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Abstract

In this paper, we introduce and analyze two least-squares methods for second order
elliptic differential equations with mixed boundary conditions. These methods extend
to problems which involve oblique derivative boundary conditions as well as nonsym-
metric and indefinite problems as long as the original problem has a unique solution.
With the methods to be developed, Neumann and oblique boundary conditions are im-
posed weakly and thus avoid compatiblity conditions on the finite element subspaces.
The resulting least-squares approximations are unconditionally stable (no conditions
on the step-size h) and will be shown to converge at an optimal rate.

The first least-squares method involves a discrete, computable H~'-norm of the
residual and stabilization terms consisting of the jumps at the interelement boundaries
and a weighted elementwise L?-norm of the residual over the finite elements. This
method is developed without the introduction of additional problem variables.

The second method involves the use of the flux as an additional unknown. Although
this method is similar to the least-squares method for first order systems introduced in
[7], it differes in that discontinuous finite elements are allowed. It is also more general
in that it extends to the oblique boundary problem.

1 Introduction.

In recent years there has been significant interest in least-squares methods, con-
sidered as an alternative to the saddle point formulations and circumventing
the inf-sup condition. Examples of application of the least-squares to potential
flows, convection-diffusion problems, Stokes and Navier-Stokes equations can
be found in [4], [3], [10], [14], [15], [17], [18]. In general, the corresponding
problem is written as a system of partial differential equations of first order
with possibly additional compatibility conditions. There is a variety of differ-
ent approaches for introducing and studying least-squares methods for systems
of first order.

Aziz, Kellogg and Stephens in [2] applied the general theory of elliptic
boundary value problems of Agmon-Douglis-Nirenberg (ADN) and reduced
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the system to a minimization of a least-squares functional that consists of a
weighted sum of the residuals occurring in the equations and the boundary con-
ditions. The weights occurring in the least-squares functional are determined
by the indices that enter into the definition of the ADN boundary value prob-
lem. This approach generalizes both the least-squares method of Jespersen
[16], which is for the Poisson equation written as a grad — div system, and
the method of Wendland [24], which is for elliptic systems of Cauchy-Riemann
type. Recently, Bochev and Gunzburger [3], [4], have extended the ADN ap-
proach to velocity-vorticity-pressure formulation of Stokes and Navier-Stokes
equations.

Another approach, mostly used for second order elliptic problems written
as systems of first order, introduces a least-squares functional and studies the
resulting minimization problem in the framework of the Lax-Milgram theory
establishing the boundness and the coercivity of the corresponding bilinear
form in an appropriate space. This approach has been used by Pehlivanov,
Carey and their collaborators in [19] [20] and Cali, et al in [8], [9].

Recently, Bramble, Lazarov, and Pasciak in [7] have introduced and stud-
ied a new least-squares norm for systems arising from splitting convection—
diffusion and reaction—diffusion equations into a system of equations of first
order. The least-squares functional studied there involved a discrete inner
product related to the inner product in the Sobolev space H '(Q2). The use
of such an inner product results in a method which is optimal with respect
to the required regularity as well as the order of approximation and extends
to problems with low regularity solutions. In addition, the discrete system
of equations which needs to be solved in order to compute the resulting ap-
proximation is easily preconditioned thus providing an efficient method for
solving the algebraic equations. The preconditioner for the algebraic system
corresponding to the new least-squares system only requires the construction
of preconditioners for standard second order problems, a task which is well
understood.

In fact, the first computable H ~'-norm was used by R. Falk in [12] to treat in
a weak form the incompressibility condition V-u = 0 for Stokes problems. The
essence of this early result is that the incompressibility condition is represented
in the bilinear form by the sum of its L?-norm and weighted by the factor
h=2% times the discrete H~'-norm. This leads to a stable scheme of optimal
convergence order for linear finite elements.

In this paper, we provide a different approach from that of [7] for deriv-
ing least-squares methods for second order problems. This approach is more
closely coupled to the Galerkin method. To contrast these two approaches, we
study a somewhat more general problem.

