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Abstract

In this paper, we consider iterative algorithms of Uzawa type for solving lin-
ear nonsymmetric block saddle point problems. Specifically, we consider systems
where the upper left block is invertable nonsymmetric linear operator with pos-
itive definite symmetric part. Such saddle point problems arise, for example, in
certain finite element and finite difference discretizations of Navier—Stokes equa-
tions, Oseen equations, and mixed finite element discretization of second order
convection-diffusion problems. We consider two algorithms which utilize an “in-
complete” or “approximate” evaluation of the inverse of the operator in the upper
left block. Convergence results for the inexact algorithms are established in ap-
propriate norms. The convergence of one of the algorithms is shown without
the assumption of a sufficiently accurate approximation to the inverse operator.
The other algorithm is shown to converge provided that the approximation to
the inverse of the upper left hand block is of sufficient accuracy. Applications
to the solution of steady-state nonlinear Navier-Stokes equations are discussed
and finally, the results of numerical experiments involving the algorithms are
presented.
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1 Introduction

This paper provides an analysis for the inexact Uzawa method applied to the solution of
linear nonsymmetric saddle point systems. Such systems arise in certain discretizations
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of Navier-Stokes equations, mixed discretizations of second order elliptic problems with
convective terms (cf. [11], [14], [17], [20]). The theory in this paper is an extension of
the theory for symmetric saddle point problems developed in [4].

Let H; and H, be finite dimensional Hilbert spaces with inner products which we
shall denote by (-,-). There is no ambiguity even though we use the same notation for
the inner products on both of these spaces since the particular inner product will be
identified by the type of functions appearing. We consider the abstract saddle point
problem:

@y (&%) ()= (e)

where F' € H; and G € Hy are given and X € H; and Y € H, are the unknowns.
Here A : H, — H; is assumed to be a linear, not necessarily symmetric operator.
AT . H, +— H, is the adjoint of A with respect to the (-, -)-inner product. In addition,
the linear map BT : Hy — H; is the adjoint of B : H; — H.

In general, (1.1) may not even solvable unless additional conditions on the operators
A and B, and the spaces H; and H, are imposed. Throughout this paper we assume
that A has a positive definite symmetric part. Under this assumption, (1.1) is solvable
if and only if the reduced problem

(1.2) BA 'B'Y =BA'F -G

is solvable. In the case of a symmetric and positive definite operator A, the Ladyzhenskaya—
Babuska-Brezzi (LBB) condition (cf. [6]) is necessary and sufficient condition for solv-
ability of this problem. As we shall see, the solvability of (1.1) in the nonsymmetric
case is guaranteed provided that the the LBB condition holds for the symmetric part

of A.

The papers [9], [18] propose solving BA™'B” by preconditioned iteration. One
common problem with this is that the evaluation of the action of the operator A=! is
required in each step of the iteration. For many applications, this operation is expen-
sive and is also implemented as an iteration. The Uzawa method [1] is a particular
implementation of a linear iterative method for solving (1.2). It is an exact algorithm
in the sense that the action of A~! is required for the implementation. An alterna-
tive method which solves (1.1) by preconditioned iteration was proposed in [10]. Their
preconditioner also requires the evaluation of A~! during each step of the iteration.

The inexact Uzawa methods replace the exact inverse of A by an “incomplete” or
“approximate” evaluation of A~!. Such algorithms are defined in Sections 3 and 4. In
this paper we distinguish two types of inexact algorithms: (i) a linear one-step, where
the action of the approximate inverse is provided by a linear preconditioner such as one
sweep of a multigrid procedure; (ii) a multistep, where a sufficiently accurate approxima-
tion to A ! is provided by some preconditioned iterative method, e.g., preconditioned
GMRES [19] or preconditioned Lancos [15].

The inexact Uzawa algorithms applied to nonsymmetric problems are of interest
because they are simple, efficient, and have minimal computer memory requirements.
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They can be applied to the solution of difficult practical problems such as the Navier—
Stokes equation. In addition, an exact Uzawa algorithm implemented as a double
iteration can be transformed trivially into an inexact algorithm. It is not surprising
that the inexact Uzawa methods are widely used in the engineering community.

The paper is organized as follows. In Section 2 we establish sufficient conditions for
solvability of the abstract saddle point problem and analyze an exact Uzawa algorithm
for solving it. In Section 3 we define and analyze a linear one-step inexact Uzawa
algorithm applied to (1.1). Next, a multistep inexact method is defined and analyzed
in Section 4. Section 5 provides applications of the algorithms from Section 3 and
Section 4 to the solution of indefinite systems of linear equations arising from finite
element approximations of the steady-state nonlinear Navier-Stokes equations. Finally,
the results of numerical experiments involving the inexact Uzawa algorithms are given
in Section 6.

2 Analysis of the exact method

In this section we establish sufficient conditions for solvability of (1.2) and analyze the

exact Uzawa algorithm applied to the solution of (1.2). Even though this algorithm

is not very efficient for reasons already mentioned, the result of Theorem 2.2 below is

important for the analysis of the inexact algorithms defined in the subsequent sections.
The symmetric part A of the operator A is defined by

(2.1) A, = %(A +AT).

In the remainder of this paper a subscript s will be used to denote the symmetric part
of various operators, defined as in (2.1). We assume that A is positive definite and
satisfies

(2.2) (AX,Y) < a(AX, X)Y2(A,Y, V)2 forall X,Y € H,

for some number «. Clearly, a > 1. Moreover, since A; is positive definite, such an
« always exists. In many applications in the numerical solution of partial differential
equations, the constant « can be chosen independently of the mesh parameter.

In addition, the Ladyzhenskaya—Babuska—Brezzi condition is assumed to hold for
the the pair of spaces H; and H», i.e.

(V,BU)? 5
2.3 ——— > ||V forall V € H.
( ) 52111)1 (ASU, U) — COH || or a € 25
U#0
for some positive number ¢y. Here || - || denotes the norm in the space Hy (or H;)

corresponding to the inner product (-, -).
As is well known, the condition (2.3) is sufficient to guarantee solvability of (1.1)
when A is replaced by A,. We will see that it also suffices in the case of nonsymmetric
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A. To this end, we prove the following lemma which establishes that (A~'), is positive
definite.

Lemma 2.1 Let A be an invertible linear operator with positive definite symmetric part
A, that satisfies (2.2). Then (A", is positive definite and satisfies

(2.4) (A HW, W) < (AW, W) < 2(A™H W, W) forall W € H,.

Proof: Clearly,

_ W,U)? (A~HTW, AU)?
As 1 — ( ) — )
()W) = sub 7m0y = S~ a0 0)
U#0 U#0
: A HTWA U4
(2 5) < 042 sup ||( ) |2AS |AS — 042||(A71)TW| 2A
vet, U, °
U#0
= (AW, W),
Here || - [4, = (A, ). In the above inequalities we have used the Schwarz inequality,
(2.2), and the fact that
(2.6) (AU, U) = (AU,U) forall U € H;.

