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Abstract

In this paper� we consider iterative algorithms of Uzawa type for solving lin�

ear nonsymmetric block saddle point problems� Speci�cally� we consider systems

where the upper left block is invertable nonsymmetric linear operator with pos�

itive de�nite symmetric part� Such saddle point problems arise� for example� in

certain �nite element and �nite di�erence discretizations of Navier�Stokes equa�

tions� Oseen equations� and mixed �nite element discretization of second order

convection�di�usion problems� We consider two algorithms which utilize an �in�

complete� or �approximate� evaluation of the inverse of the operator in the upper

left block� Convergence results for the inexact algorithms are established in ap�

propriate norms� The convergence of one of the algorithms is shown without

the assumption of a su�ciently accurate approximation to the inverse operator�

The other algorithm is shown to converge provided that the approximation to

the inverse of the upper left hand block is of su�cient accuracy� Applications

to the solution of steady�state nonlinear Navier�Stokes equations are discussed

and �nally� the results of numerical experiments involving the algorithms are

presented�

Key words� inde�nite systems� iterative methods� preconditioners� saddle point problems� non�
symmetric saddle point systems� Navier�Stokes equations� Oseen equations� Uzawa algorithm�

AMS subject classi�cations� ��N��� ��N��� ��F	��

� Introduction

This paper provides an analysis for the inexact Uzawa method applied to the solution of
linear nonsymmetric saddle point systems� Such systems arise in certain discretizations
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of Navier�Stokes equations� mixed discretizations of second order elliptic problems with
convective terms �cf� ����� ����� ��	�� ��
��� The theory in this paper is an extension of
the theory for symmetric saddle point problems developed in ����
Let H� and H� be �nite dimensional Hilbert spaces with inner products which we

shall denote by ��� ��� There is no ambiguity even though we use the same notation for
the inner products on both of these spaces since the particular inner product will be
identi�ed by the type of functions appearing� We consider the abstract saddle point
problem
 �

A BT

B 


��
X
Y

�
�

�
F
G

�
������

where F � H� and G � H� are given and X � H� and Y � H� are the unknowns�
Here A 
 H� �� H� is assumed to be a linear� not necessarily symmetric operator�
AT 
 H� �� H� is the adjoint of A with respect to the ��� ���inner product� In addition�
the linear map BT 
 H� �� H� is the adjoint of B 
 H� �� H��
In general� ����� may not even solvable unless additional conditions on the operators

A and B� and the spaces H� and H� are imposed� Throughout this paper we assume
that A has a positive de�nite symmetric part� Under this assumption� ����� is solvable
if and only if the reduced problem

BA��BTY � BA��F �G�����

is solvable� In the case of a symmetric and positive de�nite operatorA� the Ladyzhenskaya�
Babu�ska�Brezzi �LBB� condition �cf� ���� is necessary and su�cient condition for solv�
ability of this problem� As we shall see� the solvability of ����� in the nonsymmetric
case is guaranteed provided that the the LBB condition holds for the symmetric part
of A�
The papers ���� ���� propose solving BA��BT by preconditioned iteration� One

common problem with this is that the evaluation of the action of the operator A�� is
required in each step of the iteration� For many applications� this operation is expen�
sive and is also implemented as an iteration� The Uzawa method ��� is a particular
implementation of a linear iterative method for solving ������ It is an exact algorithm
in the sense that the action of A�� is required for the implementation� An alterna�
tive method which solves ����� by preconditioned iteration was proposed in ��
�� Their
preconditioner also requires the evaluation of A�� during each step of the iteration�
The inexact Uzawa methods replace the exact inverse of A by an �incomplete� or

�approximate� evaluation of A��� Such algorithms are de�ned in Sections � and �� In
this paper we distinguish two types of inexact algorithms
 �i� a linear one�step� where
the action of the approximate inverse is provided by a linear preconditioner such as one
sweep of a multigrid procedure� �ii� a multistep� where a su�ciently accurate approxima�
tion to A�� is provided by some preconditioned iterative method� e�g�� preconditioned
GMRES ���� or preconditioned Lancos �����
The inexact Uzawa algorithms applied to nonsymmetric problems are of interest

because they are simple� e�cient� and have minimal computer memory requirements�
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They can be applied to the solution of di�cult practical problems such as the Navier�
Stokes equation� In addition� an exact Uzawa algorithm implemented as a double
iteration can be transformed trivially into an inexact algorithm� It is not surprising
that the inexact Uzawa methods are widely used in the engineering community�
The paper is organized as follows� In Section � we establish su�cient conditions for

solvability of the abstract saddle point problem and analyze an exact Uzawa algorithm
for solving it� In Section � we de�ne and analyze a linear one�step inexact Uzawa
algorithm applied to ������ Next� a multistep inexact method is de�ned and analyzed
in Section �� Section � provides applications of the algorithms from Section � and
Section � to the solution of inde�nite systems of linear equations arising from �nite
element approximations of the steady�state nonlinear Navier�Stokes equations� Finally�
the results of numerical experiments involving the inexact Uzawa algorithms are given
in Section ��

� Analysis of the exact method

In this section we establish su�cient conditions for solvability of ����� and analyze the
exact Uzawa algorithm applied to the solution of ������ Even though this algorithm
is not very e�cient for reasons already mentioned� the result of Theorem ��� below is
important for the analysis of the inexact algorithms de�ned in the subsequent sections�
The symmetric part As of the operator A is de�ned by

As �
�

�
�A�AT �������

In the remainder of this paper a subscript s will be used to denote the symmetric part
of various operators� de�ned as in ������ We assume that As is positive de�nite and
satis�es

�AX� Y � � ��AsX�X�
����AsY� Y �

��� for all X� Y � H�������

for some number �� Clearly� � � �� Moreover� since As is positive de�nite� such an
� always exists� In many applications in the numerical solution of partial di�erential
equations� the constant � can be chosen independently of the mesh parameter�
In addition� the Ladyzhenskaya�Babu�ska�Brezzi condition is assumed to hold for

the the pair of spaces H� and H�� i�e�

sup
U�H�
U ���

�V�BU��

�AsU� U�
� c�kV k

� for all V � H� ������

for some positive number c�� Here k � k denotes the norm in the space H� �or H��
corresponding to the inner product ��� ���
As is well known� the condition ����� is su�cient to guarantee solvability of �����

when A is replaced by As� We will see that it also su�ces in the case of nonsymmetric
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A� To this end� we prove the following lemma which establishes that �A���s is positive
de�nite�

Lemma ��� Let A be an invertible linear operator with positive de�nite symmetric part

