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81. Introduction

We are concerned with the finite element method for parabolic integro-differential equation

u(t) +V(Hu(t) = f(b), te(0,7), (1.1)

u(0) = v,

where V'(¢) is in general an integro-differential operator defined on a Hilbert space X and that u and f
are X-valued functions defined on J = (0,7T") with a positive time 7. A typical example of the Hilbert
space X in the application will be the Sobolev space H{ consisting of functions defined on an open
bounded domain  with vanished boundary value and first order derivatives summable in L?, while

the operator V (¢) is the one defined by

V(t)u(t) = A(t)u(t) + /OtB(t,T)U(T)dT, in Q (1.2)

for any u(t) € H}(2), where A(t) is a linear elliptic operator of second order and that B(t,7) any linear
operator of no more than second order. Although more examples of integro-differential operators will
be considered in this paper, we shall illustrate our results for the operator V (¢) defined by (1.2), since
the others can be modified to fit the strategy designed for (1.2).

Numerical methods to the equation (1.1) have been studied by several authors recently. For finite
difference schemes we refer to [23] and the refences cited therein. The finite element method for
this problem has also been studied; in [23] both smooth and non-smooth data cases were considered
and optimal error estimates in L? were obtained, the semi-linear equation with non-smooth data
and an operator B of zero order was treated in [12] along with a particular attention paid to the
computation of the memory term by the quadrature rule. Recently, a different approach to the
error analysis was proposed in [3] and [4]. Their idea can be summerized as introducing a so-called
Ritz-Volterra projection to decompose the error. A systematic study of Ritz-Volterra projection and
its applications to parabolic and hyperbolic integro-differential equations, Sobolev equation, and the
equations of visco-elasticity can be found from [14].

For the sake of convenience of the analysis, we shall take € to be a plane convex polygonal domain.
Let 75 be a quasi-uniform triangulation so that Q) = Uge7; K = . Let S;, be the finite element
subspace associated with 7,. Without loss of generality, we shall assume that S; is made up of
piece-wise linear functions.

The object of this paper is to study the convergence behavior of the finite element approximation
in the L*°-norm. As a matter of fact, this problem had been considered by Lin and Zhang [15], where

an optimal maximum norm has been obtained for piecewise linear elements for a very special case,



that is, the operators A and B are divergence form which allows us to use the standard regularized
Green function [16, 22], and by Lin, Thomee, and Wahlbin in [14], where the following estimate for
any small € > 0

[u(t) = un()llo,c0 < C(u, )h"°

was derived based on their estimate in LP. Here r is the optimal order in the approximation and C'(u)
a constant dependent upon the exact solution w only. It is clear that such an estimate is not optimal
in compare with the results for the elliptic and parabolic equations (cf. [17] [22] [10] [20] [18]). We
shall, therefore, study this problem from a different point of view in order to get a sharp estimate in
the L*°-norm. The main idea of our approach can be summarized as firstly introducing an auxiliary
problem associated with the Ritz-Volterra operator V and then establishing our main results with
the help of the solution of this auxiliary problem. The auxiliary problem to be introduced in next
section is an analogy of the regularized Green’s function in the study of the L°°-stability for the elliptic
equation of second order. Thus, the only contribution of the authors would be to apply the known
technique appropriately to the current problem. However, such an extension is not trivial due to the
memory term involved in the operator V.

Our main result regards to the maximum norm error estimate for the Ritz-Volterra projection V},

defined by

V(t; th(t)a ¢) = V(t;u(t)a ¢)7 ¢ € S (13)

for each ¢t € J, where V (¢;-,-) is the bilinear form associated with the Ritz-Volterra operator V(t)
defined by

V(t;u(t),v(t)) = A(t; u(t),v(t)) + /UtB(t,T;U(T),Q)(t))dT (1.4)

for u(t),v(t) € H} with ¢ € J. Applications to finite element approximations for the parabolic integro-
differential equation, Sobolev equation, and a diffusion equation with non-local boundary condition
are presented in this paper.

This paper is organized as follows. In §2, we shall introduce and study an auxiliary problem
associated with the operator V. The solution of this problem can be regarded as a certain regularized
Green’s function associated with the Ritz-Volterra operator. In §3, we shall establish an estimate in the
L*>-norm for the Ritz-Volterra projection onto the finite element subspace Sy, while the applications to
the parabolic integro-differential equation, Sobolev equation, and a diffusion equation with non-local
boundary condition will be given in §4.

A preliminary of this paper can be summarized as follows. Denote by W™P the Sobolev space on



the domain € defined by

wmp  — {U; Dy € LP with |.7| < m}

1

m _ P
[ollmpy = | D IID?0lf,

l7]=0
for non-negative integers m and p € [1,00], where D/ is the differential operator of order || with a
multi-index j and that || - [|o, the L norm of the corresponding function. In the case of p = 2 we
shall use the notation H™ with norm || - ||,;, rather than WP, With an abuse of notation, || - || will
be used to indicate the L°°-norm.