On the other hand,
(A Y),U,U) = (AU, U) = (AV2A U, (A,) Y2U)
< AU a Ul (a1 = (AU, U) U] (a1
Therefore,
(2.7) (A1),U,0) < ((Ay)"'U,U).

This completes the proof of the lemma. O
It is clear now that Lemma 2.1 and (2.3) guarantee solvability of (1.2). Indeed,

(BAT'B"V,V) = (A™"),B"V,B"V)
> a%((A,) BTV, BTV) > a2 ||V||%.
Thus, we have proved the following theorem.

Theorem 2.1 Let the linear operator A be invertible and let (2.3) hold. Then the
reduced problem (1.2), or equivalently (1.1), is solvable.

Next, we turn to the analysis of the exact Uzawa algorithm applied to the solution
of (1.2). The preconditioned variant of the exact Uzawa algorithm (cf. [1, 4]) is defined
as follows.
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Algorithm 2.1 (Preconditioned exact Uzawa) For X, € H, and Y, € Hy given,
the sequence {(X;,Y;)} is defined, fori=1,2,..., by

Xy = X;+ A7 (F - (AX; + B"Y)),

Yipn = Yi+7Q5 (BXi — G).

Here the preconditioner Qp : Hy — Hy is a symmetric and positive definite linear
operator satisfying

(2.8) (1 —)(QW, W) < (B(A,) 'BT"W,W)< (QeW, W) forall W € H,,

for some « in the interval [0, 1), and 7 is a positive parameter. Notice that this condition
implies appropriate scaling of Qg. In many particular applications effective precondi-
tioners that satisfy (2.8) with v bounded away from one are known.

Let

(2.9a) EY =X - X;
and
(2.9b) EY =Y Y

be the iteration errors generated by the above method. It is an easy observation that
E',=(1-7Q3'BA'BNE.

Therefore, the convergence of Algorithm 2.1 is governed by the properties of the operator
I - 7Q3'BA'B” summarized in the following.

Theorem 2.2 Let A be invertible with positive definite symmetric part Ag which satis-
fies (2.2). Let also (2.3) hold. In addition, let Qp be a symmetric and positive definite

1 —
operator satisfying (2.8). If T is a positive parameter with T < —27, then
«
_ _ l—x
(2.10) [(1-7Q;' BA™'BT)U|, < (1 - 7T> U3, foral Ue H,

Remark 2.1 If A = AT 7 can be set to one and (2.8) implies (cf. [4]) that
IT-Q3'BA™'B")Ullg, <7’lUlG,-

Hence, the result of Theorem 2.2 is not optimal in the limit when o — 1.
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Proof (of Theorem 2.2): The proof is based on the result of Lemma 2.1.

L =BA'B”. Then, by (2.8) and Lemma 2.1,
o) 1=V, < (A) 'BTV.BTY)
< a’(LV,V).
In addition,using (2.4),
(A Mo, w) = ((A,)Y2A 1o, (A,) VW)
(2.12) < (A o, )2 ((A) tw, w)Y/?
< ((Ay) 10, 0)V2((A,) L, )2,

Taking v = BTV and w = BTW above gives

(2.13) (LV,W) < [[V@s W llqs-
Next,
(2.14) I(T-7Qp'L)Vllg, = IVIg, — 27(LV.V) +7%(LV, Qp' LV).

By (2.12) and (2.11), the last term in the right hand side of (2.14) is estimated by

(LV,Qp'LV) < [V]ls1Qs"LV llas
= [Vllas (£V,Q5'LV)2.
Using (2.11) and (2.15) in (2.14) yields

(2.15)

_ 27(1 — v
10— Q5 L)V, < (1 _2r=9) +72) VI,

a2

From this, the result of the theorem follows easily. O

Let

Remark 2.2 The inequalities (2.11) and (2.13) are the basis for developing the inexact

algorithms in the subsequent sections.

3 Analysis of the linear one-step inexact method

In this section we define and analyze a linear one-step inexact Uzawa algorithm applied
to (1.1). This section contains the main result of the paper. We show that, under
the minimal assumptions needed to guarantee solvability (cf. Section 2), appropriately
scaled linear preconditioners (cf. (2.8) and (3.1) below) result in an efficient and simple

method for solving (1.1).

To this end, the exact inverse of A is replaced with an approximation of A~! in order
to improve the efficiency of Algorithm 2.1. Let Ay : H; — H; be a linear, symmetric

and positive definite operator that satisfies
(3.1) (AgV, V) < (AV, V) < B(AV, V) forall V e Hy,

for some positive 3 > 1.
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Remark 3.1 The inequalities (2.8) and (3.1) respectively imply scaling of Qp and
A,. In practice, the proper scaling these operators can be achieved using even crude
estimates for the largest eigenvalues of Ag'A, and Qz'B(A,) BT, where A and Qg
are unscaled preconditioners. Usually, a few iterations of the power method are enough
for obtaining such estimates. Alternatively, preconditioners based on multigrid methods
are often scaled appropriately by construction.

The linear inexact Uzawa algorithm is then defined as follows.

Algorithm 3.1 (Linear one-step inexact Uzawa) For X, € Hy and Yy € H, given,
the sequence {(X;,Y;)} is defined, fori=1,2,..., by

Xip = Xi+0A7" (F - (AX; + B'Y))),

Vi = Yi+7Q5 (BX; — G).
Here 0 and 7 are positive iteration parameters.

We will assume that § < 1/3. It then follows from (3.1) that Ay — dA; is positive
definite. The following theorem is the main result of this paper.

Theorem 3.1 Let A have a positive definite symmetric part Ay satisfying (2.2). Let
also Qp and Ag be symmetric and positive definite operators satisfying (2.8) and (3.1).
Then the linear inexact Uzawa algorithm converges if § < (3a?3?)™! and 7 < (403)~!
Moreover, if (X,Y) is the solution of (1.1) and (X;,Y;) is the approximation defined
by Algorithm 3.1, then the iteration errors EX and E) defined in (2.9) satisfy

(3:2) SHENIE 47BN G, < 2 {0 IESIE + 7 I 1, }

for any i > 1. Here || - ||?> = ((Ap — 0Ay)-,+) and

p:

5/2 = 67(1—7) +4/[6/2 = 67(1 — 7) +4(1 - §/2)
5 .

Remark 3.2 Convergence of the linear inexact Uzawa algorithm follows from (3.2).
Indeed, a simple algebraic manipulation using the fact that 7(1 — ) is less than one
gives

5/2 = 67(1 =)+ /[6/2 = 67(1 — )2 + 4(1 — §/2) 0

5 1-5@=9).