As that satis�es ������ Then �A
���s is positive de�nite and satis�es

��A���sW�W � � ��As�
��W�W � � ����A���sW�W � for all W � H�������

Proof� Clearly�

��As�
��W�W � � sup

U�H�
U ���

�W�U��

�AsU� U�
� sup

U�H�
U ���

��A���TW�AU��

�AsU� U�

� �� sup
U�H�
U ���

k�A���TWk�As
kUk�As

kUk�As

� ��k�A���TWk�As

� ����A���sW�W ��

�����

Here k � k�As
� �As�� ��� In the above inequalities we have used the Schwarz inequality�

������ and the fact that

�AsU� U� � �AU� U� for all U � H�������

On the other hand�

��A���sU� U� � �A
��U� U� � �A���

s A��U� �As�
����U�

� kA��UkAskUk�As��� � �A
��U� U�kUk�As��� �

Therefore�

��A���sU� U� � ��As�
��U� U�����	�

This completes the proof of the lemma� �
It is clear now that Lemma ��� and ����� guarantee solvability of ������ Indeed�

�BA��BTV� V � � ��A���sB
TV�BTV �

� �����As�
��BTV�BTV � � ���c�kV k

��

Thus� we have proved the following theorem�

Theorem ��� Let the linear operator A be invertible and let ����� hold� Then the

reduced problem ������ or equivalently ������ is solvable�

Next� we turn to the analysis of the exact Uzawa algorithm applied to the solution
of ������ The preconditioned variant of the exact Uzawa algorithm �cf� ��� ��� is de�ned
as follows�
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Algorithm ��� �Preconditioned exact Uzawa� For X� � H� and Y� � H� given�

the sequence f�Xi� Yi�g is de�ned� for i � �� �� � � � � by

Xi�� � Xi �A��
�
F � �AXi �BTYi�

�
�

Yi�� � Yi � �Q��
B �BXi�� �G��

Here the preconditioner QB 
 H� �� H� is a symmetric and positive de�nite linear
operator satisfying

��� ���QBW�W � � �B�As�
��BTW�W �� �QBW�W � for all W � H�������

for some � in the interval �
� ��� and � is a positive parameter� Notice that this condition
implies appropriate scaling of QB� In many particular applications e�ective precondi�
tioners that satisfy ����� with � bounded away from one are known�
Let

EX
i � X �Xi����a�

and

EY
i � Y � Yi����b�

be the iteration errors generated by the above method� It is an easy observation that

EY
i�� � �I� �Q��

B BA��BT �EY
i �

Therefore� the convergence of Algorithm ��� is governed by the properties of the operator
I� �Q��

B BA��BT summarized in the following�

Theorem ��� Let A be invertible with positive de�nite symmetric part As which satis�

�es ������ Let also ����� hold� In addition� let QB be a symmetric and positive de�nite

operator satisfying ������ If � is a positive parameter with � �
�� �

��
� then

k�I� �Q��
B BA��BT �Uk�QB

�
�
��

�� �

��
�
�
kUk�QB

for all U � H������
�

Remark ��� If A � AT � � can be set to one and ����� implies �cf� ���� that

k�I�Q��
B BA��BT �Uk�QB

� ��kUk�QB
�

Hence� the result of Theorem ��� is not optimal in the limit when �� ��
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Proof �of Theorem ����� The proof is based on the result of Lemma ���� Let
L � BA��BT � Then� by ����� and Lemma ����

��� ��kV k�QB
� ��As�

��BTV�BTV �

� ���LV� V ��
������

In addition�using ������

�A��v� w� � ��As�
���A��v� �As�

����w�

� �A��v� v������As�
��w�w����

� ��As�
��v� v������As�

��w�w�����

������

Taking v � BTV and w � BTW above gives

�LV�W � � kV kQB
kWkQB

�������

Next�

k�I� �Q��
B L�V k�QB

� kV k�QB
� ���LV� V � � � ��LV�Q��

B LV ��������

By ������ and ������� the last term in the right hand side of ������ is estimated by

�LV�Q��
B LV � � kV kQB

kQ��
B LV kQB

� kV kQB
�LV�Q��

B LV �����
������

Using ������ and ������ in ������ yields

k�I� �Q��
B L�V k�QB

�

�
��

����� ��

��
� � �

�
kV k�QB

�

From this� the result of the theorem follows easily� �

Remark ��� The inequalities ������ and ������ are the basis for developing the inexact
algorithms in the subsequent sections�

� Analysis of the linear one�step inexact method

In this section we de�ne and analyze a linear one�step inexact Uzawa algorithm applied
to ������ This section contains the main result of the paper� We show that� under
the minimal assumptions needed to guarantee solvability �cf� Section ��� appropriately
scaled linear preconditioners �cf� ����� and ����� below� result in an e�cient and simple
method for solving ������
To this end� the exact inverse ofA is replaced with an approximation ofA�� in order

to improve the e�ciency of Algorithm ���� Let A� 
 H� �� H� be a linear� symmetric
and positive de�nite operator that satis�es

�A�V� V � � �AsV� V � � ��A�V� V � for all V � H�������

for some positive � � ��
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Remark ��� The inequalities ����� and ����� respectively imply scaling of QB and
A�� In practice� the proper scaling these operators can be achieved using even crude
estimates for the largest eigenvalues of �A��

� As and �Q
��
B B�As�

��BT � where �A� and �QB

are unscaled preconditioners� Usually� a few iterations of the power method are enough
for obtaining such estimates� Alternatively� preconditioners based on multigrid methods
are often scaled appropriately by construction�

The linear inexact Uzawa algorithm is then de�ned as follows�

Algorithm ��� �Linear one�step inexact Uzawa� ForX� � H� and Y� � H� given�

the sequence f�Xi� Yi�g is de�ned� for i � �� �� � � � � by

Xi�� � Xi � �A��
�

�
F � �AXi �BTYi�

�
�

Yi�� � Yi � �Q��
B �BXi�� �G��

Here � and � are positive iteration parameters�
We will assume that � � ���� It then follows from ����� that A� � �As is positive

de�nite� The following theorem is the main result of this paper�

Theorem ��� Let A have a positive de�nite symmetric part As satisfying ������ Let

also QB and A� be symmetric and positive de�nite operators satisfying ����� and ������
Then the linear inexact Uzawa algorithm converges if � � ��������� and � � �������
Moreover� if �X� Y � is the solution of ����� and �Xi� Yi� is the approximation de�ned

by Algorithm ���� then the iteration errors EX
i and EY

i de�ned in ����� satisfy

���kEX
i k

�
� � ���kEY

i k
�
QB

� �	i
n
���kEX

� k
�
� � ���kEY

� k
�
QB

o
�����

for any i � �� Here k � k�� � ��A� � �As��� �� and

�	 �
���� ����� �� �

q
����� ����� ���� � ���� ����

�
�

Remark ��� Convergence of the linear inexact Uzawa algorithm follows from ������
Indeed� a simple algebraic manipulation using the fact that ��� � �� is less than one
gives