Along with the operator V() of (1.2), we define a new operator V*(¢) by
T
V*(t)u(t) = A(t)u(t) +/ B*(r,t)u(r)dr, u(t) € Hy (1.5)
t

for each t € J, where B* is the adjoint of the linear operator B in H}. By changing the order of

integration it is not hard to check that

T T
/‘Wm@MWﬁZ/VWwWMW% (1.6)
0 0

where V (¢;-,-) and V*(¢;-,-) are the bilinear forms associated with the operators V (¢) and V*(¢),
respectively. Thus, the operator V*(¢) can be considered as the adjoint of V (¢).
To analyze the solution associated with the operator V*(t), the Gronwall’s lemma in the following

version will be used. Let ¢ and ¢ are two non-negative functions defined on [0, 7] and

T
b(t) < (t) + c/t b(r)dr, teJ.
Then,
T
wmscww+£¢mmy

We shall refer the last relation as ‘back-ward” Gronwall’s inequality. Here and throughout this paper
we shall use C' to denote genetic non-negative constant independent of the mesh size h and any
functions involved. But it may depend upon the time interval [0,7].

The following a priori estimates for the operators V' (¢) and V*(¢) are valid due to the Gronwall’s

lemma. Let f(t) € L? for each t € J and v and w satisfy
V(t)u(t) = f(t), forallt e J (1.7)
and

V*(t)w(t) = f(t), forallte J (1.8)



with homogeneous Dirichlet boundary condition, respectively. Then, u,w € H} N H? for each t € J

and there exists a constant C' such that

e < ¢ (1@ + [ 15 lodr) (1.9

T
[w(t)]2 < C (Hf(t)llo +/lt Hf(T)HodT> : (1.10)

It can also be seen easily that the following estimate holds

T
IVw(t)lo < C (IIf(t)Hl +/1t Hf(T)HldT> (1.11)

with || - ||_1 being the norm in the space H~!.

82. An Auxiliary Problem

In studying the convergence in the L°°-norm for the finite element method associated with elliptic
equations, one needs to introduce and study the approximation for the Green’s function in W1> (cf.
[22] [10] [18] [21] [9] [27]) or alternatively, to employ a weighted norm in the analysis (cf. [16] [17]).
The Green’s function is usually defined to be the solution of a conjugate problem of the problem
under consideration. Here in our problem (1.1) we have the operator V' as an analogue of the elliptic
operator of the second order, so that we need to introduce an auxiliary problem whose solution plays
the role as the Green’s function in the elliptic case.

For this purpose we now define an operator V* on H} x J, understood to be the adjoint of V, so

that for any u(t) € H}
T
Vult) = Atut) + [ B (r,tu(rdr, (2.1)
t
where B* is the adjoint of the operator B. Formally, let g(t) = g(z,t, 29, to) satisfy
Vig(t) = 0% (2) 6 (1), (2.2)

where z = (z,y) is the space variable and that §°(z) and §%(¢) the dirac J-function associated with

the points zy and ¢, respectively. Thus, for any sufficiently smoothing function w(z,t) one may have

w(zoto) = (57(2) 6°(),w(z, 1))
T
= [ Vg, wv)d

= /OT V(t;w(t), g(t))dt, (2.3)
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where we have used the relation (1.6) to derive (2.3). It is clear that the function g(¢) acts as the Green’s
function in a certain space. However, to make everything be more precise from the mathematical point

of view, we define a function G(t) = G(z,t;2y) to be the solution of the equation

T
ADG(H) + /1t B*(r,)G(r)dr = 62(2)é(t), in (2.4)
G(t) = 0, on 01,

where ¢(t) € C*°(0,T) and §;°(z) is a smoothed d-function associated with the point zp and the

piecewise linear finite element subspace Sj,. They are required to satisfy the following properties

L. (6}2;0’)() = X(zﬂ)a X € Sha

2. |02°(2)] < Ch2,  sup(62°) C {ws o — 2| < Ch},

3. el < 1.

The solution of the auxiliary problem (2.4) plays the same role as the regularized Green’s function
used in the L error analysis for the finite element method of the elliptic problem of second order (cf.
[22] [10] [21] [9] [27] ), though the function on the right hand side of (2.4) is not precisely a regularized
o-function. In fact, since our analysis will be made only for the semi-discretization algorithm the
function §;°¢(t) can be regarded as a regularized d-function in the space variable. Thus, the solution
of the problem (2.4) shall be referred to as the regularized Green’s function for the Ritz-Volterra
operator V.

Let G, (t) be the finite element approximation of the regularized Green’s function for ¢ € [0,T;

ie.
T
ABGD) = G0),) + [ B (LEG() = Galr) X)dr =0, X € 5. (2:5)
t
It is not hard to see that (cf. [3] [4] [14])
) T
G = Gallo + BIV(G = Gallo < CH{IGll2 + [ IG(7)lladr}. (2.6
Thus, the a priori estimate (1.10) implies that
IG' = Grllo + hlIV(G = Gr)llo < Ch(L + |(t)]), (2.7)

since

T
Gl + [ 1G()dr < Ch 1+ 9.

We are now ready to establish the result for the regularized Green’s function.



Theorem 2.1. Assume the triangulation 7, to be regular [6]. Then, there exists a constant C ,

independent of h, z, and ¢(t), such that
1
IG(#) = Gr(®) 11,1 < Chlog- (1 +[(1)])- (2.8)

Proof: Let 0,,(z) = (|z— 2|2+ K2h?)'/? be the weight function used in [10] (see also [16] [17] [22])
for the standard Galerkin approximation. We omit the well known properties regarding the weight
function for sufficiently large K. Since no confusion is possible, we shall take K = 1 in our analysis.