The quantity on the right hand side above is clearly less than one.

P

In order to analyze Algorithm 3.1 we reformulate it in terms of the iteration errors
defined in (2.9). Tt is easy to see that F;X and E) satisfy the following equations.

EX, = BX +6A,' (AEX - B"E))),
E), = (1-07Q4'BA;'B") EY + 7Q,'B(I - 6A,'A)E}".



INEXACT UZAWA ALGORITHMS II 8

For convenience, these equations can be written in matrix form as

s (E;il) B ( (I-0A;'A) _5A,'B” ) (EX)
' B, rQ5'B(I - §A;A) (I—70Q5'BA;'BT)) \EY )

7

Straightforward manipulations of (3.3) give
(34) NEi-i—l = ME“

where

(6 (A —SAT) 0
N— ( 00 7__1QB> )

and
(5_1(A0 — 6AT)A51(A0 —JA) —(Ap— 6AT)A01BT>
M = )
BAal(AU —JA) (T_IQB — 6BA51BT)

It is clear now that we can study the convergence of Algorithm 3.1 by investigating
the properties of the linear operators M and N. We shall reduce this problem to
estimation of the spectral radius of related symmetric operators.

Let NV, be the symmetric part of A/ and M/ be the symmetric matrix defined by

My =IM,

j=<‘01 2)

Our next lemma reduces the proof of the theorem to the estimation of the eigenvalues
of the generalized eigenvalue problem

where

(3.5) Mt = My

Since ¢ is less than 1/8, N is symmetric and positive definite and the above problem
is well defined. Obviously, (3.5) involves symmetric operators only so the eigenvalues A
are real.

Lemma 3.1 The iteration error E; satisfies
(NEi1, Eiy1) < p(NE;, E;),

where p = max; ||, and \; are the eigenvalues of (3.5).
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Proof: Let {(\;,¢;)} be the eigenpairs for (3.5). Since N is positive definite, {1;}
spans the space Hy x Hy. Without loss of generality we may assume that the eigenvectors
are normalized so that

(NSQ/)MQ/)]) = 61]7
where 6;; denotes the Kronecker Delta Function. Then any arbitrary vectors v and w
in H, x H, can be represented as v = Zviz/)i and w = Zwﬂ/}i. Thus,

)

(Miv, w) = vwj (M, ;) =Y viw;
i i

. “o(z) (5)”

= pllv]

Ns W| Ns'

Obviously, J? is the identity operator and hence M = JM;. Therefore, using (3.4)
we get

(NsEit1, Eipr) = (ME;, Eiy) = (MLE;, TEi41)
< PIE | T Eixillv, = Pl Eil| | EBisr ||, -

The result of the lemma immediately follows. O
Our proof of the theorem requires another lemma. We need to provide some control
on the convergence of the related linear iterative process

(3.7) Uis1 = U; + 0A (W — AT)

to the solution U of
AU =W.

Lemma 3.2 Let Ay satisfy (3.1) and § be a positive number with 6 < 1/3. Then

(3.8) II(T — <5A(]1A)V||2AO < 5((A0 — ANV, V) forall V € Hy,
where 2 4252

- o

60=1—-0+ 195"

Remark 3.3 Clearly, 0 is less than one if

212
afo
108
or
| 1
3.9 f< <
(3.9 a?F+p B
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Note in addition, that
((Ag = 6A)V, V) < (1 = 0)[|V][A,-

Thus, the lemma proves convergence of (3.7) provided that (3.9) holds.

Proof (of Lemma 3.2): By (3.1),
(1—-008)(AV,V) < ((Ap —0A,)V,V) forall V e H,.
Hence, by (2.2) and (3.1),
(AV.W) < a(AV, V)2 (AW, W) /2
(3.10) af

<

S W(AOV, V)V2((Ag — GA)W, W)2,

On the other hand,

(X 6AF AWV, = IVI[A, — 26(AV, V) 4+ 6*(A AV, AV)

(3.11) = ((Ag — 0A,)V, V) —6(AV, V) + 6*(A, ' AV, AV).

In view of (3.1), we have
(3.12) (AV,V) = (AgV, V) = ((Ag = 6A,)V, V).

Also, (3.10) implies

(A'AV,AV) < (l%fﬁ)W(AolAV, AV)2((Ag — SA,)V, V)2,
Thus,
212
(3.13) (A-IAV, AV) < 2P (A, — A,V V).

1-4p
Using (3.12) and (3.13) in (3.11) yields (3.8). O

Proof (of Theorem 3.1): To prove the theorem, we shall bound the positive and
negative eigenvalues of (3.5) separately. We begin with the negative eigenvalues. Let
(x, &) be an eigenvector (in H; x Hy) with eigenvalue A < 0. Then multiplying the first
block equation by 6 'Ag(Ay — dAT)™! gives

A TAY(Ag — AT H(Ay — 6A)x = =6 H(Ay — 0A)x + BT¢
(3.14)
AT 'QpE = BA,(Ag — 6A)x + (7 'Qp — 6BA, 'BT)¢.
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Applying 6BA, " to the first equation and adding it to the second gives
(1 =M1 'Qp& = AB(A; — 6AT) 1(Ay — 5A,)x.
Substituting this back into the first equation and taking an inner product with

)
X(AU —6AT)Y (A — 0A,)Y

yields

(Ao~ 5A)Y, ) + T IB(Ag — GAT) (Ao — 5ALN [
(3.15)

= [|(Ao — 6AT) " (Ag — 0A X4,

For convenience, the last equation can be abbreviated as

T1 + T2 - T3.
For any ¢ € Hy,
| _ . (s,B"¢)?* ((Ay)'0, (A,)"'/*B"()?
QBB =P Q) TR (@ut0
(3.16)
(As0,0)(B(A,) 'B7(, ()
< CS?ZHOI; (QuC.0) < (A9, 9).

For the last inequality above we used (2.8). Therefore,

0T

T, — (Ag— 5AT) 1 (Ag — 0A,)X][4, -

Using this in (3.15) gives

0Tl 1
1-— Ts < ——((Ag — 0A) X, X).
( 1_A) < (80 - 54X
By Lemma 3.2, for any ¢ € H;, we have

(3.17) ((Ap— 6AT)A; (Ag — 0A)¢, 6) < 3((Ag — A,)0, ).

