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Abstract

The error estimates for finite volume element method applied to 2 and
3-D non-definite problems are derived. A simple upwind scheme is proven
to be unconditionally stable and first order accurate.
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1 Introduction

The purpose of this note is three fold. We would like to extend the results due
to Bank and Rose [4], Hackbusch [9], Cal and McCormick [6, 7] and Jianguo and
Shitong [11] to 3-D problems, provide a theory for non-definite equations and
finally give a more flexible way to obtain a priori estimates that in some sense
have the flavor of the first Fix lemma in the finite element theory and generalize
the technique used by Cai [6] to analyze the effects of numerical integration.
We will demounstrate this approach on a simple upwind scheme, although the
technique can handle more sophisticated upwind strategies (see [2] for example).
We counsider the following boundary value problem:

V- (—A(2)Vu + b(z)u) + c(z)u = f(z) in Q, (1a)
u(x) =0  on 0%, (1b)

where Q is a open subset of R?, d = 2 or 3. We refer for the extensive discus-
sion of solvability of the problem (1) to the monograph by Ladyzhenskaya and
Ural’tseva [12].

Our approach is based on the generalization of Lax—Milgram lemma due
to Necas [13] and modified by Babuska and Aziz [3]. First we introduce some
notations.

Let U and V be two real Hilbert spaces equipped with the norms ||.||z and
I]ly respectively, and let A : U x V — R be a bilinear form. We define the
following variational problem:
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Find an element u € U such that
A(u,v) = f(v) Yvel. (2)

Theorem 1 (Babuska and Aziz [3]) Assume that there exist a positive con-
stants C and « such that the bilinear form A:U x V — R satisfies

[A(w, v)| < Cllullullvlly VuelU,Yve, (3a)
sup M >a|ullu Yuel, (3b)
veEY ||IU| v

vZ£0

sup [A(u,v)| >0 VoeV, v#0, (3c)
uelU

and that f(.):V = R is a continuous linear form. Then the variational problem
(2) has one and only one solution and the following stability estimate holds:

1
iy < — ’.
Jelle < =111l

We use the standard notation for Sobolev spaces [1]. Let & = V = H}(Q),
V' = H (), let the bilinear form A be defined by

A, v) = AP (u,0) + AY (u,0) + A (u, v), (4a)

A (y,0) = /(AVu,V’U)d:L\ (4b)
Q

A0y = [ (b, Vopuds, (4o
Q

A(“)(u,’u) = /cuvdw, (4d)
Q

and let the linear form be given by

f(w) Z/vada:.

Suppose that the boundary value problem (1) poses a unique solution. Then
A(.,.) defined by (4) satisfies the conditions (3) (see [3] for a proof).
Note that the solution u of (1a) satisfies the “weak” form:

/ (—AVu+bu,n)ds+/ C’dez/ fdax, (5)
av; Vv v

i

where V; is a given control volume. We state (5) as a Petrov Galerkin method:
Find » € U such that

B(u,v) = f(v) YoveVh (6)



where

=% [ o),

r;Ew"” Vi

and B(.,.) is a bilinear forms defined in U x V"

Bu,v) = B®(u,0)+BY (u,0)+ B (u,v), (7a)

3(2)(%0) = _Z (AVu,n)ds v(x;), (7b)
acwdoVi

BY (u,v) = Z/ (b,n)uds v(x;), (7c)
T;Ew Vi

BO (u,v) = Z/ cu di v;. (7d)
r; Ew Vi

We approximate the solution v € U of (6) with a piecewise polynomial uj, € U"
and eventually replace the bilinear form B(.,.) with a certain approximation
Bi(.,.), i.e., we solve the discrete problem:

Find up, € U™ such that

B (up,v) = f(v) Voe Yt (8)

We describe the control volumes Vj, piecewise polynomial spaces U" and V",
and the corresponding norms ||.||1,» and ||.||1,p in the next section.

