk � Mk�� 
Mk� k � �� � � � J � �� satis�eseA�Pku� �� � eA�u� Ik���� for all � �Mk�

Condition �C��� is veri�ed using the regularity of the underlying partial di�erential
equation�
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��	� The algorithm� Let m�k�� k � �� � � � J� be positive integers depending on k
and P 


k�� � Mk 
Mk�� be de�ned by

�P 

k��u� v� � �u� Ikv� for all u �Mk and v �Mk���

The variable V�cycle preconditioner Bk for k � �� � � � J is de�ned as follows�
Algorithm ����

�� For k � �� set B� � A��
� �

	� For k � 	 � � � J� Bkg for g �Mk is de�ned recursively by�
�a� Set x
 � ��
�b� De�ne xl� for l � �� � � �m�k� by

xl � xl�� �Rk�g �Akx
l����

�c� Set y
 � xm�k	 � Ikq� where q is given by

q � Bk��P


k���g �Akx

m�k	��

�d� De�ne yl for l � �� � � �m�k� by

yl � yl�� �Rk�g �Aky
l����

�e� Set Bkg � ym�k	�

We make the usual assumption on m�k� �cf� �����

�A���� The number of smoothings m�k�� increases as k decreases in such a way
that

�
m�k� � m�k � �� � ��m�k�

holds with � � �
 � ���

Typically �� is chosen so that the total work required for a multigrid cycle is no
greater than the work required for application of the sti�ness matrix on the �nest
level� This condition is satis�ed� if for instance� m�k� � 	J�k�

The following theorem is the main result of this paper�

Theorem ���� Assume that �A��� and �A��� hold� There exists an � and M � �
independent of J such that

�� eA�u� u� � eA�BJAJu� u� �  eA�u� u� for all u �MJ

with  � M�m�J	���

m�J	���
�

The theorem shows that BJ is a uniform preconditioner for the linear system
arising from mortar �nite element discretization using MJ even if m�J� � �� In�
creasing m�J� gives a somewhat better rate of convergence but increases the cost
of applying BJ � It su�ces to choose � above so that � � ��C� where C� is as in
Lemma ����

We use the following lemmas to prove Theorem ���� Their proofs will be given
in Section �� First we state a lemma that is a consequence of regularity which will
be used in the proof of Condition �C����

Lemma ���� If �A��� holds� then

jjj�I � IkPk���ujjj � Ch�k kAkuk
�

��

eA�u� u�����	��

holds for all u in Mk���

The next three lemmas are useful in analyzing the smoothing operator� We begin
with a lemma from the theory of additive preconditioners�
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Lemma ���� Let the space V be a sum of subspaces
Pl

i�� Vi� For i � �� 	� � � � � l�
let Bi be a symmetric positive de�nite operator on Vi and Qi be the L� projection

onto Vi� Then for B �
Pl

i��BiQi�

�B��u� u� � inf
ui�Vi

u�
P

l
i�� ui



lX

i��

�B��
i ui� ui�

�

holds for all u in V�

Lemma ��	 may be found stated in a di�erent form in ���� Chapter �� and we
do not prove it here� The following two lemmas are used in the proof of Condi�
tion �C����

Lemma ���� For Rk de�ned by ����	� there exists a constant CR � CR��� inde�
pendent of k such that ����	 holds for all u in Mk�

Lemma ���� For all u in Mk� there is a number C� not depending on J such that

�Aku� u� � C�

NkX
i��

c�i
eA��ik � �

i
k�

where u �
PNk

i�� ci�
i
k is the nodal basis decomposition�

We now prove the theorem�

Proof of Theorem ���� We apply the theorem for variable V�cycle in ��� Theo�
rem ���� This requires veri�cation of Conditions �C��� and �C����

Because of Lemma ��
� �C��� follows if we show that I �RkAk is non�negative�
i�e�� for all u �Mk�

�AkRkAku� u� � �Aku� u��

This is equivalent to showing that for all u �Mk�

�Aku� u� � �R��
k u� u��

Fix u � Mk and let u �
PNk

i�� ci�
i
k be its nodal basis decomposition� Applying

Lemma ��	 gives

�R��
k u� u� �

�

�

NkX
i��

�Ak�i ci�
i
k� ci�

i
k� �

�

�

NkX
i��

c�i
eA��ik � �

i
k��

The non�negativity of I �RkAk follows provided that � is taken to be less than or
equal to ��C� where C� is as in Lemma ����

Condition �C��� is immediately seen to hold from Lemma ���� Indeed�eA��I � IkPk���u� u� � C jjj�I � IkPk���ujjj jjjujjj

� C



kAkuk

�

��

�k

���� eA�u� u�������

Here we have used the fact that �k � Ch��k � This proves �C��� and thus completes
the proof of the theorem� �
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�� Proof of the lemmas

As a �rst step in proving Lemma ���� we prove that the operators fIkg are
bounded operators with bound independent of k� After proving Lemma ���� we
state and prove two lemmas used in the proof of Lemmas ��
 and ����

Lemma ���� There exists a constant C independent of k such that

jjjIkujjj � C jjjujjj

for all u �Mk���

Proof� Fix u �Mk��� By de�nition� Iku � u�
P

��Z Ek��u� Since Ek��u is zero
on every interior vertex of the mesh in �NM��	�

kEk��uk
�
���NM���


X
yik

�Ek��u��yik��  h��k kEk��uk
�

�� ������

The above sum is taken over the vertices yik of the �NM��	 mesh that lie on ��
Here and elsewhere  denotes equivalence with constants independent of hk and
kEk��uk
�� denotes the L���� norm of the nonmortar trace of Ek��u� By the L�

stability of �k�� �

kEk��uk
�

�� �

���k���uM� � uNM
� �

���

��

� C
��uM� � uNM

�

���

��

����	�

Since u is in Mk��� denoting uM� � uNM
� by e� we have

�e� e�� � �e� e� ��� for all � � Sk������

where ��� ��� denotes the L���� inner�product� Applying the Cauchy�Schwarz in�
equality to the right hand side� we have

kek
�� � inf
��Sk����	

ke� �k
�� � Chk jej������
�

where the last inequality follows from the approximation properties of Sk������
Thus�

kEk��uk
�� � Chk
��uM� � uNM

�

��
���

������

Applying the triangle inequality� an inverse inequality� and a trace theorem yields

kEk��uk
�

�� � Ch�k

���uM� ������ �
��uNM
�

���
���


� Ch�k

�
�h

����
k

��uM� ��������� � �h
����
k

��uNM
�

��
�����

��


�����

� Chk� kuk����M���
� kuk����NM���

��

That Ik is bounded now follows by the triangle inequality� ����� and ������ �

Proof of Lemma ���� The proof is broken into two parts� First� we prove that

jjj�I � IkPk���ujjj � C�h�k kAkuk������ � hk kAkuk
�������

holds for all u in Mk��� Next� we show that

kAkuk������ � C eA�u� u�����	�� kAkuk
�

�������
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holds for all u in Mk� Clearly the lemma follows using ����� to bound the �rst term
on the right hand side of ���� and the fact that �k � Ch��k �

Fix u in Mk and set g � Aku� Then u solveseA�u� �� � �g� �� for all � �Mk�

Let w � V be the solution of

A�w� �� � �g� �� for all � � V ������

Now u is the mortar �nite element approximation to w from Mk and hence by �
����

jjju� wjjj � Ch�k kwk����� ������

By the triangle inequality�

jjju� IkPk��ujjj � Ch�k kwk����� � jjjw � IkPk��ujjj �������

To estimate the second term of ������� we start by writing Pk��u � v��v� where
v� �Mk�� solves eA�v�� �� � �g� ��� for all � �Mk���

The remainder v� satis�eseA�v�� �� � �g� �Ik � I���� for all � �Mk���������

Here I denotes the identity operator� Then� by Lemma ��� and �
����

jjjw � IkPk��ujjj � jjjw � v�jjj� jjjIkv�jjj� jjj�I � Ik�v�jjj

� Ch�k kwk����� � C jjjv�jjj� jjj�I � Ik�v�jjj �����	�

For the last term in ����	�� we proceed as in the proof of Lemma ��� �see ������
to get

jjj�I � Ik�v�jjj
� � Ch��k

X
��Z

kEk��v�k
�

�� �����
�

Setting e � �v��
M
� � �v��

NM
� � we have as in ���
��

kEk��v�k
�� � C inf
��Sk����	

ke� �k
�� �������

Let Q denote the L� projection into Sk������ Because of the approximation proper�
ties of Sk������ ke�Qek
�� � Chk kek��� �Trivially� we also have that ke�Qek
�� �
kek
�� � Interpolation gives

ke�Qek
�� � Ch��� kek����� �

Now since w is in H�����

kEk��v�k
�

�� � Chk

���v� � w�M� � �v� � w�NM
�

���
�����

� Chk

�
kv� � wk�������M���

� kv� � wk�������NM���


�

Since restriction to boundary is a continuous operator this becomes

kEk��v�k
�

�� � Chk

�
kv� � wk����M���

� kv� � wk����NM���


�
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Thus� X
��Z

kEk��v�k
�

�� � Chk jjjv� � wjjj�

� Ch����k kwk������ �

where we have used �
��� in the last step� This gives �recall ����
��

jjj�I � Ik�v�jjj
� � Ch��k kwk������

which estimates the last term in ����	��
For the middle term in ����	�� we �nd from ������ that

jjjv�jjj
� � C eA�v�� v�� � C�Aku� �Ik � I�v��

� kAkuk
�� k�I � Ik�v�k
�� �

As in Lemma ��� �see ���	� through ������� we get that

k�I � Ik�v�k
�

�� � Chk

X
��Z

kEk��v�k
�

��

� Ch�k
X
��Z

� kv�k
�
���M���

� kv�k
�
���NM���

�

� Ch�k jjjv�jjj
� �

This proves that jjjv�jjj � Chk kAkuk
�� � Combining the above estimates gives

jjjw � IkPk��ujjj � Ch�k kwk����� � Chk kAkuk
�� �

Using this in ������ and applying Assumption �A��� proves �����
We next prove ������ Fix u in Mk� Since k�k������ is the norm on the space in

the interpolation scale between V � and L�����

kAkuk������ � kAkuk
���
���� kAkuk

�

�� �

Thus it su�ces to prove that

kAkuk���� � C eA�u� u�����������

Given � in V � we will construct �k � �k��� �Mk satisfying

jjj�kjjj � C k�k��� ������

and

k� � �kk
�� � Ch k�k��� �������

Assuming such a �k exists� we have

kAkuk���� � sup
��V

�Aku� ��

k�k���

� sup
��V

�Aku� � � �k�

k�k���
� sup

��V

�Aku� �k�

k�k���
�
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Inequality ������ then follows from

kAkuk���� � sup
��V

kAkuk
�� k� � �kk
��
k�k���

� sup
��V

eA�u� �k�

k�k���

� C



hk kAkuk
�� � eA�u� u���� sup

��V

k�kk���
k�k���

�
� Chk�

���
k
eA�u� u���� � C eA�u� u����

� C eA�u� u�����

To complete the proof� we need only construct �k satisfying ����� and �������

For � � V � let e�k � fMk be the L� projection of � into fMk� This projection is local
on �i and satis�es �see ���� ��������� e�k��������� � C j�j��� �������

and ���� � e�k���

��

� Chk j�j��� �������

To construct �k� we modify e�k so that the result is in Mk� i�e��

�k � e�k �
X
��Z

Ek��� e�k��

We will now show that �k de�ned above satis�es ������ We start with

jjj�kjjj �
��������� e�k����������

X
��Z

���������Ek�� e�k��������� �
Using ������ on the �rst term on right hand side and using ����� on the remaining�
we get

jjj�kjjj
� � C

�� k�k���� � h��k

X
��Z

���Ek�� e�k����

��

�A���	��

Note that
���Ek�� e�k���


��
� C

���� e�k�M� � � e�k�NM
�

���

��

by ���	�� Since � is in H�����

its trace on � is in L����� Moreover� �M� and �NM
� are equal� Hence����Ek�� e�k���


��
� C

���� e�k � ��M� � � e�k � ��NM
�

���

��

� C
��� e�k � �

������

��M���

��� e�k � �
������
���M���

�

C
��� e�k � �

������

��NM���

��� e�k � �
������
���NM���

�

where in the last step we have used a trace inequality� Using ������ and ������� we
then have� ���Ek�� e�k���


��
� Ch

���
k

�
k�k���M���

� k�k���NM���


����	��

Combining ���	�� and ���	�� gives ������
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It now remains only to prove ������� By the triangle inequality�

k� � �kk
�� �
���� � e�k���


��
�
��� e�k � �k

���

��

�

The �rst term on the right hand side is readily bounded as required by ������� For
the second term� as in ��������� e�k � �k

���

��

� Ch
���
k

X
��Z

���Ek�� e�k���

��

�

Inequality ������ now follows immediately from ���	��� This completes the proof of
Lemma ���� �

We are left to prove the lemmas involving the smoother Rk� A critical ingredient
in this analysis involves the decay properties of the projector �k�� away from the
support of the data� Speci�cally� we use the following lemma�

Lemma ���� Let v � L���� be supported on � 	 �� Then there is a constant c such
that for any set � 	 � disjoint from ��

k�k��vk
�� � C exp

�
�c

dist��� ��

hk

�
kvk
�� �

where dist��� �� is the distance between the sets � and ��

Remark ��� Estimates similar to those in the above lemma for the L��orthogonal
projection were given by Descloux ���� Note that �k�� is not an L��orthogonal
projection� For completeness� we include a proof for our case which is a modi�cation
of one given in ���� Chapter ���

Proof� Recall that a � � Z is partitioned into sub�intervals 	k�i by the vertices
xik�� � i � �� � � � N of the mesh on �NM��	� De�ne the set r
 as the union of those

sub�intervals which intersect the support of v� Following the presentation in �����
de�ne rj � j � �� 	� � � � recursively� by letting rm be the union of those sub�intervals
of � that are not in �l	mrl and which are neighbors of the sub�intervals of this set
�see Figure ��� Further� let dm � �l
mrl�

We will now show that the L� norm of �k��v on dm can be bounded by a constant
times its L� norm on rm� For all 
 � Sk��� with support of 
 disjoint from r
� we
have

��k��v� 
� � �v� 
� � �����		�

Let 
m � Sk���� for m � �� be de�ned by


m�xjk��� �

�
�k��v�xjk��� for xjk�� � dm
� otherwise�

for j � �� � � � � N � �� Let � � 	k�� � 	k�N � Clearly� ���		� holds with 
m in place of

� Moreover� 
m�x� � �k��v�x� for x � dm n �� and it vanishes on � n dm��� Then�

� � �
m��k��v� �

Z
dmn�

j�k��vj
� ds�

Z
dm��


m�k��v ds�

Z
rm


m �k��v ds�

Note that on each sub�interval of dm � �� 
m is constant� and it takes the value
of �k��v at the interior endpoint� Also� on the sub�intervals of rm� 
m is either
identically zero �if that sub�interval is part of rm� �� or takes the value of �k��v on
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�� ��

�� ��

�� � �

� �
�� ��

� � ��

� � � �

r�

r�

r	

d�

�k�� �k�N��
�k�N�k�	

�k��

Figure �� An interface segment

one endpoint and zero on the other endpoint� From these observations� it is easy
to conclude that Z

dm��

m�k��v ds � C k�k��vk

�

���dm

and Z
rm

j�k��vjj
mj ds � C k�k��vk
�

�rm

�

Thus�

C k�k��vk
�

�dm

�

Z
dmn�

j�k��vj
� ds�

Z
dm��


m�k��v ds

� �

Z
rm


m�k��v ds � C k�k��vk
�

�rm

�

Letting qm � k�k��vk
�

�dm

� the above inequality can be rewritten as qm �

C�qm�� � qm�� It immediately follows that

qm �
C

� � C
qm�� � � � � �

�
C

� � C

�m
k�k��vk

�

�� �

The lemma easily follows from �
�� and the observation that the distance between
� and � is O�mh�� �

Proof of Lemma ��
� Fix u � Mk and let u �
PNk

i�� ci�
i
k be the nodal basis

decomposition� By Lemma ��	�

�R��
k u� u� �

�

�

lX
i��

�Ak�i�ci�
i
k�� ci�

i
k�

�
�k
�

lX
i��

c�i ��
i
k � �

i
k��

Note that the L� norm of every basis function �ik is O�h�k�� Indeed� this is a standard
estimate for those basis functions that coincide with a usual �nite element nodal
basis function on a subdomain� For the remaining basis functions� this follows from
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the exponential decay given by Lemma ��	� Thus�

�R��
k u� u� �

C�kh
�
k

�

NkX
i��

c�i ����	
�

On each subdomain �j we have that

kuk�
��j  h�k

�� eNkX
i��

u�yik��

�A �

Combining the above inequalities gives

�R��
k u� u� �

C�k
�

kuk�
�� �

The above inequality is equivalent to ���	� and thus completes the proof of the
lemma��

The proof of Lemma ��� requires a strengthened Cauchy�Schwarz inequality
which we provide in the next lemma� First� we introduce some notation� De�ne

the index sets eN �
k and N �

k byeN �
k � fi � yik � � � �NM��	g

N �
k � fi � yik � � and i �� eN �

k g�

Also denote the set �fN �
k � � � Zg by N�

k �

Lemma ���� Let �ik and �jk be two basis functions of Mk with i� j � N�
k � Let y

i
k

and yjk be the corresponding vertices� Then� eA��ik � �
j
k� satis�es

eA��ik� �
j
k� � C exp



�c

jyik � yjkj

hk

� eA��ik � �
i
k���� eA��jk � �

j
k����

where C and c are constants independent of k�

Proof� First� consider the case when yik and yjk are on a same open interface
segment � � Z� Let �M denote the set of triangles that have at least one vertex on
� and are contained in �M��	� Similarly let �NM denote the set of triangles that
have at least one vertex on � and are contained in �NM��	�eA��ik � �

j
k� �

X
���M

A� ��ik � �
j
k� �

X
���NM

A� ��ik � �
j
k����	��

The �rst sum obviously satis�es the required inequality� because this sum is zero
whenever yik and yjk are not vertices of the same triangle in �M �

Now consider a triangle � � �NM � Recall that � was subdivided by the non�
mortar mesh into sub�intervals 	k�i� i � �� � � �N� Let 	� denote the union of two
or more of these sub�intervals which have the vertices of � as an end�point �see

Figure � and let A� �u� v� �
R
�
ru� rv dx� Then� because �ik and �jk are zero at

least on one vertex of ��

A� ��ik� �
j
k� � C

���ik����� ����jk������  h��k
���ik��
�� ����jk���


��
�

Now� recall that �ik and �jk are obtained from e�ik and e�jk respectively� as described

by �
���� Denote by si and sj the supports of e�ik j� and e�jkj� respectively� Then by
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�
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�

yik

y
j
k
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��

�M��

�NM��

Shaded triangles form �in
NM �

Unshaded triangles form �out
NM �

�NM � �in
NM ��out

NM �

Figure �� Illustrating the notations in the proof of Lemma ��
�

Lemma ��	�

A� ��ik � �
j
k� �C h��k exp��

c

hk
�dist�si� 	� � � dist�sj � 	� ���

���e�ik���

��

���e�jk���

��

� C exp��
c

hk
�dist�si� 	� � � dist�sj � 	� ���

���e�ik���
���M���

���e�jk���
���M���

�

Now� if j	� j denotes the length of 	� � it may easily be seen that

dist�si� 	� � � dist�sj � 	� � � j	� j � dist�si� sj��

Further� by quasi�uniformity�

dist�si� sj� � jyik � yjkj � Chk�

Split the sum over � � �NM in ���	�� into a sum over triangles which have a vertex

lying in between yik and yjk on �� and a sum over the remaining triangles in �NM �
We denote the former set of triangles as �in

NM and latter as �out
NM � Note that the

number of triangles in �in
NM is bounded by Cjyik � yjkj�hk�
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We �rst consider triangles in �in
NM � The observations of the previous paragraph

yield X
���in

NM

A� ��ik � �
j
k� �

� C exp

�
�

c

hk
dist�si� sj�

� ���e�ik���
���M���

���e�jk���
���M���

�� X
���in

NM

�

�A
� C

jyik � yjkj

hk
exp



�c

jyik � yjkj

hk

� ���e�ik���
���M���

���e�jk���
���M���

� C exp



�c

jyik � yjkj

	hk

� ���e�ik���
���M���

���e�jk���
���M���

����	��

Now� for the sum over triangles in �out
NM � observe that one of the distances�

dist�	� � si� or dist�	� � sj�� is greater than dist�si� sj�� Hence�

X
���out

NM

A� ��ik� �
j
k� � C exp



�c

jyik � yjkj

hk

� ���e�ik���
���M���

���e�jk���
���M���

�
X

���out
NM

exp

�
�c

dist�	� � si � sj�

hk

�
The sum on the right hand side can be bounded by a summable geometric series�
So� X

���out
NM

A� ��ik � �
j
k� � C exp



�c

jyik � yjkj

hk

� ���e�ik���
���M���

���e�jk���
���M���

����	�

Thus� ���	��� ���	� and ���	�� give

eA��ik� �
j
k� � C exp



�c

jyik � yjkj

	hk

� �������ik������ ����������jk��������� �
This with the coercivity of eA��� �� on Mk �Mk proves the lemma when yik and yjk
lie on the same �� Note that all the above arguments go through when either yik or

yjk is an endpoint of ��

To conclude the proof� it now su�ces to consider the case when yik � �� and yjk �

�� with �� �� ��� and ��� �� � Z� Then� eA��ik� �
j
k� is zero unless there is a triangle �

in Tk which has one of its edges contained in �� and another contained in ��� In the

latter case� de�ning si and sj to be the supports of e�ik j�� and e�jkj�� respectively�
and using similar arguments as before� it is easy to arrive at an analogue of ���	���

Speci�cally� if dij is the distance from yik to yjk when traversed along the broken
line �� � ��� we get�

eA��ik � �
j
k� � C exp

�
�c

dij
	hk

� ���e�ik���
���M���

���e�jk���
���M���

�

from which the required inequality follows as dij � jyik � yjkj� �
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Proof of Lemma ���� Split u into a function u
 that vanishes on the interface �
and a function u� that is a linear combination of �ik � with i � N�

k � By the triangle
inequality� eA�u� u� � 	� eA�u
� u
� � eA�u�� u����

On each triangle � in Tk�

u
 �

�X
j��

ci�� �j	�
i�� �j	
k on ��

where i�� � j�� j � �� 	� 
 are the vertices of �� Applying the arithmetic�geometric
mean inequality giveseA�u
� u
� �

X
��Tk

A� �u
� u
�

�
X
��Tk




�X
j��

c�i�� �j	A� ��
i�� �j	
k � �

i�� �j	
k �

� 

X
i��N�

k

c�i
X
��Tk

A� ��ik � �
i
k�

� 

X
i��N�

k

c�i
eA��ik � �

i
k��

All that remains is to estimate eA�u�� u��� We clearly haveeA�u�� u�� �
X

i�j�N�

cicj eA��ik� �
j
k��

Applying Lemma ��
 gives

eA�u�� u�� � C
X

i�j�N�
k

cicj exp

�
�c

jyik � yjkj

hk

� eA��ik � �
i
k���� eA��jk � �

j
k����

� CkMk��
X
i�N�

k

c�i
eA��ik� �

i
k��

Here M is the matrix with entries

Mij � exp

�
�c

jyik � yjkj

hk

�
and

kMk�� � sup
��RjN

�
k
j

�M�� � �

� � �

where jN�
k j denotes the cardinality of N�

k and �� indicates the standard dot product

in RjN
�
k j�

To conclude the proof� it su�ces to show that kMk�� is bounded by a constant
independent of hk� Note that kMk�� is equal to the spectral radius of M and
consequently� can be bounded by any induced norm� So�

kMk�� � max
i�N�

k

X
j�N�

k

Mij �
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For every �xed i� the sum on the right hand side can be enlarged to run over all
vertices of the mesh Tk� and then one obtainsX

j�N�
k

Mij �
X
yjk�Tk

exp



�c

jyjk � yikj

hk

�
� C

ZZ
R�

exp��cjyj� dy�

Thus kMk�� � C� �

� Implementation

This section will describe some details of implementing the mortar method and
the preconditioner BJ � Since we shall be using a preconditioned iteration� all that
is necessary is the implementation of the action of the sti�ness matrix and that of
the preconditioner�

Let Ak denote the sti�ness matrix for the mortar �nite element method� i�e��

�Ak�ij � eA��jk� �
i
k�� Let

v �

NkX
i��

pi�
i
k����

be an element of Mk� To apply Ak to p � �p�� � � � � pNk
�t we �rst expand v in the

basis fe�ikg� apply the sti�ness matrices for fMk and �nally accumulate A�v� �ik��
i � �� � � � � Nk� The application of the sti�ness matrix corresponding to the spacefMk with nodal basis fe�ikg is standard� As we shall see� the �rst and last steps are
closely related�

The �rst step above involves computing the nodal representation of a function v

with respect to the basis fe�ikg given the coe�cients fpig appearing in ����� Thus�
we seek the vector ep � �ep�� � � � � ep eNk

�t satisfying

v �

eNkX
j��

epj e�jk�
Note that epj � pj for j � �� � � � � Nk� Thus� we only need to determine the values ofepj for the remaining indices� These indices appear in some set eN �

k corresponding

to one of the interface segments� We de�ne the transfer matrix Tk�� byX
j� eN�

k

Tk��
ji

e�jk � Ek�� e�ik� for all i � N �
k �

Then� for j � eN �
k � epj �

X
i�N�

k

Tk��
ji pi�

The last step of accumulating eA�v� �ik�� i � �� � � � � Nk is also implemented in

terms of Tk�� � Given the results of the sti�ness matrix evaluation on fMk� i�e�� the

vector of values eA�v� e�jk�� we need to compute eA�v� �ik�� Clearly� e�ik � �ik for nodes

which are not on any of the interface segments so we only need to compute eA�v� �ik�
for nodes such that i � N �

k for some segment� This is given byeA�v� �ik� � eA�v� e�ik� �
X
�

X
j� eN�

k

Tk��
ji

eA�v� e�jk��
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The sum on � above is over the segments with i � N �
k �

For convenient notation� let us denote byTk � the matrix of the linear process that

takes fpi � i � �� � � � � Nkg to fepi � i � �� � � � eNkg� Then� the matrix corresponding

to f eA�v� e�ik�g 
 f eA�v� �ik�g is the transpose Tt
k �

We now discuss the implementation of the preconditioner Bk� Speci�cally� we
need a procedure that will compute the coe�cients of Bkv �in the basis f�ikg� given
the values �v� �ik�� i � �� � � � � Nk� The corresponding matrix will be denoted by