�	 �
���� ����� �� �

q
����� ����� ���� � ���� ����

�
� ��

��

�
��� ���

The quantity on the right hand side above is clearly less than one�

In order to analyze Algorithm ��� we reformulate it in terms of the iteration errors
de�ned in ������ It is easy to see that EX

i and E
Y
i satisfy the following equations�

EX
i�� � EX

i � �A��
�

�
AEX

i �BTEY
i �
�
�

EY
i�� �

�
I� ��Q��

B BA��
� BT

�
EY
i � �Q��

B B�I� �A��
� A�EX

i �
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For convenience� these equations can be written in matrix form as

�
�EX

i��

EY
i��

�
A �

�
� �I� �A��

� A� ��A��
� BT

�Q��
B B�I� �A��

� A� �I� ��Q��
B BA��

� BT �

�
A
�
�EX

i

EY
i

�
A ������

Straightforward manipulations of ����� give

NEi�� �MEi������

where

Ei �

�
EX
i

EY
i

�
�

N �

�
����A� � �AT � 



 ���QB

�
�

and

M �

�
�����A� � �AT �A��

� �A� � �A� ��A� � �AT �A��
� BT

BA��
� �A� � �A� ����QB � �BA��

� BT �

�
A �

It is clear now that we can study the convergence of Algorithm ��� by investigating
the properties of the linear operators M and N � We shall reduce this problem to
estimation of the spectral radius of related symmetric operators�
Let Ns be the symmetric part of N andM� be the symmetric matrix de�ned by

M� � JM�

where

J �

�
�I 


 I

�
�

Our next lemma reduces the proof of the theorem to the estimation of the eigenvalues
of the generalized eigenvalue problem


Ns� �M��������

Since � is less than ���� Ns is symmetric and positive de�nite and the above problem
is well de�ned� Obviously� ����� involves symmetric operators only so the eigenvalues 

are real�

Lemma ��� The iteration error Ei satis�es

�NEi��� Ei��� � �	�NEi� Ei��

where �	 � maxi j
ij� and 
i are the eigenvalues of ������
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Proof� Let f�
i� �i�g be the eigenpairs for ������ Since Ns is positive de�nite� f�ig
spans the spaceH��H�� Without loss of generality we may assume that the eigenvectors
are normalized so that

�Ns�i� �j� � �ij�

where �ij denotes the Kronecker Delta Function� Then any arbitrary vectors v and w
in H� �H� can be represented as v �

X
i

vi�i and w �
X
i

wi�i� Thus�

�M�v�w� �
X
ij

viwj�M��i� �j� �
X
i

viwi
i

� �	

�X
i

v�i

���� �X
i

w�
i

����

� �	kvkNskwkNs�

�����

Obviously� J � is the identity operator and hence M � JM�� Therefore� using �����
we get

�NsEi��� Ei��� � �MEi� Ei��� � �M�Ei�JEi���

� �	kEikNskJEi��kNs � �	kEikNskEi��kNs�

The result of the lemma immediately follows� �
Our proof of the theorem requires another lemma� We need to provide some control

on the convergence of the related linear iterative process

Ui�� � Ui � �A��
� �W �AUi����	�

to the solution U of
AU � W�

Lemma ��� Let A� satisfy ����� and � be a positive number with � � ���� Then

k�I� �A��
� A�V k�A�

� �� ��A� � �As�V� V � for all V � H�������

where

�� � �� � �
������

�� ��
�

Remark ��� Clearly� �� is less than one if

�����

�� ��
� �

or

� �
�

���� � �
�
�

�
������
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Note in addition� that

��A� � �As�V� V � � ��� ��kV k�A�
�

Thus� the lemma proves convergence of ���	� provided that ����� holds�

Proof �of Lemma ����� By ������

��� ����A�V� V � � ��A� � �As�V� V � for all V � H��

Hence� by ����� and ������

�AV�W � � ��AsV� V �
����AsW�W ����

�
��

��� ������
�A�V� V �

�����A� � �As�W�W �����
����
�

On the other hand�

k�I� �A��
� A�V k�A�

� kV k�A�
� ���AV� V � � ���A��

� AV�AV �

� ��A� � �As�V� V �� ��AV� V � � ���A��
� AV�AV ��

������

In view of ������ we have

�AV� V � � �A�V� V � � ��A� � �As�V� V ��������

Also� ����
� implies

�A��
� AV�AV � �

��

��� ������
�A��

� AV�AV ������A� � �As�V� V �
����

Thus�

�A��
� AV�AV � �

����

�� ��
��A� � �As�V� V ��������

Using ������ and ������ in ������ yields ������ �

Proof �of Theorem ����� To prove the theorem� we shall bound the positive and
negative eigenvalues of ����� separately� We begin with the negative eigenvalues� Let
��� 
� be an eigenvector �in H��H�� with eigenvalue 
 � 
� Then multiplying the �rst
block equation by ���A��A� � �AT ��� gives


���A��A� � �AT ����A� � �As�� � ��
���A� � �A���BT 



���QB
 � BA��
� �A� � �A��� ����QB � �BA��

� BT �
�
������
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Applying �BA��
� to the �rst equation and adding it to the second gives

��� 
����QB
 � 
B�A� � �AT ����A� � �As���

Substituting this back into the �rst equation and taking an inner product with

�



�A� � �AT ����A� � �As��

yields

�
�



��A� � �As��� �� �

��

�� 

kB�A� � �AT ����A� � �As��k

�
Q��
B

� k�A� � �AT ����A� � �As��k
�
A�
�

������

For convenience� the last equation can be abbreviated as

T� � T� � T��

For any � � H��

�Q��
B B��B�� � sup

��H�
� ���

���BT ���

�QB�� ��
� sup

��H�
� ���

��As�
����� �As�

����BT ���

�QB�� ��

� sup
��H�
� ���

�As�� ���B�As�
��BT �� ��

�QB�� ��
� �As�� ���

������

For the last inequality above we used ������ Therefore�

T� �
��

�� 

k�A� � �AT ����A� � �As��k

�
As
�

Using this in ������ gives

�
��

���

�� 


�
T� � �

�



��A� � �As��� ���

By Lemma ���� for any � � H�� we have�
�A� � �AT �A��

� �A� � �A��� �
�
� ����A� � �As��� �������	�

This in turn implies that

��A� � �As�
���� �� � ����A� � �A���A��A� � �AT ����� ���������
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Hence�

T� �
�
��
��A� � �As��� ���

Combining and using the fact that 
 � 
 gives

�
�



��A� � �As��� �� �

�
��

�
��

���

�� 


�
��A� � �As��� ��

�
�� ���
��

��A� � �As��� ���

������

Now� if � � 
 then the �rst equation in ������ implies that BT 
 � 
� Then� from the
second equation in ������� we get that 
 � 
� Hence� we can assume that � 	� 
 in
������� Thus�

� 
 �
��

�� ���
�����
�

Let � �
�

�����
and � �

�

��
� Applying straightforward manipulations� we get

�� � �� � �
������

�� ��
� �� �

�
��

���

�� ���

�
� ��

�

�
�����a�

and

�

�� ���
�

�

�� ���
������b�

Using ������ in ����
� gives

� 
 �
�� ���

�� ���
� ��

�

�
�������

which provides a bound for the negative part of the spectrum�
Next� we bound the positive eigenvalues of ������ Let us factorM� as

M� � D
TM�D�

where

D �

�
�������A��

�����A� � �A� 



 I

�
A �

M� �

�
� �����I �����A��

����BT

����B�A��
���� ���QB � �BA��

� BT

�
A �
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and � � �� ���� By de�nition� the largest eigenvalue of ����� is


 � sup
w�H��H�
w ���

�M�w�w�

�Nsw�w�
� sup

w�H��H�
w ���

�M�Dw�Dw�

�Nsw�w�
�

We now show that for any vector

�
�
�

�
� H� �H��

�
M�

�
�
�

�
�

�
�
�

��
� �	

h
���k�k� � ���k�k�QB

i
�������

Let L � B�A��
����� Then

M� �

�
�����I ����LT

����L ���QB � �LLT

�
�

To prove ������� we need to estimate the largest eigenvalue of

������� ����LT 
 � 
���������a�

����L� � ����QB � �LLT �
 � 
���QB
������b�

where

�
�



�
is an eigenvector� Solving for � in �����a� we get

� � ��
� ��������LT 
�

Substituting this in �����b� yields

��� 
��
� ��QB
 � ��
LLT 
�

Taking an inner product with 
 in the above equation gives

��� 
��
� ���QB
� 
� � ��
�LT 
�LT 
��������

If 
 � 
� then �����a� implies that either � � 
 or 
 � �� � 
� Hence� we can assume
that 
 	� 
� In addition� by ����� and ������

�LT 
�LT 
� � �A��
� BT 
�BT 
� � ��As�

��BT 
�BT 
�

� ��� ���QB
� 
��

Using this in ������ gives

��� 
��
� �� � ��
��� ��

or equivalently

� � 
��� � � ����� ���� � � 
�



Inexact Uzawa algorithms II ��

From here we obtain that


 �
�� � � ����� �� �

q
���� ��� ����� ���� � ��

�

�
���� ����� �� �

q
����� ����� ���� � ���� ����

�
�

������

Next� we observe that for �
�
�

�
� D

�
�



�

the following estimate holds


���kA
����
� �A� � �A��k� � ��A� � �As��� �������	�

Equivalently

���k�k� � ���k�k�QB
�

�
Ns

�
�



�
�

�
�



��
� ���k�k�� � ���k
k�QB

�������

Indeed� ����	� is a direct consequence of ����	� and �����a�� It is clear now that �������
������� and ������ provide the bound for the positive part of the spectrum�
Finally� elementary inequalities imply that

��
�

�
�

���� ����� �� �
q
����� ����� ���� � ���� ����

�
�

which concludes the proof of the theorem� �

� Analysis of the multistep inexact algorithm

In this section we de�ne and analyze an inexact Uzawa algorithm with A�� replaced
with su�ciently accurate approximation� Such an algorithm is essentially di�erent
from the linear one�step method developed in the previous section for two main rea�
sons� First� achieving certain accuracy of the approximation to A�� typically requires
more computational work than the evaluation of the action of a linear one�step precon�
ditioner� Second� depending on the way the accurate approximate inverse is computed�
the resulting inexact Uzawa algorithm may not be linear� In view of this� we shall
approach the analysis of this method di�erently�
The approximate inverse is described as a map � 
 H� �� H�� not necessarily linear�

In this section we shall assume that for any � � H�� ���� is �close� to the solution 
 of

A
 � �������
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More precisely� we assume that

k�����A���kAs � �kA���kAs for all � � H�������

for some positive � with � � ��
Notice that for any � � �
� ��� ����� can be satis�ed by taking su�ciently many steps

in some iterative method for solving ����� which reduces the error in a norm equivalent
to k � kAs

� For example� we already showed in the previous section that for appropriate
choice of the corresponding iteration parameter� the linear iteration ���	� converges �cf�
Remark ���� to the solution of the linear system ������ Hence� an estimate of the type of
����� can be established easily for any � � �� provided that su�ciently many iterations
with ���	� are performed�
In addition� in the case when A corresponds to a second order di�erential oper�

ator� there are preconditioners B based on multigrid �cf� ���� ����� ����� or domain
decomposition �	� which satisfy

k�I�BA��kAs � ��k�kAs for all � � H�������

for some �� � �� Some of these preconditioners are even nonsymmetric� Typically� these
methods require su�ciently �ne coarse grid in order to work for a given small ��� Taking
� � A��� in ����� trivially implies ������ provided that �� � ��
Another example for � is a generalized Lanczos procedure ���� applied to ����� which

converges to the solution 
� In this case the resulting Uzawa algorithm will be nonlinear�
Among the variety of conjugate gradient�like methods for solving ����� proposed in the
literature� there are some for which convergence can be shown rigorously� In particular�
a convergence of the following type is known to hold �cf� ����� for the generalized
minimal residual algorithm �GMRES�


k
n �A���kAs � �nkA
���kAs for all � � H��

where 
n � ���� is the approximation to the solution computed at the n�th iteration
and �n � 
 as n increases� Unlike the case when A � AT � a rate of convergence for
GMRES is generally not available even though this algorithm reaches the threshold
�n � � eventually� In practice� GMRES may be a more e�cient method for computing
an approximation satisfying ����� than the linear iteration ���	��
The variant of the inexact Uzawa algorithm we investigate in this section is de�ned

as follows�

Algorithm ��� �Multistep inexact Uzawa� For X� � H� and Y� � H� given� the

sequence f�Xi� Yi�g is de�ned� for i � �� �� � � � � by

Xi�� � Xi ��
�
F �

�
AXi �BTYi

��
�

Yi�� � Yi � �Q��
B �BXi�� �G��
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Clearly� Algorithm ��� reduces to Algorithm ��� if ���� � A��� for all � � H��
The main result of this section is a bound for the rate of convergence of the multistep

algorithm in terms of the factors �� �� and � introduced in ������ ������ and �����
respectively� The theorem below is a su�cient condition on � for convergence of the
algorithm�

Theorem ��� Let A have a positive de�nite symmetric part As satisfying ����� and
let QB be symmetric and positive de�nite operator satisfying ������ Assume that �����
holds and that the iteration parameter � is chosen so that