We use Theorem 1 to prove uniqueness and existence of the solution of (8).
The second step is to show that the following a priori estimate holds

[T = a1 < Clnlle + o + 1€ 1n )

where I} is a linear interpolant and Il is the error due to the approxima-
tion of the diffusion term (second derivatives), ||p||. o - convection term (first
derivatives) and ||(||«xo - reaction term (zero derivatives). Finally we estimate
these terms and obtain the bound for the error of approximation.

2 Grids, control volumes and discrete norms

We consider a family of triangulations F, of €2 into finite elements K regular in
sense of Ciarlet [8, p. 132]. We use the standard symbols

h; = diam(K;), h = maxh;.

Here we describe a general way to construct grids starting from a finite
element triangulation. The vertices of the finite element triangulation uniquely
determine the grid, which we call the primary grid w,

w= {7‘, € Q: z; is a vertex in a finite element K} ,



split into the set of interior grid points w and the boundary grid points v;
w=wNn, yp=0\w.

We define the secondary grid wg in the following way. Choose one interior

point Sk € I(;' in every finite element K € Fj,. Then
wg = {SK, K e .7:},,}.

Given a primary grid vertex x; we define by II(¢) the index set of all neighbors
of z; in w, i.e.,

II(z) = {j : thereis an edge between z; and ; in Fp}.

Consider a particular finite element K with vertexes z;,,... ,z;, and let
Ix be the index set {i1,... ,ix}. Denote by {Zkj}ijer, the edges and by
{ZK j1..ji}ir,. il the faces of a given finite element (the polygons with ver-
texes z;,,... ,z; € K). To describe vertex—centered control volumes we select
one interior point on each face of every finite element K;, Mg, i, .., € Zxk, j,...j,
such that if Zx, j,..5, = ZKk, j1..1» ¢ 7 p then Mg, ;5 = Mk, 4, .., i.e.,, on
each face only one point is chosen. The points on the edges are selected in the
same manner. Connect a given point from the secondary grid z;, K; € F, with
My jijss J1.72 € Ik, and Mg, . 4. t1,... ,1; € Ik,. These lines and the planes
that they span form a polygonal (polyhedral) domain around each vertex of
the primary grid and are called vertex centered control volumes. There is one
to—one correspondence of nodes in primary grid with vertex—centered control
voluines. If z; € w we denote the corresponding vertex—centered control voluine
with V; and with

viig =VinVi, jell)

the face between them.

To specify a particular primary and secondary grid we have to choose the fi-
nite elements, secondary grid points and points Mg, ;, ;, on the edges, Mg, ;..
on the faces.

We choose finite elements to be triangles in 2-D and tetrahedra in 3-D.
The secondary mesh consists of the barycenters (centers of mass) of the finite
elements and points M are barycenters of the edges and faces, correspondingly.
A specific 2-D example is shown on Fig. 1, where the primary node is displayed
with a filled circle and the secondary nodes are shown with empty circles. The
control volume corresponding to the primary node is depicted by a dotted line.
Note that in general y;; is not a straight line. We show how a 3-D finite element
(tetrahedron) is split by the control volumes on Fig. 2. The theory presented
in Sections 3 and 4 works also for more general positions of the points of the
secondary grid and the points M, but in practice the barycenters are the most
frequently used.

We introduce a piecewise linear finite element space for the simplex trian-
gulation

Uuh = {ve C’O(L) : v|g is linear for all K € Fp, vjgq = 0},



Figure 1: Vertex—centered control volume

Figure 2: Finite element K



where v|g is the restriction of v to K. Functions defined for z € w are called
grid functions and the space of such functions is G(w). To emphasize their
dependence of the triangulation we use the subscript h. Denote by x; the
characteristic functions that corresponds to the vertex—centered control volume
V; and with V" the space spanned on {x;}s,cw. Let {©;}s,co be the basis of
Z,{él. We define the linear interpolant I}ZL :G(w) — Z/{SL and the “box” interpolant
(coustant interpolant) by

Lun(z) = Y un(zi)ei(z),  IThun(z) =Y un(ei)xi(z). (9)

€ Ew € Ew

It is clear how to modify (9) to get the mappings f,lz Vs Ul I¢ : Ut — yr
and I} : H*(Q) = U, It : H*(Q) — V! for s > 3/2. When there is no danger
of ambiguity we will skip the bars and tildes.