Bk� Clearly� B� � A��
� � The matrix that takes a vector f�w� �ik�g to coe�cients

of Rkw with respect to f�ikg will be denoted by Rk� Finally� let Ck be the matrix
associated with Ik� i�e��

Ik�
i
k�� �

NkX
j��

�Ck�ij�
j
k �

Assuming Bk�� has been de�ned� we de�ne Bk g for an g � RNk by�

�� Compute xl for l � �� � � �m�k� by xl � xl�� �Rk�g �Akx
l����

	� Set y
 � xm�k	 �Ct
kq� where q is computed by q � Bk��Ck�g �Akx

m�k	��

� Compute yl for l � �� � � �m�k� by yl � yl�� �Rk�g �Aky

l����
�� Set Bk g � ym�k	�

This algorithm is straightforward to implement as a recursive procedure provided
we have implementations of Rk� Ck� Ct

k� Ak � and A��
� �

To compute qk � Ct
kqk��� we �rst let eqk�� � Tk��qk��� We then apply the

coarse to �ne interpolation corresponding to the imbedding fMk�� � fMk� This
gives a vector which we denote by eqk� Then qk is given by the truncated vector
�eq�k� � � � � eqNk

k �t�
To compute the action of the transpose� qk�� � Ckqk� we start by de�ning eqk

to be the vector which extends qk by eqik � � for i � Nk� Next we apply the adjoint

of the coarse to �ne imbedding �fMk�� � fMk� to de�ne the vector eqk��� Then
qk�� � Tt

k��eqk���
Since our codes do not assemble matrices� we use the alternative smoother

Rkg � !��
k

NkX
i��

�g� �ik��ik

where !k is the largest eigenvalue of Ak� This avoids the computation of the diag�

onal entry eA��ik� �
i
k�� The corresponding matrix operator Rk is just multiplication

by !��
k �

We now show that this operator is a good smoother by showing that it satis�es
Condition �C���� First� ���	� holds for Rk since by Lemma ��
�

kvk�
��
�k

� CR�Rkv� v� � CR

NkX
i��

�v� �ik��eA��ik � �
i
k�

� C!k
��

NkX
i��

�v� �ik�� � C�Rkv� v��
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Now let v be in Mk and p be as in ����� Then�

�RkAkv�Akv� � !��
k

NkX
i��

eA�v� �ik��

�
Akp �Akp

!k
� Akp � p � �Akv� v��

This shows that I �RkAk is non�negative and hence Condition �C��� is satis�ed�

�� Numerical Results

In this section we give the results of model computations which illustrate that
the condition numbers of the preconditioned system remain bounded as the num�
ber of levels increase� The code takes as input general triangulations generated
independently on subdomains� recursively re�nes these triangulations by breaking
each triangle into four similar ones� solves a mortar �nite element problem and
implements the mortar multigrid preconditioner�

We apply the mortar �nite element approximation to the problem

��U � f on ��

U � � on ���
�����

where � is the domain pictured in Figure � and f is chosen so that the solution
of ����� is y�y� � ��x�x� 	��x� 
��y � x�� The domain � is decomposed into sub�
domains and the subdomains are triangulated to get a coarse level mesh as shown
in Figure �� The triangulations were done using the mesh generator TRIANGLE
����� The smoother used was Rk de�ned in the previous section and m�k� � 	J�k�
Estimates of extreme eigenvalues of the operator BJAJ were given by those of the

Level Minimum eigen� Maximum eigen� Condition Degrees of
J value of BJAJ value of BJAJ number freedom
	 ���� ���
 ���	 �

 ��� ���� ���� 
�

� ���	 ���� 	��� ����
� ���� ���� 	�
� ����
 ���� ���� 	��� 	�		�
� ���� ���� 	��	 ���


Table ���� Conditioning of BJAJ �

Lanczos matrix �see ������ Note that the eigenvalues of BJAJ coincide with those
of BJAJ � As can be seen from Table ���� the condition numbers remain bounded
independently of the number of levels as predicted by the theory�
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