Thus, by Schwarz inequality,

IG = Gullin < G = Ghllon + IV(G = Gh)lloa (2.9)
1
< ClG—=Ghllo + C(logﬁ)l/QHV(G = Gu)lloz,
where, as usual, || - ||y« ¢ is a weighted norm defined by

||90||§Q,Q = /620a902dQ for a real

and | - ||pe the weighted norm for @ = Q. It follows from (2.7) and (2.9) that it suffices to prove the

following
IV(G = Gi)llo2 < Ch(log%)w(l + o)) (2.10)
By the ellipticity of the operator A(t), we may assume, without loss of generality, that
Vw2 < A(t; w,w), w € HE(Q)
is valid. Thus, a simple calculation shows that
IV(G = Gn)llg> < CIIG = Gall§ + AL G = Gn, ), (2.11)
where 1) = 02(G — G},). Let 41 be the piece-wise linear interpolation of ¢ on Sj,. Then,
Alt;G = G, yp) = Al;G = Gpyp — 1) — /tT B¥(1,4;G(7) — Gp(7), ¢ — ¢pr)dr
+ [ "B (1, £, G(r) - Gulr), ) (2.12)
Thus, by applying the Schwarz inequality we get
ALG = G) < FIV(G = Gi)llZs + RVl + CIG — Gul}
+ /tT B*(r,t;G(r) — Gp(r), ) dr

T 2
+C ( /t V(G — Gh)||gzd7> (2.13)

7



and
T
| BrtGE) ~Gul), wdr <HIV(E - Gl +CIG - Gal? (2.14)
T 2
+C (ST (IG = Gallo + V(G = Ga)lly2)dr)

where

IVl = > IV*9l5- k

KeTy

and V24 denotes a general second order derivative operator. As in the case for elliptic equations of

second order, it is not hard to see that
W2 < C (16 — Gulld + W2IV(G — G)ll3 + R2IV°GI.) (2.15)
Set
g(t) = |G = Gullo + h[IV(G — Gn)llo + A VZC |2

and

p(t) = [IV(G = Gp)llg2-

It follows from (2.13), (2.14), and (2.15) that

2

1 T
A(t:G =G ¢p) < 5p°(0) +C </t (p(s) +9(8))d8> - (2.16)

This last inequality combined with (2.11) yields

T
mwscmw+OA<M@+4$m& (2.17)

Thus, by applying the back-ward Gronwall’s lemma we get

T
o) < Clat)+ [ gls)ds)

Now (2.8) follows from the last inequality combined with the relation (2.18) below.

To complete the proof of Theorem 2.1, we present here an estimate for the function g(¢) defined
above.

Lemma 2.1. Let the function g(¢) be defined as before. Then, there exists a constant C' such

that

(1) < Ohy/log (1 + [6(0). (2.18)

Proof: It follows from (2.7) that

g(t) < Ch(1 + |(t)]) + RIV*Gl,2- (2.19)



Thus, one only needs to estimate h?||V2G||2, in order to conclude (2.18). The estimate of this term
can be given along the same line as in the case for the elliptic problem of second order. For the sake
of completness, an outline is presented as follows.

Let z = (z,y) and 29 = (29, y0). Then, there exists a constant C' such that

192612 < € (192l + V20Ol + VGl + hIV2GlL) . (2.20)
where
§(t) = (z —20)G(t)
and
n(t) = (y — o) G(1).
Since G(t) is the solution of (2.4), there exist two functions w;(¢) and wo(t) so that
T
A(t)E(?) +/t B (r,t)¢(r)dr = (z —z0)0;° (2)¢(t) + wi(t) (2.21)
and
T
A(t)n(t) + /t B (r,t)n(r)dr = (y —y0)d;° (2)p(t) + wa(t), (2.22)

By the structure of £(¢) and 7n(t) we know that wi () and wo(t) are made of the first order derivatives

of G(t) and its integral in time from ¢ to 7. Thus, they can be estimated as follows
T
lwi(®llo < CUVGWo + [ IVG@odr) (2.23)

for i = 1,2. Applying the a priori estimate (1.10) yields

T
IVZE®)lo < ClIr(®)llo Jr/lt [r(T)llodT), (2.24)
where
r(t) = (z — 20)0,° (2)p(t) + wi(t).
Clearly,
lr@®llo < NIz —20)d;° (2)p(E)llo + [lwi(t)llo
T
< O+ ()] +||VG(t)||0+/t IVG(7)lodr). (2.25)

It follows from (2.24), (2.25), and (2.23) that

T
IV2%@®)llo < C(1+1o(0)] + VG (#) o +/t IVG(7)llod). (2.26)



Similarly, the following is valid for 7(¢)
T
IV2n()lo < C(1+ ()] + VG (D)l +/t IVG(7)llodr). (2.27)

Combining (2.20) with (2.26) and (2.27) gives

2
VG2 <© ((1 10 + VG0l + [ ||VG(T)||0dT> , (2:28)

where we have used the fact that h||V2G|lp < C for a positive constant C. It remains to estimate
IVG()|2 + ftT [VG(7)||3dr in the last inequality. This can be done by applying the a priori estimate
(1.11) to the problem (2.4). Thus,

T
IVGlo+ [ 196 lodr < O+ 40y log (2:29)
It follows from (2.29) and (2.28) that
IV2G(0]2: < O+ l9(0)Plosy. (2:30

which, together with (2.19), demonstrates (2.18).
3. Estimate of the Ritz-Volterra Projection

Let’s apply the result in §2 to establish an estimate for the Ritz-Volterra projection Vj in the
maximum norm. We shall consider in the rest of this paper the finite element method for a parabolic
integro-differential equation, Sobolev equation, and a diffusion equation with non-local boundary
condition. The maximum norm error estimates for those problems converge to the estimate for Ritz-

Volterra type projections.