We define discrete inner products and norms in the following way:

(uhsvn)o = (un, Ton) gz, lJunlld o = (un,un)w

unliw = [Hunlie, sl o = sl o + luali .-

We also use the “box” norms and seminorms

lunllf 5 =D m( wi)on(wi),

T;Ew
” 1 (uh(L 'uh(mj)>
upl; 5 = = m(V;) —_—
lunlt, g 9 a;ze:w Jezn% d(zi,zj)

where d(z,y) is the Euclidean distance between z and y.

The following result is well known (see for example [14] for the 2-D case and
regular geometry, [4] for the 2-D case and general geometry, and [10] for the
finite difference case discussion)

Lemma 1 The norms ||.||ow. ||-|lo,5 ¢nd |.|1,u. |.|1,B are equivalent, i.e., there
exist positive constants C1, Co, Cs and C4 independent of h such that

Cil|un)low < ||unllo,p < Cal|un|o,w. (10)
Cslunli,w < |unli,B < Calunt w- (11)

Remark 1 If the secondary grid is arbitrary the norms ||.||o. and ||.|[o,s are
not equivalent. This is seen by the following simple example. Consider one
control volume V;, such that m(V;) — 0, i.e., the secondary points around z; go
to x;. Pick a function up = (0,...,1,...,0), where the only nonzero element is
on the i*" position. Then llunllo,B = 0, but ||un||o,. is bounded from below.

The seminorms |.|1,p and |.|1 ., are equwalent without any restriction on the
secondary grid.



3 Diffusion dominated problem

First we elaborate the finite volume element theory for the compact perturba-
tion of symmetric problem. In this case the bilinear forms B(.,.) and Bx(.,.)
coincides, i.e.,

B;lz)(u,v) = 8(2)(u,v), B;ll)(u,v) = B(l)(u,v)7 B,(ll))('u,,'v) = B(O)(u,v).

We prove (3) via comparing with the bilinear forms for the finite element method
(4b), (4c) and (4d). The first result is due to H. Jianguo and X. Shitong [11].

Lemma 2 For every u, v € Ué‘ the following estimate holds:
IB@ (u, Ifv) — A (u,v)| < Ch|| Al .co.0luh olv)ia-
We compare B! (u, Ifv) and Am(u, v) in the following lemma.

Lemma 3 For every u, v € UY the following estimate holds:

1B (u, Iiv) — A (u, )| < Ch|bl|100lul0lv] o

Proof: Counsider the contribution of one particular element K in the computa-
tion of B,(Ll) (u, Ifv) corresponding to the i*" node

/ (b.n)udsv; = / (b.n)uds —/ (b.n)uds| v;
aViNK (8ViNK)UM; M;

i

/ div(bu) dxv; — / (b.n)udswv;
VinK ,

JM;

= /div(bu)f,z,;xy;dx—/ (b.n)uw;x; ds,
K 0K

where M; = 0K NV;. Then, the contribution of the element K is equal to
B(l)(u, Liv) ik = / div(bu)ljv dx — / (b.n)uljvds
K oK
and
BY (u, ljv) = Z / div(bu) ;v dz.
ker, VK

because the surface integrals vanish. Therefore,

BY (u, Igv) — AV (u,0)] < 3 || div(bu)(Ifv — v) da

ke, 'K
< bllsee Y fulirllo = ollox
KeTy,
< Ch|b||1,00.0]8]1,0]v]1,0-



O
Finally, the difference between B (u, Ifv) and A (u, v) is estimated in the
lemma below.