Let €2 be a bounded polygonal or polyhedral domain in d dimensional Eu-



clidean space (for d = 2 or d = 3) with boundary 00 = I'p U 'y. We shall
consider the following second order elliptic boundary value problem.

Lu=f in €,
u=0 onlIp, (1.1)
u, + a(x)ug + f(x)u =0 on [y.

Here u, denotes the outward co-normal derivative on 02 and u; denotes the
derivative along a tangential direction t. The operator L is given by

Lu=-V -AVu-+b-Vu+cu
= -V -AVu+ Xu.

We assume that the matrix A(z) is symmetric, uniformly positive definite,
and bounded. We also assume that b € (L>*(£2))? and that § and oy belong
to L>(09).

The development of least-squares methods is inherently coupled to various
a priori inequalities. The methods of [7] are based on the inequality (see,
Lemma 2.11 of [7])

2
Co(ll8llg + Ivl5) < IV -0+ Xof”, + A 26 + Av)| - (12)

The norms above are Sobolev norms (see Section 2). The inequality (1.2) as
stated in [7] only holds for functions ¢ in Hg;,(Q2) satisfying 6 -n = 0 on I'y.
Here n is the outward unit normal vector. This means that the methods of [7]
do not apply when either o or 3 is not identically zero.

The inequality (1.2) is related to the first order system which is equivalent
to (1.1), i.e.,

0+ AVu =20

V0+Xu=f. (13)

In contrast, the methods developed in this paper are derived from the original
second order operator and are based on the a priori inequality

2 2
[olly < C L[|, -

The operator £ above involves the boundary conditions as well as the differen-
tial part L. The resulting least-squares methods have a number of advantages.
First, they extend to Robin and oblique derivative boundary conditions with-
out complications, i.e., nonzero a and 3. Secondly, since the a priori inequal-
ity only involves one variable, it is possible to develop a least-squares method
without introducing the “flux” variable # in (1.3). Least-squares methods in-
volving the flux variable # will also be developed for applications when @ is of



interest in itself. In contrast to those of [7], the flux approximation subspaces
need not satisfy any boundary conditions on I'y.

The remainder of this paper is organized as follows. In Section 2, we define
notation, place precise assumptions on the problem which we are studing and
present some preliminary results. In Section 3 we develop the least-squares
method without any new variables. The method involving the flux variable is
developed in Section 4. Finally, the results of some numerical experiments are
given in Section 5.

2 Preliminaries and further assumptions.

We assume that each edge (respectively face when d = 3) of I'y on which a(x)
is not identically zero is completely surrounded by I'p. In addition, we assume
that the tangential direction t varies smoothly on these regions. Finally, when
a(x) is not identically zero, we assume that the boundary 00 is Lipschitz
continuous. This makes the problem variational (cf., §4.4.3) of [13]).

To describe and analyze the least-squares method, we shall use certain
Sobolev spaces. For nonnegative integers s, let H*(f2) denote the Sobolev
space of order s defined on a domain €2 (see, e.g., [7]). The norm in H*(£2) will
be denoted by || - [|; 5. When © = €, we simplify the notation to [| - ||s. In the

case of L?(Q) the norm and the inner product will be denoted by || - || and
(+,*)g, respectively. The subscript will be dropped in the case when © = €.

For noninteger values of s, H*(Q) is defined to be the functions in H2(S)
for which the norm

lvlls == (||U|| + Z// |Dv(x (o)~ |d+20(y)|2dxdy)

is finite. Here s is the largest integer less than s and ¢ = s — s. We use the
same notations for the norms and inner products for vector valued functions.
For example, if § is a vector valued functions with component §; € H*(Q),
then

1/2

d
18112 := >_ NIz
i=1
Similarly,
d
Z 0, 1) -
=1

The weak solution of (1.1) is in the space W which is defined to be the
closure of
{velC®(Q):v=00nTp}



with respect to the norm in H'(Q2). In the case where I'p is empty and
a = =0, we define W to be the set of functions in H'(Q2) with zero mean
value. The space H 1(Q) is defined by duality and consists of the functionals
v for which the norm

ol = sup {29 2.1)
S el

is finite, where (v, ) is the value of the functional at ¢. If v € L?(Q) then
(-,-) is identified with the L?*(Q)-inner product.
For any u,v € W, we define the bilinear form

A(u,v) = (AVu, Vo) + (Xu,v) + (aue + fu, v)p - (2.2)

Here (-,-)r, denotes the inner product in L?*(T'y) or the pairing of certain
appropriate Sobolev spaces with their duals.