For the sake of convenience in the analysis, we consider a projection operator K}, defined by seeking

Kpu(t) € Sy, such that
V(tu(t) — Kpu(t), x) = Ctw(t),x), X € Sh, (3.1)

where w(t) € Wh° N H} for each t € J and C(t;-,-) is a bilinear form on H} associated with a
second order differential operator. It is clear that the case w(t) = 0 for every ¢t € J corresponds to
the Ritz-Volterra projection. Our object here is to present an estimate for the projection operator
K}, and then it follows the estimate for the Ritz-Volterra projection. Assume that the bilinear form

C(t;-,-) is bounded in H{ and there exists a constant C such that
C(t;u,v) < Cllufleo [|vll2,1

10



for u € L N H} and v € W21 N H].
Lemma 3.1. Let u(t) € Wh° N H} for each ¢ € J. Then, there exists a constant C such that

1/,
Ju = Kyl < Clogg: _int [llu =l + ) (32)
XESh

where for any ¢(t) € H¢, the mesh dependent norm |||#|||, is defined as follows

l1élln = max(ll(t)lloc + AIVH(E)lloo)- (3.3)
Proof: Clearly,
Kyu—u = (Kpu—x)+ (x —u). (3.4)

Thus, it suffices to estimate p = Kjpu — x in order to conclude (3.2). Since p € S}, holds, it follows

from (2.4) and the definition of the regularized Dirac d-function that

T T
| ooty it = [ (K~ . 500t (35)
0 0
T
= / V*(t; Gh,Khu—X)dt
0
Applying the relation (1.6) to (3.5) gives
T T
| ooty o0yt = [ Vit Ky~ x, G
0 0
T
= [ lu—x.Ga) — Ot w(t),Gr) i, (36)
0

where we have used the error equation (3.1) in deriving the last equality. To estimate (3.6), let’s

rewrite (3.6) in the following way

T
| pleost) glt)dt =1+ B~ B~ I, (3.7)
where
T
IIZ/ V(t,U—X,Gh—G),
0
T
-[2:/ V(t,U—X,G),
0
T
I3 = / C(t;w(t), G — G)dt,
0
and

I = /OT C(t:w(t), G)dt.

11



By Theorem (2.1) and the fact that fOT |p(t)|dt < 1,

1 T
I < Chlogg max |[V(u =)o [ (L+ |6}

1
< Chlogy max||V(u = x)llec- (3.8)

As far as I, was concerned, note that G(t) is the solution of (2.4) and ||6;°||o,;1 < C for some constant

C. Thus,

T
L = / (02 p(t), u — x)dt

IN

T
| e = x93l sty
O max [u — x|oo- (3.9)

IN

The estimates for I3 and I4 can be done along the same line. Thus, we have

1
< — .
Is < C’hlogh max IVw ()0 (3.10)
and
I, < Cl 1 lw(t)]| (3.11)
4= T8 BEF N oo, '

since ||G||2,1 < Clogt holds. Now combining (3.7) with (3.8), (3.9), (3.10), and (3.11) gives
r 1
| etzo, 601t < Crog(llu = xlln + Il wllo) (3.12)
Since ¢ and zp € € can be arbitrary, we have from (3.12) that
1
lolleo < Clog([llu = xllln + [l[wl]ln), (3.13)
which, together with (3.4), demonstrates (3.2).
Theorem 3.1. Under the assumptions of Lemma 3.1, there exists a constant C' such that
Ju~ Viullo < Clogy: int lu x| (314
u— Vpu og— inf |||lu— . .
htlloo > gh XESh Xllh
84. Applications

We intend to apply the result derived in §3 to some time dependent problems. The Ritz-Volterra
type operator is the key structure of those problems. The first problem we are considering is the
parabolic integro-differential equation.

4.1. Parabolic Integro-differential equation

12



Consider the finite element approximation of the problem (1.1) with an operator V (¢) defined by
(1.2). The problem is termed as a parabolic integro-differential equation with homogeneous Dirichlet
boundary condition. For the sake of convenience, we restate the problem as follows. For each ¢ € J,

find u(t) € H¢ such that

(ug,v) + A(t;u,v) + /OtB(t,s;u(s),v)ds = (f,v), v € H) (4.1)

uw(0) = wuyp, in Q.