This in turn implies that

(3.18) (Ao = 0A,)'0,0) < 5((Ao —0A) T Ag(Ag — JAT) 9, 9).
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Hence,

T3 > =((Ag — 0AL)X, X)-

Combining and using the fact that A < 0 gives

Q')I| —

30— oA 2 3 (1- 20 (A= 54000

S 1—=9070
- 5

(3.19)

((Ao = 6A4)x, Xx)-

Now, if x = 0 then the first equation in (3.14) implies that BT¢ = 0. Then, from the
second equation in (3.14), we get that & = 0. Hence, we can assume that xy # 0 in
(3.19). Thus,

3.20 -2 < .
(3:20) —1—-078
Let ¢ < 252 and 7 < @ Applying straightforward manipulations, we get
- a?(3%5? 1/3 )

21 =1- <1-61(1- =1-=
(3.21a) J 5+1—6ﬂ_ 5( =13 5
and

1 1

(3.21b)

< .
1—o0rp — 1-46/4

Using (3.21) in (3.20) gives

1—6/2 5
. A — L <1 - =
(3.22) A—1—5/4—1 1

which provides a bound for the negative part of the spectrum.
Next, we bound the positive eigenvalues of (3.5). Let us factor M, as

M, = D" M,D,

where

0 I

—5~ 91 91/2 (AU)—I/ZBT
MZ - 9
0'2B(Ay)"Y? 771Qp — dBA,'B”

(9—1/2(A0)—1/2(1AL0 —6A) 0)
D= :



INEXACT UZAWA ALGORITHMS II 13

and § = 1 — §/2. By definition, the largest eigenvalue of (3.5) is

A= su 7(M1W’W) = su (M2Dw, Dw)
- WGH;}”H? Now,w) weH;}”% (Now, w)
w#0 w#0

?) €H1XH2,

(323) <M2 (f) , (f)) <[5l + rUCIR).

Let L = B(A)~"/2. Then

M —0~101 /21"
27\ 02L 7'Qp —o6LLT )"

We now show that for any vector (

To prove (3.23), we need to estimate the largest eigenvalue of
(3.24a) —06 x + 02LTE = Aoty
(3.24b) 0’ Lx + (17'Qp — SLLT)¢ = A\ 'Q5¢,

where (?) is an eigenvector. Solving for y in (3.24a) we get

X =6(A+0)"0°L¢.
Substituting this in (3.24b) yields
(1 =N\ +0)QpE = dTALLYE.
Taking an inner product with £ in the above equation gives
(3.25) (1 =N +0)(QsE,€) = oTAL"E, LTE).

If £ = 0, then (3.24a) implies that either y = 0 or A = —f < 0. Hence, we can assume
that £ # 0. In addition, by (3.1) and (2.8),

(LT¢ LTE) = (A, 'BT¢, BT¢) > ((A,) 'BY¢, BYY)
> (1 =7)(QsE,9).
Using this in (3.25) gives
(1=XN(A+0)>0TA1—7)

or equivalently
M- A1-0-r(1—7v))—0<0.
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From here we obtain that

v 1—0—0r(1—7) +/[(1—0) —d7(1 — )2 + 40

- 2
(3.26)

02— 0r(1 =)+ \J[6/2 = 7 (1 — )2 +4(1 - 6/2)

= 5 _
Next, we observe that for

-2 ()
=D
(C 3

the following estimate holds:
(3.:27) 0 1AT* (A — SA)XI* < (Ao — 6A)X, X)-

Equivalently

28 ool e, < (40 (3 (1)) =0 el

Indeed, (3.27) is a direct consequence of (3.17) and (3.21a). It is clear now that (3.23),
(3.28), and (3.26) provide the bound for the positive part of the spectrum.
Finally, elementary inequalities imply that

1_§< 5/2—57(1—7)—1-\/[5/2—57(1—7)]2+4(1_5/2)
4 — 2 )

which concludes the proof of the theorem. O

4 Analysis of the multistep inexact algorithm

In this section we define and analyze an inexact Uzawa algorithm with A~! replaced
with sufficiently accurate approximation. Such an algorithm is essentially different
from the linear one-step method developed in the previous section for two main rea-
sons. First, achieving certain accuracy of the approximation to A~! typically requires
more computational work than the evaluation of the action of a linear one-step precon-
ditioner. Second, depending on the way the accurate approximate inverse is computed,
the resulting inexact Uzawa algorithm may not be linear. In view of this, we shall
approach the analysis of this method differently.

The approximate inverse is described as a map ¥ : H; — H;, not necessarily linear.
In this section we shall assume that for any ¢ € Hy, U(¢) is “close” to the solution & of

(4.1) A¢ = 6.
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More precisely, we assume that

(4.2) |U(p) — A '¢||la, < 6||A plla, forall ¢e Hy,

for some positive 0 with § < 1.

Notice that for any ¢ € (0, 1), (4.2) can be satisfied by taking sufficiently many steps
in some iterative method for solving (4.1) which reduces the error in a norm equivalent
to || - ||a,. For example, we already showed in the previous section that for appropriate
choice of the corresponding iteration parameter, the linear iteration (3.7) converges (cf.
Remark 3.3) to the solution of the linear system (4.1). Hence, an estimate of the type of
(4.2) can be established easily for any § < 1, provided that sufficiently many iterations
with (3.7) are performed.

In addition, in the case when A corresponds to a second order differential oper-
ator, there are preconditioners B based on multigrid (cf. [5], [21], [12]) or domain
decomposition [7] which satisfy

(4.3) IT—BA)x|la, <6llxlla, forall xe H,

for some § < 1. Some of these preconditioners are even nonsymmetric. Typically, these
methods require sufficiently fine coarse grid in order to work for a given small 5. Taking
X = A '¢ in (4.3) trivially implies (4.2), provided that § < 4.

Another example for ¥ is a generalized Lanczos procedure [15] applied to (4.1) which
converges to the solution £. In this case the resulting Uzawa algorithm will be nonlinear.
Among the variety of conjugate gradient-like methods for solving (4.1) proposed in the
literature, there are some for which convergence can be shown rigorously. In particular,
a convergence of the following type is known to hold (cf. [19]) for the generalized
minimal residual algorithm (GMRES):

||§n - A71¢|

where &, = U(¢) is the approximation to the solution computed at the n-th iteration
and 6, — 0 as n increases. Unlike the case when A = AT, a rate of convergence for
GMRES is generally not available even though this algorithm reaches the threshold
0n < 0 eventually. In practice, GMRES may be a more efficient method for computing
an approximation satisfying (4.2) than the linear iteration (3.7).

The variant of the inexact Uzawa algorithm we investigate in this section is defined
as follows.

A, S 5n||A71¢|

A, forall ¢ e Hy,

Algorithm 4.1 (Multistep inexact Uzawa) For X, € H; and Yy € Hy given, the
sequence {(X;,Y;)} is defined, fori=1,2,..., by

X =X, + ¥ (F - (AX; +B"Y})),
Yipn = Yi+7Q5 (BXip — G).
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Clearly, Algorithm 4.1 reduces to Algorithm 2.1 if U(¢) = A~'¢ for all ¢ € H;.