Lemma 4 For every u, v € UY the following estimate holds:

|B(0) (u, Ijv) — A<0)('u,,'v)| < Chleflo.ellullo.elv] -

Proof: The estimate follows from the chain of inequalities:

'/g;cuvdw— > /Vrudgcv > [/V cu(v—lgv)dm]

r;Cw r;Cw Y Vi

Chllello.allullo.alol,q-

IN

O

Using the equivalence of the norms (Lemma 1), Lemmas 2, 3 and 4, and the
conditions (3) for the bilinear form A(.,.) we easily prove that By(.,.) satisfies
(7). We state the assertion of Theorem 1 applied for By(.,.) as a separate result.

Theorem 2 There exists hy such that for any h < hg the problem (6) has one
and only one solution and the following stability estimates holds:

[unliw < C|fll-1,5-
Define the local truncation error v via:
(,v) = B(u,v) — Bp(Ihu,v)

and the components of 4 due to different terms by:

nij(u) = ‘ (—A(V(u— I}u),m)ds, (12a)

Y Yig
i j(u) = / (b,n)(u— I}u)ds, (12b)
i
Gi(u) = / c(u— Ihu) da. (12¢)
Vi
Note that

Bp(up,v) = (f,v) and B(u,v) = (f,v),

and therefore
B, (up, — Ihu,v) = (,0).

We prove the a priori estimate in the following lemima.



Lemma 5 The following a priori estimate holds:
[T —unliw < C (1l + illw + 1] ew) - (13)

(The definition of ||.||«w and ||.||«xw will become clear from the proof.)

Proof:
(,v) = B(u,v) — By (I,ZLU —u,v)

Z Z/ —AV(Ihu —u) + b(Ihu —u)).ndsv;

T;Ew jEII(4)
—1—2 / Ihu—u, dz v;
r;Cw”
= |2 X mton] | 3 st +| 2 o
Ti€w jEII(%) T, Ew €T (2 TiEw
= Ig+1.+ 1,

Denote k7 ; = d(x,2;)*/ m(V;). The term due to the diffusion discretization Iy
is eqtlmated as follows:

I; = Z Z 755 (1)v;

TijgH(i)
:—Z Z nij (w)v; + nji(w)v;] Z Z nij(v)(v; — vj)
r;Ew jEII(3) ziCw jell(4
1/2 N\ /2
5 Vs — v
<C ZZ’%J'M ) 2w 2 Gz
o\ d(zi, z5)
T €w jETl(i zi€w JET(4) o

< Cllnll*,wlvll,B-
Similarly, we prove the estimate
I < Cllpll«wlvl,B-

Finally, we estimate I,.:

I, = E / —I,ll)dw-'vi = E Gi(u)v

T;Ew T;Ew

< <26: m(V; )|Q(u)| ) <Z m(Vi)vi)

T, Cw
< NCls w0l B-



In the last inequality we used (10). We can prove the estimate without the
equivalence of zero norms with more elaborate argument.
Now the a priori estimate (13) follows from

|Bh(I,lLu — up,v)|

Bllu = unlyew < sup < Clllnllw + NIl + 1¢H s w)-

veVh []1,5
v#£0

|

Now, we are ready to prove our main result.

Theorem 3 Let u denote the solution of (1) and up, be the solution of FVE
(5). Then we have the following estimate

[ —uplia < Ch’[HAH(),oo,Q + h(”b”u,oo,s’z + ||C||0,oo,s’z)]|U|2,s’z-

Proof: We have to estimate the functionals |n;;(u)|, |pij(u)| and |§(u)] on a
given face ;; and control volume V;, respectively. Let v;; € K, K be a finite
element. Using the affine transformation F' : K - K,z = F(%) = Bgi+d such
that K = F(K) and Bramble-Hilbert lemma argument we obtain for |n;; (u)]:

i ()] = i (@)] = / | det Bg| (AB;{TV(I},a— a).BI;Tﬁ,) d3
Y Yij

< | Allo,cors;- 1B |1 det Br |55 lally, &
< Cl\Allo,col| B IP11B 1P| det Bic [ Julz x
< Ch2|| Allo,,0lul2, k-

Similarly, for |p;;(u)| we have

/ | det Bx| (B(I},&-&).BI;T&) d3
:Y

ij

|pij ()] = |pij(a)] =

< IBg'II-| det Bre|-[[blly o -1, &
< C|IBk|P B ll| det Bx|*/?|[bllo,c 0 lul2, x

< Ch.d/zﬂ||b||0,oo,Q|U|2,K'

We use the bound for the interpolation error in a uniform norm [5] to estimate
the term (;(u) (see also [11] for another application):

Gl =[Gl =| [ et Baleta)(Tha - ) da

< ”C”u,oo,f( - | det Bg| - ||Ii71& - 'a)Hl),ooj(

< lello,oos - PP ]z k.