It is clear that formally the problem (4.1) is similar to the heat equation with homogeneous Dirichlet
boundary condition, except the memory term charactrized by the integration on the bilinear form
B(t;+,-). In fact, these two problems share many properties that are used in the analysis in both
theoretical and computational aspects (e.g., energy and Gronwall argument etc.) A semi-discrete

finite element approximation for (4.1) is defined by seeking uy(t) € Sy, for each ¢ € J such that

(ung, x) +V(tun(t),x) = (f(t),x), X € Sh (4.2)

with an initial data uj(0) = uf, where ul is an approximation to the initial value ug in the finite

element subspace S,. Our object is to establish a similar analysis to the heat equation of the error in

L*®-norm for this problem. For any function v(z,t) € W%, denote by |||v|||2,00 the norm

l1v]ll2,00 = max [[v]]2,c0-

Then, our first result concerning this method can be stated as follows.
Theorem 4.1. Let u(t) be the exact solution of the parabolic integro-differential equation (4.1),
and uy,(t) the finite element approximation in S}, defined by (4.2). Assume that u(t) € W2 for each

t € J. Then, there exists a constant C, independent of h and w, such that

) = wn (0w < CWl0g - (1Hllzoe + ([ () Br) ) (4.3)

provided that the initial approximation u'[} is the Ritz projection on S, associated with the operator
Ay = A(0).

Proof: Let 6 = up — Vju and n = Vyu —u with Vju being the Ritz-Volterra projection of u defined
by (1.3). It is easy to see that

up —u = (up — Vpu) + (Vyu —u)

= 0+n. (4.4)
As shown in [14], the function 6 can be estimated as follows

t
IV6llo < Ch*(|lvll> + (/0 lue(r)13d7)'?).

13



Thus,
1
C(IOgE)I/ZHVQHO

cn?1og)? (ol + ([ ua(r) Bar) 72 (4.5)

16(8)loo

IN

IN

since § € S,. To estimate n = Vju — u in the L°-norm, one can apply (3.14) combined with the

interpolation theory to get
2 1
17l < Ch7log ||[ull]2,00- (4.6)

Thus, combining (4.4) with (4.5) and (4.6) yields the conclusion of Theorem 3.1.

Our next goal in this section is to relax the assumption on the approximation u{ of the initial value
ug. We intend to derive a sharp estimate for this method as long as the initial data is approximated
with a certain accuracy compatible to the interpolation. To be more precise, let the differential
operator A be time independent. Assume that the initial value satisfies the following approximation

properties

lug — ufllo < Ch?[|uoll2, (4.7)

luo = ugllico < CH*luofl20, i =0,1. (4.8)

Then, a point-wise error estimate for this method can be given as follows.
Theorem 4.2. Assume that the solution of (4.1) u(t) € W2 for each t € J. Then, there exists

a constant C such that

1
[u(t) = un(t)lloo < Ch?logﬁ (luoll2,00 + [[lut]]|2,00) - (4.9)

The proof of Theorem 4.2 will be given along a similar idea employed in [20, 21] ( see also [1]
[25]) for the heat equation. But we need to do a little preparation before presenting the proof. Let
Ay : S, — Sp, be a linear operator defined by

(Ahgﬁ,?/)) = A(¢a¢)a ¢,T/) € Sh-

Similarly, one could define an operator By (t,7) from the bilinear form B(¢, ;-,-). Here we would like
to recall that A(-,-) and B(t,7;-,-) are respectively the bilinear forms associated with operators A and

B(t, 7). Next, let T}, : L?>(Q) — S}, be the approximation operator of 7= A~! defined by

A(ThfaX) = (.fa X)’ X € Sh-

14



It is easy to see that T, = A,:l on S; and
1(Th = T) fllo + RV (Th = T) fllo < CR?|| £ lo- (4.10)
Lemma 4.1. There exists a constant C such that
IThBaxlli < Cllxlli,  x € Sh (4.11)
fori =0,1.

Proof: We shall prove the case i = 0 only, since the proof for 4 = 1 is similar. For any 1 € L? we

have from (4.10) and the definition of T}, and Bj(¢,7) that

(ThBrx,¥) = (Bux,Tnp) = B(t, 75 x, Thtp)
= B(t,7;x, (Th = 1)) + B(t, 73X, TY)
= ClixIh(Th = )l — (x, B* (¢, 7)T4)
Ch™H Ixllohligllo + Cllxllo 1 llo
Cllxllo 1o

IN

IA

Thus, (4.10) follows.

Remark 4.1. It follows from (4.10) and the weak Sobolev inequality [17] that
1
1T Brxlloo < C(logﬁ)mllxlh- (4.12)

Let E}(t) be the semi-group generated by the operator A;. For our purpose, we would like to cite
some estimates regarding this operator. A complete analysis can be found from [21].

Lemma 4.2. There exists a constant C' such that for any y € Sp,
1Bl < Cllxdlor 1 Bn®xllo < —— x| (4.13)
h Xlo > X110, dth XO_t+h2X0a .
1
1En(H)xllso < C(logﬁ)mllxlloo- (4.14)

Now we are ready to prove Theorem 4.2.