The main result of this section is a bound for the rate of convergence of the multistep
algorithm in terms of the factors a, v, and d introduced in (2.2), (2.8), and (4.2)
respectively. The theorem below is a sufficient condition on § for convergence of the
algorithm.

Theorem 4.1 Let A have a positive definite symmetric part Ay satisfying (2.2) and
let Qp be symmetric and positive definite operator satisfying (2.8). Assume that (4.2)
holds and that the iteration parameter T is chosen so that

11—y
T < 7
Set s
1—
0= (1 -7 27> .
a
Then the multistep inexact Uzawa algorithm converges if
1—0
4.4 0 ———.
(4.4) —1+27—-06

Moreover, if (X,Y) is the solution of (1.1) and (X;,Y;) is the approximation defined
by Algorithm 4.1, then the iteration errors EX and E) defined in (2.9) satisfy

49)  SIER I, IEL, < 2 (I R+ I T,
and

46) BRI, < 7000 20 (B, 1B R, ).
where

@ . (L+7)6 + 0+ /(L +7)5 +0)2 + 46(r — 0) -

2

Proof: We start by deriving norm inequalities involving the errors EX and E}. Simi-
larly to the approach in the previous section, we can write

48 EY, = B -V (AEX +B'E)),
EY., = E +7Q3'BEX .

The first equation above can be rewritten

(4.9) EY, =(A"'-0) (AE} +B"E") - A'B"E}.
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It follows from the triangle inequality, (4.2), (2.4), and (2.8) that

1ES la, < O(IET (o, + [ATBYE] [|a,) + [[AT'BYE] |la,
(4.10) = 0| E] |, + (L+0) B E | a-),
<O a, + L+ DE llqu-
Using (4.9) in the second equation of (4.8) gives
EY, =(1-7Q3'BA'BNE) +rQ;'B(A!' - U)(AE + B'E}").

Applying the || - ||q, norm to both sides of the above equation and using the triangle
inequality yields

1B llqs < [[T- Q5 BATBY)E} |q,

4.11
(4.1) 7|5 B(A~! — W)(AES + B"EY)lla,.

1—
Since 7 < —27, by (2.10) we have
@

B B 1_,)/ 1/2
(112) 1= 7Qa'BA BN op < (1= 7" ) 1B las =01 llas-

Because of (3.16), (4.2), the triangle inequality, and (2.8), the second term in the
right-hand side of (4.11) is bounded as follows:

(413)  [1Qp'B(A™ — U)(AE" + BTE])llqs < 0I5 |a. + 15 [lQa)-

Using (4.12) and (4.13) in (4.11) yields
(4.14) 1E @y < OIE lqs + 0T (1E [1a, + 1E] llqs)-

Combining (4.10) and (4.14) gives

1B

1B

A SONET |a, + (1 +0) B Nlas
A, SOTNE o, + (0 +07) 15} llqa-

()= ()

for vectors of nonnegative numbers xy, x9, Y1,y if 1 < x5 and y; < yo. Hence, from
(4.15) we obtain

(416 (||E;LIAS)<(6 1+6) (||E{‘|As>
1EY les) — \oT 0+67) \||E) |lq,

(4.15)

Let us adopt the notation
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Repeated application of (4.16) gives
E; _ EX
o (n +1||As> e (n 2/||As)
155 s 1Eo llas
where M is given by
0 1+96
M= (67’ 0+ 57’) ’

We consider two dimensional Euclidean space with the inner product

T T 6T:Ua:+
v ) \ys 1—1—(512 Y1Yy2.

A trivial computation shows that M is symmetric with respect to the inner product.
It follows from (4.17) that

EX EX
ST NENI, + 1B, = (” ) (“ )J
1B llas)  \IEY o

; ||E0 A ; ||E0 A
i1 s i1 s
< M (EY ’M EY
I 1E5 llqs 155 llQs
; 0T
< 0 (LTI I+ 1

149
where p is the norm of the matrix M with respect to the |-, -|-inner product. Since
M is symmetric in this inner product, its norm is bounded by its spectral radius. The
eigenvalues of M are the roots of

M —((1+7)6+0)A—6(r—0)=0.

It is elementary to see that the spectral radius of M is equal to its positive eigenvalue
which is given by (4.7).

Examining the expression for p given by (4.7) we see that the square root expression
is nonnegative. Moreover, for any fixed positive 7 and 6 in the interval [0, 1], p is a
function of § only. It is straightforward to see that p < 1 if

1—-6
0 ———.
—14+2r-106

Finally, we prove (4.6). Multiplying both sides of the first inequality in (4.15) by
/2 and using the fact that 7 < 1 we obtain

1/2||E <71

A+ T2+ 8) B lqs
+(1+0)[1E [las-

<rT
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We now apply the arithmetic-geometric mean inequality to the last inequality and get
that for any positive 7,

TIER A, < A+ n)rd [ EX (A, + L +07) 1+ 0?1 E7 G,

Inequality (4.6) follows by taking n = 14 1/§ and applying (4.5). This completes the
proof of the theorem. O
We conclude this section with the following remarks.

Remark 4.1 The result of Theorem 4.1 is somewhat weaker than the result obtained
in Section 3 for the linear case due to the threshold condition (4.4) on §. In principle,
it is possible to take sufficiently many iterations n so that (4.4) holds for any fixed 7,
«, and 7. In applications involving partial differential equations, v or @ may depend
on the discretization parameter h. If, however, v and « can be bounded independently
of h with v also bounded away from one, then # can be bounded away from one also.
Hence, a fixed number (independent of h) of iterations of (3.7) are sufficient to guarantee
convergence of Algorithm 4.1.

Remark 4.2 The result of Theorem 4.1 is similar to the result of Theorem 4.1 in [4],
which considers the case of a multistep inexact Uzawa algorithm applied to a symmetric
indefinite problem. The case of a nonsymmetric A however is inherently more difficult.
Thus, in practice it is always more expensive computationally to satisfy (4.2) than its
symmetric counterpart in [4] in order to guarantee convergence of the corresponding
algorithm.

5 Application to Navier-Stokes problems

Here we consider an application of the algorithms developed in the previous sections to
solving indefinite systems of linear equations arising from finite element approximations
of the steady-state Navier-Stokes equations.

The Navier-Stokes equations provide the flow model of Newtonian fluids. This is the
simplest and arguably the most useful model of viscous, incompressible fluid behavior.
If the forces driving the flow are time independent, the flow is stationary. We consider
the following model problem for the steady-state Navier-Stokes equations:

—vAu+ (u-V)ju—-Vp=f inQ,
V-u=0 in
5.1¢) u=0 on 09,

5.1d) /Qp(x) dx = 0.