10



Taking into account that kij = O(h?>~9) we find that

1/2

1llv < CLh2 22 LN N AR Lolul k] <CRIAllocolul20
zi€w jEII(3)
1/2

il < CLR2=H2RY2 L= N b|S s qluls e | <CR2|IBllosc.nlulz0
@ €w jETI(4)

1/2
[¢]ln < CRTY 2R+ <Z IICIIﬁ,oo,szl'UIﬁ,K> <Chcllo.xzlulz.a.

T;Ew

Finally the result follows from the triangle inequality and the standard estimate
for the linear interpolant. O

4 Upwind finite volume element method

In this section we modify the definition of By(.,.) (7¢) in order to obtain a stable
approximation for convection dominated problems.

o 1 . .
We define the bilinear form B}(}, )(., .) in an upwind manner:

B,(Ll)(u,'u) = Z Z (ﬁ;;ui +[3L;uj) (14)

zi€w jEI(i)

Here
Ty Ut T

Let 3;; be an approximation of 17 (b.n)ds with the properties
Jovi;

Bij — |Bij]

(1) Pij+ B =0. (15a)
(1) 1Bij] < Cm(7ij)|blla/2+a,.0 (15b)

(iii) / (b,n) ds — i ;
Y

ij

< Ch,d+u|b|1+a,oo,ﬂw (150)

where C'is a positive constant and a > 0.
Lemma 6 Let the bilinear form B;Ll)(., .) be defined by (14) and let the approz-

imations (3; ; fulfill the conditions (15). Then for every u, v € UP the following
estimate holds:

BY (u, Iiv) — BY (u, Ifv)| < ChY||b|lysaco.cltl ol Iv]y 5,

where § = min(a, 1).

11



Proof: Note that by the definition of ,O',il

ﬁ up + Bu5) = Bijus,

where S = S(i,7) = ¢ if 8;; > 0 and S(4,j) = j otherwise. We have for the
difference of interest

B (. Ito) = (B w Tiw)

<22

z;Ew jEII(7)

(b,n)uds — Bijusvs] .

.I

We estimate the term below.

f,m (b,n)uds — fB;jusv;

b,n)uds — B;;usv;
( ? /( J
Jy

i3

/ (b,n)(u —ug)dsv; + / (b,n) — Biusv;
Sy

i 7 Yij

S / (b,n) ds Clh|u|1’K|’UZ'|
7 Yij
+ Coh bl 1o, [us(i ) vil
< G by aluly g - B0

+ Coh® bl aco. B Pus( jy| - [W il

d
The existence and uniqueness of the solution of the upwind finite volume
element method follows from Lemmas 2 and 4. It is identical with Theorem 2

and we skip it.
We redefine p1;;(u):

i = / (b,n)uds — [,O',J“luhﬂ —|—,O'7uh,j] . (16)
i

Note that in the proof of the a priori estimate (13) we did not use the
particular form of p;;(w). Therefore (13) holds for the upwind finite volume
method as well. The final step is to find an error bound for pu;;(u):

|pi, il < Chi/? [|b|0~,oo,9|“|1’eu + h‘||b||d/2+u,oo,3’z||‘U||2,eu] . (17)

in a similar way as in Theorem 3 and Lemma 6. The final result for the upwind
method is:

Theorem 4 If the solution u(x) of the problem (1) is H?-reqular, then the
upwind finite volume element method has first order of convergence

lu —unli,0 < Chlfull2,0.

12
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