Proof of Theorem 4.2: Note that the error u;, —u has been decomposed into € and 7 as in (4.4).
The component 7 can be estimated by (4.6). Thus, we need only to deal with the estimate for 6. It

is not hard to see that 0 satisfies the following equation
(02 ) +V(:0,x) = = %), X € Sh

15



or in other words
t
0, + Ay + / Bu(t, 7)0(r)dr = — Py, (4.15)
0

where Py is the L? projection onto Sj,. Thus, by applying Duhamel’s principle we get
t t T
B(t) = Ep(t)0(0) — / Ep(t — )Py (r)dr — / Byt — 1) / Bi(r, 5)0(s)dsdr
0 0 0

= K, - K, - K. (4.16)

The estimates for K/s can be given as follows. It follows from (4.14) and (3.14) that

1
IKile < Clogs [16(0)]]s0
1
< Clogy (|luf — Vhu(0) o)

1
< Clogg (n(0)l1so + lluo — ull=)

1
< ChQ(IOgE)QHUo 12,005 (4.17)

where the approximation assumption (4.8) has been used as well. To estimate Ko, assume for the

moment that there exists a constant C such that

1
17t ]lo0 < Ch?logﬁ (lluoll2,00 + [llut]]|2,00) - (4.18)

Then, the L>®-stability of the L? projection Py implies that

N

1 t
[Kalloo < Clogg, [ 1 P0mlocdr

IN

1 t
Clogg, [ lImlloedr
0

1
C12 (log3)? (luo

IN

12,00 + [[[ut]]|2,00) - (4.19)
As far as K3 was concerned, we see from integration by parts that

t t

Ky = = [ TuBu(t.9)0(s)ds + [ En(t— 1)TuBa(r, 10(r)dr
0 0
t T
+ [ Bat=1) [ TuBus(r,9)0(s)dsdr,

0 0

so that by Lemmas 4.1 and 4.2
NN
[Kslloo < Cllogz) /2 [ 190]odr

Recall from [14] that
t t
| I¥6lodr < 3 (lullz + [ fhulzdr)

16



Thus,
2 NV !
Kl < 210" (Il + [ ualdr )
Combining (4.16) with (4.17), (4.19), and (4.20) yields
1
1011 < CH (tog 2 oo+ Nl + ualzo0)

which, along with the estimate for n, demonstrates Theorem 4.2.

It now remains to prove (4.18). Clearly,

t
A(n, x) +/0 B(t,m;n(r), x)dT =0, X € Sh.

Thus, by taking differentiation we get

t
A, x) + B(t,tm, x) + /0 By(t,m3n(r),x)dr =0, X € Sh.

Set w = u; and wy, = up 4. Then,
t t
u= / w(T)dT +uy, up = / wy (7)dT + ub
0 0
Substituting the last two equations back to (4.21) gives
W(ta w — whaX) = D(t7u3 - anX)a

where the bilinear forms W (¢;-,-) and D(¢;-,-) are defined respectively by

W (t; ) = Al ) + /0 "B, $(r) p)dr + /0 t /0 " By(t, 7 ¢(s), ) dsdr

t
D(t; 6, 00) = B(L,t; 6, ) + / By(t, 5 (7), )dr.

(4.20)

(4.21)

(4.22)

The bilinear form W (¢;-,-) is of Ritz-Volterra type. Thus, the Lemma 3.1 is applicable to the problem

(4.22). Thus,

1 /.
lw = wplloo < Clog- ( inf [||w — x|[|n + [||uo —U3|||h> -
XESh

Now (4.18) follows from (4.23).

(4.23)

We shall now show the following type error estimates in which there is no time derivatives involved

[21].

Theorem 4.3. There exists a constant C' > 0 such that

t
lu(t) — un(t)[lo < Ch? (1 + log(1 + —h2)> sup [lu(s)|l2-
0<s<t

17
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Proof: First of all, we see from [14] that

IN

t
Ch¥(ulla+ | llulldr)

Ch* sup [lu(s)]l2-
0<s<t

Inllo

IN

Furthermore, 6 can be expressed as
06) = En(0600) ~ Fu)Pon(0) ~ Pon(®) — [ 5Bt — 1) Pun(r)ir
+ /0 Bt 5)0(s)ds — /0 "Byt — 7Y By (r, 7)0(r)dr (4.25)
_ /0 "Bt — 1) /0 "3, (7, 5)0(s)dsdr

Thus, we obtain by Lemmas 4.1 and 4.2 that

t
nis
otelo < CIOOlo + Il + Inlls} +© [ oo+ e g

t t
< CRA(1+log(l+ 7)) sup Jus)ll2 +C [ [ollodr.

0<s<t 0

An argument of Gronwall’s lemma will yield
t
1610 < €1 (1 log(1 + 55) ) sup ) (4.20
0<s<t

which concludes Theorem 4.3.

4.2. Sobolev Equation
Consider following problem for the Sobolev equation. Find u(t) for each ¢ € J such that
Aty + Byul) = £(1), i @,
u(z,0) = wv(x), in Q, (4.27)
u(z,t) = 0, on 0F),
where A(t) is a symmetric positive definite elliptic operator and B(t) an arbitrary differential operator

of second order with smooth coefficients. Assume that f(t) € L? for each t € J. A finite element
method for (4.27) can be defined by seeking u,(t) € Sy, for each ¢ € J such that

A(t;uh,taX) + B(t,Uh,X) = (faX)a X € Sha t>0 (428)

with initial value up(0) = v,. Here A(t;-,-) and B(t;-,-) are the bilinear forms associated with the
operators A(t) and B(t), respectively, and vy, is an approximation of the initial value v in S},.