Here ) is a the unit square in R?, u is a vector valued function representing the fluid
velocity, and v is the kinematic viscosity of the flow. The fluid pressure p is a scalar
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function. The pressure of a Newtonian fluid is determined only up to an additive
constant so for uniqueness, we require (5.1d). Generalizations to more complex domains
and nonhomogenious boundary conditions are possible. For example, we shall consider
a problem with nonzero Dirichet boundary conditions in the next section.

Let II be the set of functions in L?(2) with zero mean value on Q and H'(Q) denote
the Sobolev space of order one on Q ([8, 16]). The space H}(Q) consists of those
functions in © whose traces vanish on 9. Also, V = (H}(Q))? will denote the product
space consisting of vector valued functions with each vector component in H; ().

In order to derive the weak formulation of (5.1) we multiply the first two equations
of (5.1) by functions in V and II respectively and integrate over €2 to get

(5.2a) vD(u,v) +b(u,u,v) + (p,V-v)=(f,v), forall veV,
(5.2b) (V-u,q)=0 , forall ¢ell

Here (-,-) is the L*(Q2) inner product and D(-,-) denotes the Dirichlet form for vector
functions on € defined by

2
D(v,w) = ;/QVW -Vw; dz.

The trilinear form b(-, -, -) for vector functions on € is given by

2
b(u,v,w) = Z / uZ(Dlv])WJ da:,
ij=17%
where D; = %.

The existence of a solution to (5.2) has been shown (cf. [20], [11]). It is well
known that the Navier-Stokes equations have more that one solution unless the data
(the kinematic viscosity and the external forces) satisfy very stringent requirements (cf.
[11], [20]). On the other hand, it has been shown that in many practical cases these
solutions are mostly isolated, i.e. there exists a neighborhood of v and f in which each
solution is unique. These solutions depend continuously on v. Therefore, as v varies
in a given interval, each solution describes an isolated branch. This means that the
bifurcation of solutions is rare and branches of solutions can be computed. We refer
the reader to [11] and [20] for additional discussion of the subject.

We next define our finite element approximation subspaces. The discussion here is
very closely related to the examples given in [2] and [3] where additional comments and
other applications can be found. We partition €2 into 2n x 2n square shaped elements,
where n is a positive integer and define h = 1/2n. Let z; = ih and y; = jh for
1,7 = 1,...,2n. Each of the square elements is further partitioned into two triangles
by connecting the lower left corner to the upper right corner. Let S, be the space
of functions that vanish on 02 and are continuous and piecewise linear with respect
to the triangulation just defined. We set V,, = S, x S, C V. The definition of the
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Figure 1: The square mesh used for ﬁg; the support
(shaded) and values for a typical ¢;;

approximation to II is motivated by the observation [13] that the space II), of functions
that are piecewise constant with respect to the square elements and have zero mean
value on €2 together with V, as defined above form an unstable pair of approximation
spaces. This means that

(v : ¢7 p) 1
5.3 <c¢y sup ———, forall p € 11},
( ) ||p|| — OVE\I})}L D(V, V)1/2 p h
fails to hold with constant ¢y independent of the discretization parameter h. Here
(-,-) denotes the inner product in L*(Q2) and || - || is the corresponding norm. To get
a divergence stable pair, we consider a smaller space defined as follows. Let ny; for
k,l = 1,...,2n be the function that is 1 on the square element [z_1,2¢]X[y1-1, ]
and vanishes elsewhere. Define ¢;; € IIj, for 7,5 = 1,...,n by
Gij = Mai—1,2j—1 — M2i2j—1 — N2i—1,2j + N2i2j

(see Figure 1). The space II, is then defined by
I, = {Weﬁh (W, i) =0fori,j=1,... n}

The pair V, x IT, now satisfies (5.3) with a constant ¢, independent of & [13]. Moreover,
the exclusion of the functions ¢; ; does not change the order of approximation for the
space since Il still contains the piecewise constant functions of size 2h.

Following Temam [20], we introduce a modification b(-,-,-) of the trilinear form
b(-,,-), given by

b v, w) =3 5 [ {wlDev)w; - vs(Dwy)]} d



INEXACT UZAWA ALGORITHMS II 22

The approximation to the solution of (5.2) is defined by the pair (X,Y) € V;, x II,
satisfying

(5.4a) vD(X, V) +b(X,X,V)+ (Y, V-V)=(f, V), forall VeV,
(5.4D) (V-X,W)=0, for all W e II,.

Note that the use ofg(-, -, -) above is justified by the observation that 5(u, ) =b(u,-,-)
for functions u which are divergence free. The form of l~)(, -, ») guarantees the existence
of a solution to (5.4) (cf. [20]). The uniqueness is again subject to imposing conditions
on the data v and f.

To solve (5.4) we apply a Picard iteration of the following type (cf. [14]). Given an
initial approximation X°, we compute (X*,Y?), for i = 1, 2, ..., as the solution of the
linear system

(5.5a) vD(X,V)+ XL X V)+ (Y, V-V)=(f,V), forall VeV,
(5.5b) (V- X" W) =0, for all W € II,,.

The convergence analysis of this algorithm is beyond the scope of the present paper.
It is shown in [14] that the algorithm converges under the assumption that

2> allf] 1,

where ¢, and ¢, are the coercivity and boundedness constants of the trilinear form
b(,+,+). Such an assumption is enough to guarantee a unique solution of (5.2).

The system (5.5) can be reformulated in the notation of the earlier sections. Set
H, =V, and Hy, =1I,. Let

B:H, — Hs, (BU,W) :(VU,W), for all UeH,W e H,,
B":Hy— H,, (B"W,V)=(W,V-V), forall V€ H,, W € H,.

During each iterative step, X’~! is fixed so that we can define
A:H — Hy, (AU, V)=vDU,V)+bX" U, V), forall UV € H,.

It follows that the solution (X*, Y?) of (5.5) satisfies (1.1) with F' equal to the L?()
projection of f into H; and G = 0. Notice also that

b(u,v,w) = —b(u,w,v).
Therefore,

(5.6) A, H — Hy, (AU, V)=vDU,V), forall U,V € H,.

It is possible to show that (2.2) holds for A and A, with a constant « proportional
to v=! (cf. [20] and [11]). Moreover, it follows from (5.6) that (2.3) holds for A,, B,
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and BT as above with constant ¢, independent of the mesh size h. This implies that
(2.8) is satisfied with Qg = v~'T and 7 bounded away from one independently of A.

We still need to provide preconditioners for A;. However, A consists of two copies
of the operator which results from a standard finite element discretization of Dirichlet’s
problem. There has been an intensive effort focused on the development and analysis
of preconditioners for such problems. For the examples in Section 6, we will use a
preconditioning operator which results from a V-cycle variational multigrid algorithm.
Such a preconditioner can be scaled so that (3.1) holds with  independent of the mesh
parameter h.