� �
�� �

��
�

Set

� �
�
�� �

�� �

��

����
�

Then the multistep inexact Uzawa algorithm converges if

� �
�� �

� � �� � �
������

Moreover� if �X� Y � is the solution of ����� and �Xi� Yi� is the approximation de�ned

by Algorithm ���� then the iteration errors EX
i and EY

i de�ned in ����� satisfy

��

� � �
kEX

i��k
�
As
� kEY

i��k
�
QB

� 	��i���
�

��

� � �
kEX

� k
�
As
� kEY

� k
�
QB

�
�����

and

kEX
i��k

�
As
� ����� � ���� � ���	�i

�
��

� � �
kEX

� k
�
As
� kEY

� k
�
QB

�
������

where

	 �
�� � ��� � � �

q
��� � ��� � ��� � ���� � ��

�
� �����	�

Proof� We start by deriving norm inequalities involving the errors EX
i and E

Y
i � Simi�

larly to the approach in the previous section� we can write

EX
i�� � EX

i � �
�
AEX

i �BTEY
i

�
�

EY
i�� � EY

i � �Q��
B BEX

i���
�����

The �rst equation above can be rewritten

EX
i�� � �A

�� � ��
�
AEX

i �BTEY
i

�
�A��BTEY

i ������
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It follows from the triangle inequality� ������ ������ and ����� that

kEX
i��kAs

� ��kEX
i kAs

� kA��BTEY
i kAs

� � kA��BTEY
i kAs

� �kEX
i kAs

� �� � ��kBTEY
i k�A���s

� �kEX
i kAs

� �� � ��kEY
i kQB

�

����
�

Using ����� in the second equation of ����� gives

EY
i�� � �I� �Q��

B BA��BT �EY
i � �Q��

B B�A�� ����AEX
i �BTEY

i ��

Applying the k � kQB
norm to both sides of the above equation and using the triangle

inequality yields

kEY
i��kQB

� k�I� �Q��
B BA��BT �EY

i kQB

� �kQ��
B B�A�� � ���AEX

i �BTEY
i �kQB

�
������

Since � �
�� �

��
� by ����
� we have

k�I� �Q��
B BA��BT �EY

i kQB
�
�
�� �

�� �

��

����
kEY

i kQB
� �kEY

i kQB
�������

Because of ������� ������ the triangle inequality� and ������ the second term in the
right�hand side of ������ is bounded as follows


kQ��
B B�A�� � ���AEX

i �BTEY
i �kQB

� ��kEX
i kAs � kE

Y
i kQB

��������

Using ������ and ������ in ������ yields

kEY
i��kQB

� �kEY
i kQB

� ���kEX
i kAs � kE

Y
i kQB

��������

Combining ����
� and ������ gives

kEX
i��kAs � �kEX

i kAs � �� � ��kEY
i kQB

kEY
i��kAs � ��kEX

i kAs � �� � ���kEY
i kQB

�
������

Let us adopt the notation �
x�
y�

�
�

�
x�
y�

�

for vectors of nonnegative numbers x�� x�� y�� y� if x� � x� and y� � y�� Hence� from
������ we obtain

�
�kEX

i��kAs

kEY
i��kQB

�
A �

�
� � � � �

�� � � ��

�
A
�
�kEX

i kAs

kEY
i kQB

�
A �������
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Repeated application of ������ gives�
�kEX

i��kAs

kEY
i��kQB

�
A �Mi��

�
�kEX

� kAs

kEY
� kQB

�
A����	�

whereM is given by

M �

�
� � � �
�� � � ��

�
�

We consider two dimensional Euclidean space with the inner product	�
x�
y�

�
�

�
x�
y�

�

�

��

� � �
x�x� � y�y��

A trivial computation shows that M is symmetric with respect to the inner product�
It follows from ����	� that

��

� � �
kEX

i��k
�
As
� kEY

i��k
�
QB
�

����
�
�kEX

i��kAs

kEY
i��kQB

�
A �

�
�kEX

i��kAs

kEY
i��kQB

�
A



�

�

����Mi��

�
�kEX

� kAs

kEY
� kQB

�
A �Mi��

�
�kEX

� kAs

kEY
� kQB

�
A



�

� 	��i���
�

��

� � �
kEX

� k
�
As
� kEY

� k
�
QB

�

where 	 is the norm of the matrix M with respect to the b�� �c�inner product� Since
M is symmetric in this inner product� its norm is bounded by its spectral radius� The
eigenvalues ofM are the roots of


� � ��� � ��� � ��
� ��� � �� � 
�

It is elementary to see that the spectral radius ofM is equal to its positive eigenvalue
which is given by ���	��
Examining the expression for 	 given by ���	� we see that the square root expression

is nonnegative� Moreover� for any �xed positive � and � in the interval �
� ��� 	 is a
function of � only� It is straightforward to see that 	 � � if

� �
�� �

� � �� � �
�

Finally� we prove ������ Multiplying both sides of the �rst inequality in ������ by
� ��� and using the fact that � � � we obtain

� ���kEX
i��kAs � � ����kEX

i kAs � � ����� � ��kEY
i kQB

� � ����kEX
i kAs � �� � ��kEY

i kQB
�
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We now apply the arithmetic�geometric mean inequality to the last inequality and get
that for any positive ��

�kEX
i��k

�
As
� �� � �����kEX

i k
�
As
� �� � ������ � ���kEY

i k
�
QB

�

Inequality ����� follows by taking � � � � ��� and applying ������ This completes the
proof of the theorem� �
We conclude this section with the following remarks�

Remark ��� The result of Theorem ��� is somewhat weaker than the result obtained
in Section � for the linear case due to the threshold condition ����� on �� In principle�
it is possible to take su�ciently many iterations n so that ����� holds for any �xed ��
�� and � � In applications involving partial di�erential equations� � or � may depend
on the discretization parameter h� If� however� � and � can be bounded independently
of h with � also bounded away from one� then � can be bounded away from one also�
Hence� a �xed number �independent of h� of iterations of ���	� are su�cient to guarantee
convergence of Algorithm ����

Remark ��� The result of Theorem ��� is similar to the result of Theorem ��� in ����
which considers the case of a multistep inexact Uzawa algorithm applied to a symmetric
inde�nite problem� The case of a nonsymmetric A however is inherently more di�cult�
Thus� in practice it is always more expensive computationally to satisfy ����� than its
symmetric counterpart in ��� in order to guarantee convergence of the corresponding
algorithm�

� Application to Navier�Stokes problems

Here we consider an application of the algorithms developed in the previous sections to
solving inde�nite systems of linear equations arising from �nite element approximations
of the steady�state Navier�Stokes equations�
The Navier�Stokes equations provide the �ow model of Newtonian �uids� This is the

simplest and arguably the most useful model of viscous� incompressible �uid behavior�
If the forces driving the �ow are time independent� the �ow is stationary� We consider
the following model problem for the steady�state Navier�Stokes equations