In this paper, we shall repeatedly use the fact that the bilinear form A is
bounded with respect to the norm in H'(2). This follows from the §4.4.3 of
[13] and is stated in the following lemma.

Lemma 2.1 The bilinear form A(-,-) is continuous on W x W.

Note that the oblique derivative term in (2.2) is not a compact perturbation.
This term has the same strength as (AVu, Vv).
The weak formulation of (1.1) is: Given f € H~'(Q), find v € W satisfying

A(u,0) = (f,0) foralld e W. (2.3)

The adjoint weak formulation of (1.1) is: Given f € H~'(Q), find u € W
satisfying

A(0,u) = (f,0) forall e W. (2.4)

We assume that the solutions of (2.3) and (2.4) are unique. This means that
if v € W and satisfies A(v,0) =0 or A(f,v) =0 for all @ € W, then v = 0.

The particular space H~'(2) chosen above is related to the boundary con-
ditions used in (1.1). Following [7], we give an alternative characterization of
the norm in H-(Q). Let D(-,-) denote the inner product in W, i.e.,

D(u,8) = (u,0) + (Vu, V), forall u,f e W. (2.5)

Let T : H'(Q) — W be defined by Tf = u where u € W is the unique
function satisfying

D(u,0) = (f,0), forall® € W.
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As observed in [7],
(u, Tu) = [Jul|*, forall u € H'(S).
Let the operator £ : H'(Q) — H1(Q) be defined by the identity
(Lu, ) = A(u,p) forall p € W. (2.6)

The following lemma plays a fundamental role in the least-squares methods
which will be developed in this paper.

Lemma 2.2 There exists a constant C independent of v € W such that

Alv,
lolh < € sup 229 _ oo, (2.7
pew ol
and
A(p,v
|lv]]; < C sup (v ) (2.8)
pew [l

Proof: First, we note that for v in W,
(Xv,v) = (b-Vov,v) + (cv,v) < C|lv]|||v]];- (2.9)

In addition,

<04'Ut + ﬂ'U7 U>F = <5U7 'U>F - _<OétU, 'U>F
" vo2 " (2.10)
< Clolgr, < Clivllory vl
We will prove the inequality
ol < Ol Lvl| (2.11)

by contradiction. If (2.11) does not hold then for every integer i > 0 there is
a v; € W such that ||| =1 and ||[Lv;]|_, < 1/i. It follows from (2.9), (2.10)
and obvious manipulations that for any v € W,

Clv||} < (AVu, Vo) = A(v,v) — (Xv,v) — (avy + B, v)r,
< A(v,v) + C ([[ollory + [loll) lv]]:- (2.12)
Thus,

ol < € (I1Lv]l_y + llory + [10]) < € (I1€0ll_, + IIv]l,) | -
2.13



for any fixed s with 1/2 < s < 1. In the last inequality we have used a well
known trace inequality (cf. [1]). Since {v;} is a bounded sequence in H'(Q)
and H'(Q) is compactly imbedded in H*(2) for s < 1, there is a subsequence
denoted again by {v;} which is convergent in H*(Q2) to v. The inequality (2.13)
applied to v; —v; shows that v; is a Cauchy sequence in W and therefore v; — v
in W C HY(Q). Clearly, by Lemma 2.1, for any ¢ € W,

0 = ]_]_m A(Uia gp) = A('U, (10)
i—00
Thus by uniqueness, v = 0 which contradicts
o[}y = lim [Jo;]|y = 1.
i—00

The argument for the second inequality of the lemma is analogous. This
completes the proof of the Lemma 2.2. [J

Lemmas 2.1 and 2.2 together with the generalized Lax-Milgram Theorem
imply the existence of the solution u of (2.3).