Remark 5.1 It appears from the definition of the above operators that one has to
invert Gram matrices in order to evaluate the action of A, BT and B on vectors from
the corresponding spaces. In practice, the H; Gram matrix inversion is avoided by
suitable definition of the preconditioner Q4. For the purpose of computation, the
evaluation of QW for W € H, is defined as a process which acts on the inner product
data (W, ;) where {1;} is the basis for H;. Moreover, from the definition of the Uzawa-
like algorithms in the previous sections, it is clear that every occurrence of A or B” is
followed by an evaluation of Q3'. Thus the inversion of the Gram matrix is avoided
since the data for the computation of Q ", (BYQ, ;) and (AV,)), for any Q € H,
and V' € Hy, can be computed by applying simple sparse matrices. In the case of this
special choice of Hj, it is possible to compute the operator B in an economical way
(see Remark 5 of [3]) and we can take Qp to be v~ 'I. For more general spaces Hy, the
inversion of Gram matrices can be avoided by introducing a preconditioner Qg whose
inverse is implemented acting on inner product data as in the H; case above.

Remark 5.2 By rescaling p, one can rewrite (5.1a) in the form
—Au+ Re(u-V)u — Vp = Ref,

where Re = v~! is the Reynolds number of the flow. This results in a different scaling of
the discrete problem (5.4) which is better suited for implementation on finite precision
machines. We use this scaling in our examples in the next section.

Remark 5.3 An alternative linearization of (5.4) can be defined by replacing b(X, X, V')
with b(X*"!, X1, V) which provides a different Picard iteration. We will call this an
explicit Picard iteration because the nonlinear term is handled in an explicit fashion.
This leads to a symmetric saddle point problem at each iteration. The inexact Uzawa
methods analyzed in [4] can be used here. Even though the symmetric linear systems
are easier to solve, this linearization is a less robust method for computing branches
of solutions to (5.4) than the implicit linearization defined above, because the explicit
Picard iteration breaks down for values of v where the implicit method converges. We
shall provide a comparison of these two methods in the next section.
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6 Numerical examples

In this section we present the results from numerical experiments that illustrate the
theory developed in the earlier sections. Our goals here are first to demonstrate the
efficiency and the robustness of the new algorithms on the basis of a comparison between
the implicit and the explicit Picard iteration applied to a Navier-Stokes problem with
known analytic solution. Second, we show results from computations of a classical flow
problem. The finite element discretization defined in the previous section as well as the
pressure rescaling according to Remark 5.2 are used in both cases.

Our first experiment compares the performance of the implicit and the explicit
methods applied to the solution of (5.4) when the velocity X is given by

(6.1) x_ (x(l —2)y(1 - y)> |

and the pressure Y is given by
(6.2) Y=2-

Obviously, V - X # 0 so that the right-hand side of (5.4b) has to be adjusted appropri-
ately.

The implicit and explicit algorithms were tested for a set of different Reynolds
numbers (Re = 1,10,100,1000), and different mesh discretization parameters (h =
1/8,1/16, 1/32). Clearly, the exact solution defined above is very smooth in 2, without
any singularities. The experiments described below show the asymptotic behavior of
the error of the approximate solution computed by the two algorithms for the selected
set of Reynolds numbers.

Four conditions were common in all experiments. First, at each Picard iteration,
the corresponding linear problem was solved exactly (i.e. the L? norm of the normal-
ized residual was reduced until less than 107'%). Second, the nonlinear iteration was
considered to have converged when the L? norm of the difference U; — U;_; was less
than 107% Here U consists of both velocity and pressure components. Third, the Pi-
card iteration was started with zero initial guess. Fourth, we defined Q' to be the
operator which corresponds to one V-cycle sweep of variational multigrid with point
Gauss-Seidel smoothing. The order of points in the Gauss-Seidel iteration was reversed
in pre— and post—smoothing. The preconditioner Qp was provided by an appropriate
scale of the identity operator in the pressure space (cf. Remark 5.1).

In all experiments 7 = 0.1 was used when the nonsymmetric saddle point problem
(5.4) was solved. This comes from the fact that #in (3.1) is independent of Re, because
of the properties of the trilinear form 5(, -,»). The parameter ¢ in this case was set to § =
1/Re, where Re is the corresponding Reynolds number. Alternatively, § and 7 were set
to one for the case of symmetric saddle point problem. These choices for § provided the
appropriate scaling of Q 4 according to the requirements of the corresponding algorithm
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(cf. (3.1) and [4]). In both cases this resulted in a preconditioner independent of the
mesh parameter h.
The numerical results from these experiments are shown in Tables 1—4.

Table 1: Errors and nonlinear iteration numbers for Re = 1 for
the implicit and explicit methods.

h Error (p) | Error (u;) | Error (uz) | Implicit | Explicit
1/8 1.02e-2 7.87e-4 8.86e-3 4 4
1/16 | 2.51e-3 1.93e-4 5.41e-3 4 )
1/32| 6.17e-4 4.81e-5 2.99¢-3 4 5

Table 2: Errors and nonlinear iteration numbers for Re = 10 for
the implicit and explicit methods.

h Error (p) | Error (u;) | Error (uz) | Implicit | Explicit
1/8 1.06e-2 7.87e-4 8.86e-3 6 6
1/16 | 2.60e-3 1.93e-4 5.41e-3 6 6
1/32 | 6.43e-4 4.81le-5 2.99e-3 6 6

Table 3: Errors and nonlinear iteration numbers for Re = 100 for
the implicit and explicit methods.

h Error (p) | Error (uy) | Error (uz) | Implicit | Explicit
1/8 3.14e-2 7.86e-4 8.85¢-3 10 30
1/16 | 7.78e-3 1.92e-4 5.41e-3 11 88*
1/32 | 1.94e-3 4.79e-5 2.99e-3 11 ok

* — the algorithm converged to a different solution with correspond-
ing errors (p, uy, uz) 7.81e-3, 2.05¢-4, 5.37¢-3.