�� u � �u � r�u�rp � f in !�����a�

r � u � 
 in !�����b�

u � 
 on �!�����c� Z
�
p�x� dx � 
�����d�

Here ! is a the unit square in R� � u is a vector valued function representing the �uid
velocity� and � is the kinematic viscosity of the �ow� The �uid pressure p is a scalar
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function� The pressure of a Newtonian �uid is determined only up to an additive
constant so for uniqueness� we require ����d�� Generalizations to more complex domains
and nonhomogenious boundary conditions are possible� For example� we shall consider
a problem with nonzero Dirichet boundary conditions in the next section�
Let " be the set of functions in L��!� with zero mean value on ! and H��!� denote

the Sobolev space of order one on ! ���� ����� The space H�
� �!� consists of those

functions in ! whose traces vanish on �!� Also� V � �H�
� �!��

� will denote the product
space consisting of vector valued functions with each vector component in H�

� �!��
In order to derive the weak formulation of ����� we multiply the �rst two equations

of ����� by functions in V and " respectively and integrate over ! to get

�D�u�v� � b�u�u�v� � �p�r � v� � �f �v�� for all v � V�����a�

�r � u� q� � 
 � for all q � "�����b�

Here ��� �� is the L��!� inner product and D��� �� denotes the Dirichlet form for vector
functions on ! de�ned by

D�v�w� �
�X

i��

Z
�
rvi � rwi dx�

The trilinear form b��� �� �� for vector functions on ! is given by

b�u�v�w� �
�X

i�j��

Z
�
ui�Divj�wj dx�

where Di �
�
�xi

�
The existence of a solution to ����� has been shown �cf� ��
�� ������ It is well

known that the Navier�Stokes equations have more that one solution unless the data
�the kinematic viscosity and the external forces� satisfy very stringent requirements �cf�
����� ��
��� On the other hand� it has been shown that in many practical cases these
solutions are mostly isolated� i�e� there exists a neighborhood of � and f in which each
solution is unique� These solutions depend continuously on �� Therefore� as � varies
in a given interval� each solution describes an isolated branch� This means that the
bifurcation of solutions is rare and branches of solutions can be computed� We refer
the reader to ���� and ��
� for additional discussion of the subject�
We next de�ne our �nite element approximation subspaces� The discussion here is

very closely related to the examples given in ��� and ��� where additional comments and
other applications can be found� We partition ! into �n� �n square shaped elements�
where n is a positive integer and de�ne h � ���n� Let xi � ih and yj � jh for
i� j � �� � � � � �n� Each of the square elements is further partitioned into two triangles
by connecting the lower left corner to the upper right corner� Let Sh be the space
of functions that vanish on �! and are continuous and piecewise linear with respect
to the triangulation just de�ned� We set Vh � Sh � Sh 
 V� The de�nition of the
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	 �	

�	 	

Figure �
 The square mesh used for �H�� the support
�shaded� and values for a typical �ij

approximation to " is motivated by the observation ���� that the space �"h of functions
that are piecewise constant with respect to the square elements and have zero mean
value on ! together with Vh as de�ned above form an unstable pair of approximation
spaces� This means that

kpk � c� sup
V �Vh

�r � �� p�

D�V� V ����
� for all p � �"h������

fails to hold with constant c� independent of the discretization parameter h� Here
��� �� denotes the inner product in L��!� and k � k is the corresponding norm� To get
a divergence stable pair� we consider a smaller space de�ned as follows� Let �kl for
k� l � �� � � � � �n be the function that is � on the square element �xk��� xk���yl��� yl�
and vanishes elsewhere� De�ne �ij � �"h for i� j � �� � � � � n by

�ij � ��i����j�� � ��i��j�� � ��i����j � ��i��j

�see Figure ��� The space "h is then de�ned by

"h �
n
W � �"h 
 �W��ij� � 
 for i� j � �� � � � � n

o
�

The pairVh�"h now satis�es ����� with a constant c� independent of h ����� Moreover�
the exclusion of the functions �i�j does not change the order of approximation for the
space since "h still contains the piecewise constant functions of size �h�
Following Temam ��
�� we introduce a modi�cation �b��� �� �� of the trilinear form

b��� �� ��� given by

�b�u�v�w� �
�X
i�j

�

�

Z
�
fui��Divj�wj � vj�Diwj��g dx�
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The approximation to the solution of ����� is de�ned by the pair �X� Y � � Vh � "h

satisfying

�D�X� V � � �b�X�X� V � � �Y�r � V � � �f � V �� for all V � Vh�����a�

�r �X�W � � 
� for all W � "h�����b�

Note that the use of �b��� �� �� above is justi�ed by the observation that �b�u� �� �� � b�u� �� ��
for functions u which are divergence free� The form of �b��� �� �� guarantees the existence
of a solution to ����� �cf� ��
��� The uniqueness is again subject to imposing conditions
on the data � and f �
To solve ����� we apply a Picard iteration of the following type �cf� ������ Given an

initial approximation X�� we compute �X i� Y i�� for i � �� �� ���� as the solution of the
linear system

�D�X i� V � � �b�X i��� X i� V � � �Y i�r � V � � �f � V �� for all V � Vh�����a�

�r �X i�W � � 
� for all W � "h�����b�

The convergence analysis of this algorithm is beyond the scope of the present paper�
It is shown in ���� that the algorithm converges under the assumption that

��c�a � cbkfk���

where ca and cb are the coercivity and boundedness constants of the trilinear form
b��� �� ��� Such an assumption is enough to guarantee a unique solution of ������
The system ����� can be reformulated in the notation of the earlier sections� Set

H� � Vh and H� � "h� Let

B 
 H� �� H�� �BU�W � � �r � U�W �� for all U � H�� W � H��

BT 
 H� �� H�� �BTW�V � � �W�r � V �� for all V � H�� W � H��

During each iterative step� X i�� is �xed so that we can de�ne

A 
 H� �� H�� �AU� V � � �D�U� V � � �b�X i��� U� V �� for all U� V � H��

It follows that the solution �X i� Y i� of ����� satis�es ����� with F equal to the L��!�
projection of f into H� and G � 
� Notice also that