Set w(t) = uy(t) and wp(t) = upy(t). Then,
u(t) = /0 "w()dr + o, un(t) = /0 I —— (4.29)

18



Thus, substituting (4.29) back into (4.28) yields
At w(t) — wn(t), +/ B(t; w(r) — wi(7), x)dT = B(t;vp —v,x), X € S, (4.30)

where a corresponding weak form for (4.27) has been used as well. It is clear that the equation (4.30)
is of form (3.1). Thus, the result of Lemma 3.1 could be used to estimate w — wy,. The estimate is

then summarized as follows.

Theorem 4.3. Assume that u(¢) is the unique solution of (4.27) and wuy(¢) its discrete analogue

defined by (4.28). Then, there exists a constant C' such that
2 1
lu = unlloo + llue = unst lloo < Ch7log - ([[vll2,00 + [luelll200) (4.31)
provided that v,u; € W2 for each ¢t € J and
2 1
lv = vhlloc < Ch7log[|v][2,00
holds.

4.3. A Diffusion Equation
Consider the following heat equation with non-local boundary condition and initial value. The

problem reads to seek u(t) for each ¢ € J such that

—Au = f, in Q,
u(z,0) = wv(z), =z€Q, (4.32)
t
= +/ K(t,7)u(r)dr = 0, on 01,
0

where pp = (1, p2) denotes the outer-ward normal direction on 02 and K, f, and v are known functions.

A weak form of (4.32) is defined by finding u(t) € H' for each t € J such that

(o) + Alst) + [ myulr), 9 = (9), € H'(@) (4.33)

with initial value u(-,0) = v, where

A(u,v) /Vu Voudz, (f,q) / fads.

Thus, a finite element approximation can be defined by solving wuy(t) € Sy, from the following linear

system.

(i) + Alun ) + [ UKt (r),0dr = (5,20, X € Shy 10 (4.34)
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with initial value up(0) = vy, where vy, is an appropriate approximation of v in the finite element
subspace Sj,. Here the finite element subspace S}, is the piecewise linear one associated with H'.
The method (4.34) and the corresponding estimates in L? and H' norms have been considered in [5].
There, a Ritz-Volterra type projection was introduced as follows. Find Fju(t) € Sy for each t € J
such that

A(u — Fru, x) + Mu — Fpu, x) + /Ot(K(t, 7)(u(T) — Fpu(r)),x)dr =0, x € Sh, (4.35)

where A is a sufficiently large positive constant. The purpose of introducing the A-term is to enhance
the bilinear form A(-,-) so that the resulting one is coercive in H'. It is not hard to see that the
operator Fj, is well defined for any positive A\. The error estimate for this projection when A is large
enough can also be derived easily. However, the estimate may dependent upon A. Thus, the limiting
case of A — 0o is less interesting in our analysis. Actually, the projection operator Fj, is of Ritz-
Volterra type for sufficiently large A and hence, the result of Lemmas 3.1 or 3.2 can be applied to F},.

This yields the existence of a constant C' such that
2 ].
lu = Fhullo < Ch7log|[|ulll2,00, (4.36)

provided that u(t) € W for each t € J.

We are now ready to establish the error estimate in maximum norm for the finite element method
(4.34). The result can be stated as follows.

Theorem 4.4. Let u be the unique solution of (4.32) and wu;, the finite element approximation

defined by (4.34). Then, there exists a constant C' such that

1 t
Ju = unll < OWPlog (Hlellzoo + ([ lualBar 72) (4.37)

provided that the initial approximation vj, is taken to be the projection Fjv.

Proof: Let § = up, — Fpu and n = Fpu — u. Then,
up —u=0+n. (4.38)
Because of (4.36) it suffices to estimate 6. By (4.33), (4.34) and (4.35) one obtains

(6030 + 40,20 + [ (K10, 0 = (1,20 = Amx)s X € S

By letting x = 6,

Ld

5190 = (= 20,00 — [ (K (.10, Ou(0)dr

16215 +
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Notice that #(0) = 0. Thus, by integration on ¢

t 1 t
| 1edar + 515008 < [ dimllo + Allo) 1o

—/Ot /OS<K(3,T)9(T),9S(3)>MS
= H; + H,. (4.39)

We have for H; that

t t
< [C10ar+C [ ml + Inl)ar. (4.40)

By integration by parts Hy can be rewritten as follows
t
Hy =~ [(K @00, 00)dr
0
t t rs
+ [ o), 0mhdr+ [ [ (K, m)0(r), 0(5)drds.
0 0 Jo
Thus, it follows from the trace theorem that
1 2 2 Lo
Hy < 2 [IVOlly + € {19115 +/0 1011)dr ) . (4.41)

Substituting (4.40) and (4.41) into (4.39) and using Gronwall’s lemma yield

t
161 < € (N0 + [ (el + el + yar )

By recalling Theorem 3.1 of [5] we have that

t t
161+ [l + Il )ar < Ot (ol + [ sl
Thus,
t
1611 < €8 (Joll + (| lualar) /)

Finally, by the weak Sobolev inequality
2 Li1ye ¢ 2 1/2
1Ollco < CH7(log ) = Hlvlla + () - fluellodr )7 ) (4.42)

Combining (4.38) with (4.36) and (4.42) gives (4.37).