** _ the algorithm could not converge to the solution.

We note that the difference in the velocity error obtained for a given mesh parameter
h in Tables 1-4 above is due to the nonsymmetric pressure (6.2), even though the
velocity (6.1) is symmetric with respect to the spatial variables x and y in Q. The
computational results from the first experiment are in a good agreement with the theory
developed in the paper. They show that the implicit method is a robust algorithm for
solving Navier-Stokes equations in a wide range of Reynolds numbers. The number
of inner iterations was independent of the mesh parameter h and exhibited a mild
dependence on v for 1 < »~!' < 100. The actual number of iterations needed to
solve the corresponding linear system exactly depends on the values of the iteration
parameters 7 and 0. In this regard, it appears that setting § = 1/Re contradicts
Theorem 3.1, in view of the definition of A, in (5.6). In practice, for a given Re and
h, one can select § > 1/Re? such that the algorithm still remains stable yet shows an
improved performance of the linear solves. The key here is not to select a ¢ which is
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for the implicit and explicit methods.

h Error (p) | Error (u;) | Error (uz) | Implicit | Explicit
1/8%** 0.30 8.13e-4 8.82e-3 33 ook
1/16%%* | 7.74e-2 3.57e-4 5.40e-3 38 ook
1/32%%% | 1.85e-2 5.45e-5 2.99¢-3 39 ook
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**% _ 50,000 inner iterations were taken for each Picard iteration

in the implicit method because the inexact Uzawa algorithm could
not reduce the residual below 1.0e-15 after 50,000 iterations when
solving the nonsymmetric saddle point problem. The norm of the
residual was on the order of 1.0e-11 after the first few nonlinear
iterations and less than 5.0e-15 towards the last Picard iterations.

**%% _ the algorithm broke down.

“too far away” from the safe zone. Indeed, setting 6 = 1/1/Re resulted in a divergent
linear solver during the Picard iteration which caused the whole solution process to
break down. Also, as h — 0, the method becomes more sensitive with respect to
deviations from the hypothesis of Theorem 3.1. For example, the case of h = 1/128 and
Re = 1,000 in our second numerical test described below required 6 = 0.0001 to remain
stable and broke down if § = 0.001. It is possible to tune up the parameters  and 7
for fixed v and h so that the number of inner iterations is minimized. We, however, did
not pursue this issue in the numerical experiments presented here.

The implicit algorithm is well suited for calculations on finite precision computers
(double precision recommended). On the other hand, the explicit method is a rea-
sonable approach to solving Navier-Stokes problems only for low Reynolds numbers
(Re = 1, 10). It is a quite efficient algorithm for such flow problems, outperforming
the implicit method by a factor of 10 to 1 or more. However, the stability of this al-
gorithm deteriorates very fast as Re increases and the method becomes unstable for
Re = 100 and Re = 1,000. The case of Re = 1,000 is a very difficult computational
problem which could only be solved by performing a large number of inner iterations
for each Picard iteration. Clearly, the properties of A in this case are dominated by
its skew-symmetric part. This in turn means that Q3" is a poor approximation of
A~!. Nevertheless, the implicit method converged to the analytic solution branch for
all values of h, showing the proper asymptotic behavior of the error. An efficient precon-
ditioned iterative method for approximating the inverse of the strongly nonsymmetric
operator A combined with the multistep algorithm from Section 4 could result in a
better method for solving the steady-state Navier-Stokes equations with high Reynolds
numbers.

Our second numerical experiment is the calculation of the flow in a cavity. The
cavity domain €2 is the unit square and the flow is caused by a tangential velocity field
applied to one of the square sides in the absence of other body forces. Since all forces
are independent of time, the flow in this case limits to a steady-state which is modeled
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g

Figure 2: Streamlines for v = 1, h = 1/64, and Re = 1 (left);
Re = 10 (right).

by (5.1) with corresponding changes in the boundary conditions (5.1c¢) In particular,
the solution u on the boundary is zero everywhere except on the boundary segment
y = 1, where u = (v,0) with v given. The rescaled pressure form of these equations is
used here (cf. Remark 5.2).

©)

Figure 3: Streamlines for h = 1/64, v = 1, Re = 100 (left); Re =
1,000 (right).

To discretize this flow problem similarly to (5.4), we set u = uy + 1, where uy
vanishes on the boundary of {2 and 1 is a known function which satisfies the Dirichlet
boundary conditions of u. The corresponding discrete problem in the spaces H; and
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H, as defined in the previous section is similar to (5.4) and is given by

~ A~

D(Xo,V) 4+ Reb(X, Xy, V) + (Y,V-V)=Re(f,V) — D(X,V) — Reb(X,X,V),
(V : X(), W) = 0,

forall V € H and W € Hy. Here X = X, + X with Xy € Hy and X satisfying the
Dirichlet boundary conditions of u and vanishing at all interior vertex points from the
triangulation of €2. Note that V - X =0.

Next, the implicit Picard iteration for this nonlinear problem is given by the follow-
ing. Let X be as defined above. Then, given an initial guess X°, we compute (X7, Y7),
for i =1, 2, ..., as the solution of the linear system

D(X, V) + Reb(X™ XL, V) 4+ (Y, V-V) =Re(f,V) — D(X,V) — Reb(X""1, X, V),
(V- X, W) =0,

and set X = Xj + X.

The streamlines of the velocity field X computed using this algorithm for a wide
range of Reynolds numbers are shown in Figures 2-3. The effect of the Reynolds number
on the flow pattern is clearly seen there. The flow for low Reynolds numbers (see Fig. 2)
has only one vortex center, located above the center of the domain (its location moves to
the right as Re increases). As Re increases further, a second vortex center appears near
the lower right corner (see Fig. 3, the case of Re = 100) and, for even larger Reynolds
numbers, a third vortex center develops near the lower left corner of the domain (see
Fig. 3, the case of Re = 1,000).

Again, the case of Re = 1,000 was the most difficult problem, requiring a large
amount of work in the linear solver for each Picard iteration. The discretization with
h = 1/64 was sufficiently fine for resolving the essential flow behavior for all Reynolds
numbers tested. In contrast, the experimental results with h = 1/16 and h = 1/32 for
Re = 100 did not show the vortex center near the lower right corner of the domain. The
experiment with ~ = 1/128 and Re = 1,000 resulted in a flow field whose streamlines
were very similar to the ones from h = 1/64.

In conclusion, the implicit algorithm is a simple, robust and efficient method for
solving Navier-Stokes equations for a wide range of Reynolds numbers. For each non-
linear iteration it requires the solution of a nonsymmetric saddle point problem which
can be solved effectively with the inexact Uzawa algorithm 3.1. An advantage of this
method is that it solves the discrete system (5.4) without the need for additional stabi-
lization terms in contrast to the class of penalty algorithms (cf. [11], [20]). The typical
penalty methods add stabilization terms to (5.4). The bigger these terms are, the eas-
ier it is to solve the corresponding system. However, these stabilization terms change
the discrete equations that one solves. In particular, their presence effectively reduces
the Reynolds number for the corresponding flow causing different flow behavior to be
computed. On the other hand, such a problem does not exists with the implicit method
because it does not need any additional stabilization terms. The convergence of the
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linear iteration at each Picard iteration is guaranteed only by the appropriate scaling
of Q4 and the appropriate choice of the parameters § and 7.
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