�b�u�v�w� � ��b�u�w�v��

Therefore�

As 
 H� �� H�� �AsU� V � � �D�U� V �� for all U� V � H�������

It is possible to show that ����� holds for A and As with a constant � proportional
to ��� �cf� ��
� and ������ Moreover� it follows from ����� that ����� holds for As� B�
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and BT as above with constant c� independent of the mesh size h� This implies that
����� is satis�ed with QB � ���I and � bounded away from one independently of h�
We still need to provide preconditioners for As� However� As consists of two copies

of the operator which results from a standard �nite element discretization of Dirichlet#s
problem� There has been an intensive e�ort focused on the development and analysis
of preconditioners for such problems� For the examples in Section �� we will use a
preconditioning operator which results from a V�cycle variational multigrid algorithm�
Such a preconditioner can be scaled so that ����� holds with � independent of the mesh
parameter h�

Remark 	�� It appears from the de�nition of the above operators that one has to
invert Gram matrices in order to evaluate the action of A� BT and B on vectors from
the corresponding spaces� In practice� the H� Gram matrix inversion is avoided by
suitable de�nition of the preconditioner QA� For the purpose of computation� the
evaluation of Q��

A W forW � H� is de�ned as a process which acts on the inner product
data �W��i� where f�ig is the basis for H�� Moreover� from the de�nition of the Uzawa�
like algorithms in the previous sections� it is clear that every occurrence of A or BT is
followed by an evaluation of Q��

A � Thus the inversion of the Gram matrix is avoided
since the data for the computation of Q��

A � ��B
TQ��i� and �AV� �i��� for any Q � H�

and V � H�� can be computed by applying simple sparse matrices� In the case of this
special choice of H�� it is possible to compute the operator B in an economical way
�see Remark � of ���� and we can take QB to be �

��I� For more general spaces H�� the
inversion of Gram matrices can be avoided by introducing a preconditioner QB whose
inverse is implemented acting on inner product data as in the H� case above�

Remark 	�� By rescaling p� one can rewrite ����a� in the form

� u �Re�u � r�u�rp � Re f �

where Re � ��� is the Reynolds number of the �ow� This results in a di�erent scaling of
the discrete problem ����� which is better suited for implementation on �nite precision
machines� We use this scaling in our examples in the next section�

Remark 	�� An alternative linearization of ����� can be de�ned by replacing �b�X�X� V �
with �b�X i��� X i��� V � which provides a di�erent Picard iteration� We will call this an
explicit Picard iteration because the nonlinear term is handled in an explicit fashion�
This leads to a symmetric saddle point problem at each iteration� The inexact Uzawa
methods analyzed in ��� can be used here� Even though the symmetric linear systems
are easier to solve� this linearization is a less robust method for computing branches
of solutions to ����� than the implicit linearization de�ned above� because the explicit
Picard iteration breaks down for values of � where the implicit method converges� We
shall provide a comparison of these two methods in the next section�
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� Numerical examples

In this section we present the results from numerical experiments that illustrate the
theory developed in the earlier sections� Our goals here are �rst to demonstrate the
e�ciency and the robustness of the new algorithms on the basis of a comparison between
the implicit and the explicit Picard iteration applied to a Navier�Stokes problem with
known analytic solution� Second� we show results from computations of a classical �ow
problem� The �nite element discretization de�ned in the previous section as well as the
pressure rescaling according to Remark ��� are used in both cases�
Our �rst experiment compares the performance of the implicit and the explicit

methods applied to the solution of ����� when the velocity X is given by

X �

�
x��� x�y��� y�
x��� x�y��� y�

�
������

and the pressure Y is given by

Y � x�
�

�
������

Obviously� r �X 	� 
 so that the right�hand side of ����b� has to be adjusted appropri�
ately�
The implicit and explicit algorithms were tested for a set of di�erent Reynolds

numbers �Re � �� �
� �

� �


�� and di�erent mesh discretization parameters �h �
���� ����� ������ Clearly� the exact solution de�ned above is very smooth in !� without
any singularities� The experiments described below show the asymptotic behavior of
the error of the approximate solution computed by the two algorithms for the selected
set of Reynolds numbers�
Four conditions were common in all experiments� First� at each Picard iteration�

the corresponding linear problem was solved exactly �i�e� the L� norm of the normal�
ized residual was reduced until less than �
��	�� Second� the nonlinear iteration was
considered to have converged when the L� norm of the di�erence Ui � Ui�� was less
than �
�
� Here U consists of both velocity and pressure components� Third� the Pi�
card iteration was started with zero initial guess� Fourth� we de�ned Q��

A to be the
operator which corresponds to one V�cycle sweep of variational multigrid with point
Gauss�Seidel smoothing� The order of points in the Gauss�Seidel iteration was reversed
in pre� and post�smoothing� The preconditioner QB was provided by an appropriate
scale of the identity operator in the pressure space �cf� Remark �����
In all experiments � � 
�� was used when the nonsymmetric saddle point problem

����� was solved� This comes from the fact that � in ����� is independent of Re� because
of the properties of the trilinear form �b��� �� ��� The parameter � in this case was set to � �
��Re� where Re is the corresponding Reynolds number� Alternatively� � and � were set
to one for the case of symmetric saddle point problem� These choices for � provided the
appropriate scaling of QA according to the requirements of the corresponding algorithm
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�cf� ����� and ����� In both cases this resulted in a preconditioner independent of the
mesh parameter h�
The numerical results from these experiments are shown in Tables ����

Table �
 Errors and nonlinear iteration numbers for Re � � for
the implicit and explicit methods�

h Error �p� Error �u�� Error �u�� Implicit Explicit
	�� 	���e�� 
��
e�� ����e�� � �
	�	� ���	e�� 	���e�� ���	e�� � �
	��� ��	
e�� ���	e�� ����e�� � �

Table �
 Errors and nonlinear iteration numbers for Re � �
 for
the implicit and explicit methods�

h Error �p� Error �u�� Error �u�� Implicit Explicit
	�� 	���e�� 
��
e�� ����e�� � �
	�	� ����e�� 	���e�� ���	e�� � �
	��� ����e�� ���	e�� ����e�� � �

Table �
 Errors and nonlinear iteration numbers for Re � �

 for
the implicit and explicit methods�

h Error �p� Error �u�� Error �u�� Implicit Explicit
	�� ��	�e�� 
���e�� ����e�� 	� ��
	�	� 
�
�e�� 	���e�� ���	e�� 		 ���
	��� 	���e�� ��
�e�� ����e�� 		 ��

� � the algorithm converged to a di�erent solution with correspond�
ing errors �p� u�� u�� 
��	e��� ����e��� ���
e���

�� � the algorithm could not converge to the solution�

We note that the di�erence in the velocity error obtained for a given mesh parameter
h in Tables ��� above is due to the nonsymmetric pressure ������ even though the
velocity ����� is symmetric with respect to the spatial variables x and y in !� The
computational results from the �rst experiment are in a good agreement with the theory
developed in the paper� They show that the implicit method is a robust algorithm for
solving Navier�Stokes equations in a wide range of Reynolds numbers� The number
of inner iterations was independent of the mesh parameter h and exhibited a mild
dependence on � for � � ��� � �

� The actual number of iterations needed to
solve the corresponding linear system exactly depends on the values of the iteration
parameters � and �� In this regard� it appears that setting � � ��Re contradicts
Theorem ���� in view of the de�nition of As in ������ In practice� for a given Re and
h� one can select � � ��Re� such that the algorithm still remains stable yet shows an
improved performance of the linear solves� The key here is not to select a � which is



Inexact Uzawa algorithms II ��

Table �
 Errors and nonlinear iteration numbers for Re � �� 



for the implicit and explicit methods�

h Error �p� Error �u�� Error �u�� Implicit Explicit
	����� ���� ��	�e�� ����e�� �� ����
	�	���� 
�
�e�� ���
e�� ����e�� �� ����
	������ 	���e�� ����e�� ����e�� �� ����

��� � ������ inner iterations were taken for each Picard iteration
in the implicit method because the inexact Uzawa algorithm could
not reduce the residual below 	��e�	� after ������ iterations when
solving the nonsymmetric saddle point problem� The norm of the
residual was on the order of 	��e�		 after the �rst few nonlinear
iterations and less than ���e�	� towards the last Picard iterations�

���� � the algorithm broke down�

�too far away� from the safe zone� Indeed� setting � �
q
��Re resulted in a divergent

linear solver during the Picard iteration which caused the whole solution process to
break down� Also� as h � 
� the method becomes more sensitive with respect to
deviations from the hypothesis of Theorem ���� For example� the case of h � ����� and
Re � �� 


 in our second numerical test described below required � � 
�


� to remain
stable and broke down if � � 
�

�� It is possible to tune up the parameters � and �
for �xed � and h so that the number of inner iterations is minimized� We� however� did
not pursue this issue in the numerical experiments presented here�
The implicit algorithm is well suited for calculations on �nite precision computers

�double precision recommended�� On the other hand� the explicit method is a rea�
sonable approach to solving Navier�Stokes problems only for low Reynolds numbers
�Re � �� �
�� It is a quite e�cient algorithm for such �ow problems� outperforming
the implicit method by a factor of �
 to � or more� However� the stability of this al�
gorithm deteriorates very fast as Re increases and the method becomes unstable for
Re � �

 and Re � �� 


� The case of Re � �� 


 is a very di�cult computational
problem which could only be solved by performing a large number of inner iterations
for each Picard iteration� Clearly� the properties of A in this case are dominated by
its skew�symmetric part� This in turn means that Q��

A is a poor approximation of
A��� Nevertheless� the implicit method converged to the analytic solution branch for
all values of h� showing the proper asymptotic behavior of the error� An e�cient precon�
ditioned iterative method for approximating the inverse of the strongly nonsymmetric
operator A combined with the multistep algorithm from Section � could result in a
better method for solving the steady�state Navier�Stokes equations with high Reynolds
numbers�
Our second numerical experiment is the calculation of the �ow in a cavity� The

cavity domain ! is the unit square and the �ow is caused by a tangential velocity �eld
applied to one of the square sides in the absence of other body forces� Since all forces
are independent of time� the �ow in this case limits to a steady�state which is modeled
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Figure �
 Streamlines for v � �� h � ����� and Re � � �left��
Re � �
 �right��

by ����� with corresponding changes in the boundary conditions ����c� In particular�
the solution u on the boundary is zero everywhere except on the boundary segment
y � �� where u � �v� 
� with v given� The rescaled pressure form of these equations is
used here �cf� Remark �����

Figure �
 Streamlines for h � ����� v � �� Re � �

 �left�� Re �
�� 


 �right��

To discretize this �ow problem similarly to ������ we set u � u� � $u� where u�
vanishes on the boundary of ! and $u is a known function which satis�es the Dirichlet
boundary conditions of u� The corresponding discrete problem in the spaces H� and
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H� as de�ned in the previous section is similar to ����� and is given by

D�X�� V � �Re�b�X�X�� V � � �Y�r � V � � Re �f � V ��D� $X� V �� Re�b�X� $X� V ��

�r �X��W � � 
�

for all V � H� and W � H�� Here X � X� � $X with X� � H� and $X satisfying the
Dirichlet boundary conditions of u and vanishing at all interior vertex points from the
triangulation of !� Note that r � $X � 
�
Next� the implicit Picard iteration for this nonlinear problem is given by the follow�

ing� Let $X be as de�ned above� Then� given an initial guess X�� we compute �X i
�� Y

i��
for i � �� �� ���� as the solution of the linear system

D�X i
�� V � �Re�b�X i��� X i

�� V � � �Y
i�r � V � � Re �f � V ��D� $X� V ��Re�b�X i��� $X� V ��

�r �X i
��W � � 
�

and set X i � X i
� � $X�

The streamlines of the velocity �eld X computed using this algorithm for a wide
range of Reynolds numbers are shown in Figures ���� The e�ect of the Reynolds number
on the �ow pattern is clearly seen there� The �ow for low Reynolds numbers �see Fig� ��
has only one vortex center� located above the center of the domain �its location moves to
the right as Re increases�� As Re increases further� a second vortex center appears near
the lower right corner �see Fig� �� the case of Re � �

� and� for even larger Reynolds
numbers� a third vortex center develops near the lower left corner of the domain �see
Fig� �� the case of Re � �� 


��
Again� the case of Re � �� 


 was the most di�cult problem� requiring a large

amount of work in the linear solver for each Picard iteration� The discretization with
h � ���� was su�ciently �ne for resolving the essential �ow behavior for all Reynolds
numbers tested� In contrast� the experimental results with h � ���� and h � ���� for
Re � �

 did not show the vortex center near the lower right corner of the domain� The
experiment with h � ����� and Re � �� 


 resulted in a �ow �eld whose streamlines
were very similar to the ones from h � �����
In conclusion� the implicit algorithm is a simple� robust and e�cient method for

solving Navier�Stokes equations for a wide range of Reynolds numbers� For each non�
linear iteration it requires the solution of a nonsymmetric saddle point problem which
can be solved e�ectively with the inexact Uzawa algorithm ���� An advantage of this
method is that it solves the discrete system ����� without the need for additional stabi�
lization terms in contrast to the class of penalty algorithms �cf� ����� ��
��� The typical
penalty methods add stabilization terms to ������ The bigger these terms are� the eas�
ier it is to solve the corresponding system� However� these stabilization terms change
the discrete equations that one solves� In particular� their presence e�ectively reduces
the Reynolds number for the corresponding �ow causing di�erent �ow behavior to be
computed� On the other hand� such a problem does not exists with the implicit method
because it does not need any additional stabilization terms� The convergence of the
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linear iteration at each Picard iteration is guaranteed only by the appropriate scaling
of QA and the appropriate choice of the parameters � and � �
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