3 A Least-Squares Finite Element Method Without Ad-
ditional Unknowns.

To approximately solve (1.1), we introduce the subspace W), C W indexed by
h in the interval 0 < h < 1. We do this by partitioning the domain €2 into a
set of triangles or tetrahedra 7 = {7}. For convenience, we will use the term
triangle to refer to either a triangle when d = 2 or a tetrahedron when d = 3.
Let h, denote the diameter of the triangle 7. The mesh parameter h is defined
to be

h = max h.,.
TET

As usual, the boundaries of two triangles or tetrahedra will intersect at either a
vertex, an entire edge or an entire face. We assume that the triangulations are
locally quasi-uniform. By this we mean that there is a constant 0 < ¢ < 1 such
that each triangle contains a ball of radius ch,,. Spaces defined with respect
to rectangular or parallelepiped partitioning of {2 pose no additional difficulty.
For some integer » > 2, let W, denote the functions which are piecewise
polynomials of degree less than r with respect to the triangles, continuous on
2, and vanish on . There is a nodal basis associated with these spaces (see.,
e.g., [11]) and a corresponding nodal interpolation operator.

The following low order approximation and boundedness result can be
proved. Given ¢ € W there exist ¢, € W), and a constants C5 not dependent
on h and v such that

> {’%‘wa —onll2 + [l — on
ET

1) < Collelft. (3.1)



The arguments which can be used to prove this result in the quasi-uniform
case are given in [6] and the general case is given in the proof of Lemma 4.1.1
of [25].

To develop the least-squares method, we shall need additional discrete
norms and inner products. For v € W},, the discrete negative norm is given by

lolop= sup {2288 (32)
€W ||90h||1

This norm extends to a semi-norm on H~'(2) which is bounded by the norm
|- ||-1- In addition, we define a weighted L? norm,

1/2
ol = (ool ) 3.3)

The inner product corresponding to this norm shall be denoted by (-, ). This
norm will often be applied to derivatives of functions which are piecewise
smooth with respect to the triangulation. In such cases, the differentiation
will be done on an element by element basis.

We will also need edge norms and inner products. Let {¢;} be the collection
of the interior edges (respectively, faces) in the partitioning of {2 into triangles
(respectively, tetrahedra). We introduce the bilinear form

(u, v} = Z hr(e;) /E uv ds (3.4)

where the summation is over the set of all interior edges (respectively, faces)
{€;}. Here 7(¢;) is a triangle or tetrahedron which has ¢; as a edge or face.
Similarly,

(1 0)py = 3 hrte / v ds (3.5)

where the summation is over the set of all edges (respectively, faces) on T'y.
The corresponding seminorms are denoted

1/2

[ollar = (u,0),/;  and  [Jollnry, = (u,o)/5 . (3.6)

Let the operator L : W — W), be defined by

(Lnv, pn) = A(v,n)  for all @), € W, (3.7)

We then have the following a priori inequality.



Lemma 3.1 There exists a constant C' not depending on h such that for any
vEeW,

2
oI} < C{Ienollzp + Il + 120l 58
3.8
+||v, + v + Bolli )

Here [u,] denotes the jump in the co-normal derivative u, across an interior
edge.

Proof: The argument is almost the same as the proof of Theorem 1 of [5].
By Lemma 2.2, it suffices to show that for v € W),

A, )| < C{ILnvll v+ Nl + Lol o
vy + ave + Bl ry Il

For ¢ € W let , € W), be a function which satisfies the inequalities (3.1). It
follows that

|A(Ua @Y — Sph) + A(Ua (ph)|
< JA(v, ¢ — on)| + |Lhv]| -1l en |1 (3.10)
|A(v, 0 — on)| + C||Lrv||—1a]l @1

Integrating by parts element-by-element gives

Av,o—pn) = > {/_(—VAWJer)(@—%) dfc+/an v, (9 — ©n) dS}

=ET

+ 3 / (ave + Bo) (i — 1) ds

[A(v, ¢)]