This first version of this paper was carried out at McGill University in 1989 when author held a
research fellowship and was reported at the CAM annual meeting held in Halifax, NS, in 1990. The
author would like to thank Professor Junping Wang for numerous discussions and comments on the

topic.

21



10.

11.

12.

13.

References

J. H. Bramble, A. H. Schatz, V. Thomee, and L. B. Wahlbin, Some convergence estimates for
semidiscrete Galerkin type approximations for parabolic equations, STAM J. Numer. Anal. 14

(1977) 218-241.

. J. R. Cannon, S. Perez-Esteva, and J. van der Hoek, A Galerkin procedure for the diffusion

equation subject to the specification of mass, STAM J. Numer. Anal., 24 (1987) 499-515.

. J. R. Cannon and Y. Lin, A priori L? error estimates for finite element methods for nonlinear

diffusion equations with memory, STAM J. Numer. Anal., Vol 27 (1990) 505-607.

. J. R. Cannon and Y. Lin, Non-classical H' projection and Galerkin methods for nonlinear

parabolic integro-differential equation, Calcolo, 25 (1988) 187-201.

. J. R. Cannon and Y. Lin, A Galerkin procedure for diffusion equations with boundary integral

conditions, Int. J. Eng. sci., Vol. 28 (1990) 579-587.

. P. G. Giarlet, The Finite Element Method for Elliptic Problems, North Holland, Amsterdam,

1978,

. G. Davaut and P. L. Lions, Inequalities in Mechanics and Physics, Springer-Verlag, 1976.

. J. Douglas, Jr. and T. Dupont, Galerkin methods for parabolic equations with nonlinear bound-

ary conditions, Numer. Math., 20 (1973) 213-237.

. R. Duran, R. Nochetto and J. Wang, Sharp Maximun norm error estimates for finite element

approximations of the Stokes problem in 2—D, Math. Comp., Vol. 15 (1988) 491-506.

J. Frehse and R. Rannacher, Eine L'-Fehlerabschiitzung fiir diskrete Grundlésungen in der

Methode der finiten Elemente, Bonner Math. Schriften, Vol. 89 (1976) 92-114.

E. Greenwell Yanik and G. Fairweather, Finite element methods for parabolic and hyperbolic

partial integro-differential equations, Nonlinear Analysis, Vol. 12 (1988) 785-809.

M. N. LeRoux and V. Thomee, Numerical solution of semilinear integro-differential equations of

parabolic type with nonsmooth data, STAM J. Numer. Anal., 26 (1989) 1291-1309.

Y. Lin, Galerkin methods for nonlinear parabolic integro-differential equations with nonlinear

boundary conditions, STAM J. Numer. Anal., STAM J. Numer. Anal., Vol. 27 (1990) 608-621.

22



14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Y. Lin, V. Thomee, and L. Wahlbin, Ritz-Volterra projection onto finite element spaces and
applications to integro-differential and related equations, STAM J. Numer. Anal., Vol. 28 (1991)
1047-1070.

Y. Lin and T. Zhang, The stability of Ritz-Volterra projection and error estimatyes for finite
element methods for a class of integro-differential equations of parabolic type, Appl. Mat., Vol.

36 (1991) 123-133.

F. Natterer, Uber der punktweise Konvergenz finiter Elemente, Numer. Math., Vol. 25 (1975)
67-78.

J. A. Nitsche, L*°-convergence of finite element approximations, Mathematical Aspects of Finite

Element Methods, Lecture Note in Mathematics, Vol. 606, Springer-verlag, New York, 1977.

R. Rannacher and R. Scott, Some optimal error estimates for piecewise linear finite element

approximations, Math. Comp. 38 (1982), 1-22.

A. H. Schatz, An Analysis of the Finite Element Method for Second Order Elliptic Boundary
Value Problems, Lecture Notes, Math. Dept., Cornell University, 1988.

A. H. Schatz and L. B. Wahlbin, Interior maximum norm estimates for finite element methods.

Math. Comp. 31 (1976) 414-442.

A. H. Schatz, V. Thomee, and L. Wahlbin, Maximum norm stability and error estimates in

parabolic finite element equations, Commun. Pure. Appl. Math. 33 (1980) 265-304.

R. Scott, Optimal L* estimates for the finite element methods on irregular meshes, Math.

Comp., 30 (1976) 681-697.

I. H. Sloan and V. Thomee, Time discretization of an integro-differential equation of parabolic

type, SIAM J. Numer. Anal. 23 (1986), 1052-1061.

V. Thomee, Galerkin Finite Element Methods for Parabolic Problems, Lecture Notes in Math-

ematics, 1054, Springer-Verlag, 1984.

V. Thomee and L. B. Wahlbin, Maximum-norm stability and error estimates in Galerkin methods

for parabolic equations in one space variable, Numer. Math. 41 (1983) 345-371.

V. Thomee and N. Y. Zhang, Error estimates for semi-discrete finite element methods for

parabolic integro-differential equations, Math. Comp., 53 (1989) 121-139.

23



27. J. Wang, Asymptotic expansions and L*-error estimates for mixed finite element methods for

second order elliptic problems, Numer. Math., 55 (1989) 401-430.

28. M. F. Wheeler, A priori Lo error estimates for Galerkin approximation to parabolic partial

differential equations, SIAM J. Numer. Anal., 19 (1973) 723-759.

24