IN

EkCFN
=> | Lv(p—o dx+2/ v, (¢ — on) ds (3.11)
reT /T
+ Z / (v, + avy + Bv) (@ — ¢n) ds
EkCFN

We bound the terms on the right hand side of (3.11) separately. For the first,

)dz| < C 3 hol|lLollllelh.y,
TGT ~ET (3.12)
< CllLollll#lls-

For the second, we use the well-known inequality

[ 107 ds < ¢ (612, + b 613 ) (3.13)
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Combining this with (3.1) gives

>

J

[ (o= en)ds

€5

1/2
< CY R il el
J
< Cllw]llnrllelh- (3.14)

Similarly,

2

EkCFN

/ (vo + ave + Bo) (¢ — 1) ds
€k
<C S b2 oy + ave + B0l ol 1o
& e k “ o (3.15)

< Clloy + ave + Bollnryllell-

Combining (3.10)—(3.15) proves (3.9) and hence completes the proof of the
lemma. [

Remark 3.1 The last three terms on the right hand side of (3.8) are stablizing
terms. It is known that the Galerkin method is stable in H'(Q) (see, [21],[23])
if h < hy is sufficiently small. This means that the Galerkin solution V' € W),
satisfying

A0,V)=D(0,u) forall # €W, (3.16)

can be bounded by
IVIle < Cllolly < Clfully
where v is the continuous solution of (3.16) (v € W satisfies (3.16) for all
0 € W). If u € W, with h < hy then
A(u, V) < CA(u, V)
Jullh = VL

lully = < Cl[Lrull-1pn-

Thus, for h < hg, the stablizing terms are not necessary.

Before describing the least-squares method suggested by the previous lemma
we provide an equivalent discrete negative norm. As in the continuous case,
the discrete negative norm can be alternatively characterized in terms of a
certain operator. Specifically, let T}, : H1(Q) — W}, be defined by T}, f = w
where w is the unique element of W), satisfying

D(w,0) = (£,0) for all 6 € W,

10



Note that T}, is the finite element analogue of the operator T" and that
[v]|? 1, = (v,Tyv)  forallv e H H(Q).

Note also that for v € L*(Q), (v, Thv) = (Tyv,v).

Although one can develop the least-squares algorithms in terms of T}, it
is often more computationally efficient to replace this operator by a precondi-
tioner B;. To this end, we assume that we are given an operator By, : W, — W},
which is a symmetric, positive definite operator with respect to the L?(2) inner
product and spectrally equivalent to 7},. This means that there are positive
constants Cy, Cs not depending on h and satisfying

Cy(Thw,w) < (Byw,w) < Cs(Thw,w) for all w € W,
(3.17)

A good preconditioner is also computationally less expensive to evaluate. Ex-
amples of good preconditioners result from multigrid and domain decomposi-
tion algorithms.

We define the first least-squares bilinear form on W), x W}, by

Q1 (u,v) =(BpLyu, Lyv) + (Lu, Lo)y, + ([u], [0u]), (3.18)
+ (u, + aug + Pu, vy + avg + By, ¢ '

The corresponding least-squares method follows.
Least-Squares Method without Additional Unknowns: Find U € W), such
that

(LU = [, BolyV) + (LU = f, LV ) + (U], Vi) s
+ (U, +alUy + UV, + aVy + V), p, =0, forall V € Wy, (3.19)

or

Q (U, V) = (f, BRLyV) + (f,LV),, forall V e W,.
(3.20)

Note that the term (f, LV); in the right hand side represents a sum of
weighted L?-inner products of f and LV over the finite elements 7 € 7 and
therefore it makes sense only for f € L*(Q). If f does not belong to L?(2) then
we can reformulate the least-squares method by dropping the term (f, LV,
in (3.20). Thus, in the case of nonsmooth f, (3.19) is reduced to the following
least-squares method: Find U € W), such that

(U, V) = (f, BRLyV), forall V e W,. (3.21)
As we shall show later this truncated formulation has order of convergence

O(h7= 1) for u € H'(Q) for 1 < v < 2.

11



Remark 3.2 The least-squares method (3.19) can be thought of as a stablized
Galerkin method. By Remark 3.1, we can drop the stablizing terms when 5 is
sufficiently small and use the least-squares method

(LU — f,ByLyV) =0 forall V e W,.
Since B L} is invertible, this is the same as
(LU — f,V)=0 forall VeW,
which is the Galerkin method applied to (1.1).

The following Lemma is a consequence of Lemmas 2.1 and 3.1 and obvious
manipulations.

Lemma 3.2 The bilinear form Q1(u,v) is symmetric, coercive, and bounded
in the H'-norm on the finite element space W,.

3.1 Error Analysis

The above stability results lead to error estimates as we shall now demonstrate.
We first introduce the following lemma.

Lemma 3.3 Let 7 be a reference triangle of unit size and w be in H*(7) for
s > 3/2. Then for any edge € of T,

[wlloe < Cllwllyz,

||wt||0,g <C ||w||s,%‘

Proof: We cannot simply apply trace theory since 97 is not a C'! boundary.
Let © be a domain with "' boundary with ¢ C 9. Let w be an H* bounded
extension of w in H*(R?). Tt then follows that

lwulloe < Nl@ullppn < Cllwlly g < Cllwll, -

The second inequality follows in a similar manner. This completes the proof
of the lemma.[]

We now state and prove an error estimate for the least-squares method in
the case of a quasi-uniform mesh. The case of sufficently regular solutions
and data is discussed in Theorem 3.1, while the case of solutions in H7(2) for
1 <~ <2isdiscussed in Theorem 3.2.

12



Theorem 3.1 Let u € H'(Q2) for 2 < v < r and U be the solution of the
least-squares method defined by (3.19). Assume that the triangulation is quasi-
uniform and set h = max; h,,. Then there exists a positive constant C' not
depending on u or h such that

U = ull, < CRYHjull,. (3.22)

Theorem 3.2 Assume that v € HY(Q) for 1 < v < 2, the triangulation is
quasi-uniform with h = max; h,,, and U s the solution of the reduced least-
squares method defined by (3.21). Then there exists a positive constant C' not
depending on u or h such that

U = ull, < CR= lull,. (3.23)

Let E = U —V and e = uw — V where U is the solution to (3.19) and
V' € W, is the interpolant (in W}) of u. Before proving the above theorems,
we introduce the following lemma based on the Bramble-Hilbert Lemma. Its
proof uses Lemma 3.3 and is standard.

Lemma 3.4 Let 7 be a mesh triangle and assume that the solution u is in
H*(r) for some s in [2,7]. Then,
leller < Ch M lullsr,  1=0,1,2,
lesllo.or < ChE*2|lulls,r
leslloor < Chy 2 |lulls,r
lello,or < CRE™Y2ulls,r-

(3.24)

The constant C' above can be chosen independent of h, and T.

Remark 3.3 For an edge ¢;, let 7(¢;) denote the union of triangles which have
€; as an edge. Then the above lemma implies that

lleullloe, < Ch3 2 Mlull, ze,) -
Proof (of Theorem 3.1): Clearly,
U —ully < [|E]l + [lel]; -
By Lemma 3.1,
1B, < CQUE,E)? < ClQi(U - u,U —u)"'? + Qu(e,e)'/?].
It follows from (3.19) that
QU —-u,V)=0 foralVeWw,

13



and hence
(U —u,U—u) < Qe e).
Thus,
1Bl < CQi(e, ).

Combining the above inequalities gives
IU —ully < CQu(e. )* + lell, - (3.25)

The estimate of ||e||, follows immediately from the estimate (3.24) with
[ =1 and summing over all triangles.

We estimate the first term in (3.25) by examining each term in (3.18). For
the first, we have

L
(BuLye, Lne)? < C||Lhell_, , = C sup (£re, 9)
’ pew, |12l
Ale. ) (3.26)
= C sup T < Cllel]; .
sewn N9l
For the second, using (3.24) with [ = 2 we get
(Le.Lehy < C Y Wlel, < CHO D ull 3.2

TiET

Finally, since u is in H?(Q2) for v € [2,r], it immediately follows from Lemma
3.4 and Remark 3.3 that for interior edges,

1/2 -
Bty levllloe, < Ol e (3.28)
and for boundary edges,
1/2 -
hatey lew + aee + Bellg, < CR7H Jul, (3.29)
Theorem 3.1 follows from (3.26)-(3.29), Lemma 3.4 and summation. [J

Proof (of Theorem 3.2): To prove the result for the reduced least-squares
method (3.21) when the solution v € H?(2) for 1 < v < 2, we first prove
stability in H*(Q), i.e.,

U1, < Clull; - (3.30)
By Lemma 3.1 and (3.21),
Ul < CuU,U) = C(f, Balnl). (3-31)
By (3.17),
(f; BiLwU) < Cl[fl[llLalU]l-1 < Cllull |U]]3- (3.32)

14



This proves (3.30) and the result for v = 1 easily follows.

For v = 2, it is enough to show that (f, LU), < Chl|ul]2 ||U||,. This is an
immediate consequence of the definition of (,-), the inverse inequality and
the obvious inequality ||f|| < C||ul|2,0. Since W N H"(Q2), for 1 < < 2,is a
Hilbert scale, it follows by interpolation that the result holds for 1 < v < 2.
This completes the proof of Theorem 3.2 [J

We next illustrate that the stability estimate of Lemma 3.1 can be used
to derive error estimates in the case of a refinement example. We illustrate
this by considering a simple example involving piecewise linear finite element
approximation. Specifically, we consider the problem: given f € L*(Q) find u
such that

—Au=f in €,

u=0 on 0f). (3.33)

where ) is defined to be the points in the square (—1,1) x (—1,1) which
make an angle of absolute value less than m — w with the positive z-axis. For

0 < w < 7/2, such a problem results in a singular solution of the form (see
Theorem 4.4.3.7 of [13])

u=c(f)r7sin(y¢)n(r) + w (3.34)

where (r, ¢) are the polar coordinates in the plane R?, n is a C* cutoff function
which is zero for r > 1, w € H*(Q) and 7 = [2(1 —w/7)]"". The constant ¢(f)
above satisfies

(A< CIfly-
It follows that for v < 7

lully sy < C I, and [lullyq, < Cr7 2 If]l, -

Here
Qr=an{z||z| >r}.

We now define a mesh refinement strategy in terms of a “coarse” mesh
parameter h.. Such a strategy has been used, e.g., in [22]. All triangles shall
be assumed to be shape regular (they satisfy a minimal angle condition). We
introduce R; = 277 for j = 0,...,k, where the positive integer k will be
determined later. We define €2 to be the union of all triangles 7 in 7 such
that

TN{r e Q| |z| < Ry} #0.

Roughly speaking  is an Ri-neighborhood of the singular point (0,0). Next
for j =k —1,...,0 we define €2; to be the union of the triangles 7 in 7 such
that

FO{e € Q| Ry < o] < Ry} #0.
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We add all unassigned triangles of T to €.

We assume that the grid partition 7 satisfies the following property: There
is a  in the interval (1 — 4, 1) such that for j = 0,1,...,k and each triangle
TNQ; #0,

CoR’he < h, < CyR . (3.35)

with some constants Cy and C} independent of h. and k. For example, 3 = 0.5
would be a good choice for all angles 0 < w < 7/2.

Theorem 3.3 The least-squares method for problem (3.33), using a triangu-
lation satisfying the above conditions, gives rise to an error estimate of the
form

lu=Ull, < Chell £l
provided that k is chosen such that

.
Re < b, i k> 1= It (3.36)
By In(2)

Remark 3.4 It is easy to check that since § < 1, the number of triangles
in such a mesh is bounded by a constant multiple of h_ 2. Thus the theorem
provides a quasi-optimal result in the sense that increasing the work by a fixed
constant leads to the global accuracy one would expect on a smooth problem

and a quasi-uniform mesh of size h,.

Proof of Theorem 3.3. Let V', E and e be defined as in the proof of Theorem
3.1. Again, we need to bound the two terms on the right hand side of (3.25).
By (3.26), this reduces to bounding

lell} + (Ae, Ae)n + ([ev], [eu])nr-

We first provide an estimate on €2, for j = 0,... ,k— 1. Let N'(€;) denote
the union of triangles in 7 which have an edge which intersects €2;. Applying
Lemma 3.4 and Remark 3.3 shows that

2 2
lellio, + 2 hellles]lloe + D2 h7llAelly,
TN #D

< CRh: ull3 pra) (3.37)
< CRYIR2|fIR.

The first sum above is taken over the interior edges (with respect to ) in ;.
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In the case of 2, we have

2 2
lelli0, + 22 helllen]llse + 3= k7 l[Aelly,,

TCQk.

<CRPR (i, + )12 B3
< CRPR2|FIE.

The first sum above is taken over the interior edges (with respect to €2) in .
Summing (3.37) over j and using (3.38) and the fact that § > 1 — 7 gives

lu = UII? < C(hg + R0 115
The theorem follows taking k such that (3.36) holds. O

4 A Least-Squares Finite Element Method involving
the Flux

In this section, we develop a least-squares method for a first order system
which is equivalent to (1.1) and involves the flux variable § = —AVu. To do
this, we will prove a relevant a priori inequality.

Let 6 be in (L?*(Q2))?. Tt follows from Lemma 2.2 that

A
ol < € sup A:2)
eew ol
— X
_ ¢ sup (AV +0, Vo) = (6, Vo) + (Xv, 0) + (ave + fv, @)ry (4 1)
oW el

It is thus natural to introduce an operator F : (L?(Q2))? x W — H~1(Q)
defined by

(F(6,v),0) = =(6, Vo) + (Xv, ) + (ave + fv, )ry, forall o e W.
Then by (4.1) and the triangle inequality
lolly < O {116 + AVolly + 1F (S 0)ll_y } - (4.2)

We introduce a discrete approximation Fj to the operator F. Define Fj, :
L*(Q) x W +— W}, by

(fh((sav)a 90) = _(67 V@) + (XU, 90) + <OtUt + ﬁva <10>FN7 for all 2 € Wh-

The following lemma will be the basis for the least-squares methods studied
in this section.
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Lemma 4.1 Let § be a function which is in (H'(;))? for each triangle ; € T
and v be in W. Then,

2
1113+ [l < {HAW(& + AV)|| + 1 Fa(6, 0|2 + IV - 6+ X7

+||[5-n]||,2l,,+ [ —5-n+avt+ﬂv||i7FN}, (4.3)

Proof: It follows immediately from (4.2) that

lolh < C{|A 25+ AV0) |, + I1F@ )], }
Clearly then

Il < C{[|A 2+ AVv)|, + IF@v)II 4 }-

Now || F(d,v)|| , may be estimated by the right hand side of (4.3). To this
end for o € W let ), be the element in W), satisfying (3.1). Then by (3.1),

(Fn(d,v), n) + (F(0,v), p — pn)
lell,

| (6, v)[|-; = sup
peWw

FEvp—pn Y

lelly

< C||Fn(d, )]y, + sup
peW

To estimate the last term in (4.4), we integrate by parts to get

(Fn(0,v), 0 — on) = (aue + Bv,© — @n)ry
+ Z {(V'6+Xva(p_90h)7i_<6'n790_§0h>3ﬂ'}'
TET

The same estimates as used in Lemma 3.1 give that

(fh((sav)agp - Sph) < C{H[(S ' n]“h,[ + ||V -0+ XUHh

=8 avcs Belar il

Combining the above estimates completes the proof of the lemma. [

In order to formulate a finite element least-squares method we need to
define an approximation subspace V;, C (L*(2))?. This we choose to consist
of piecewise polynomials with respect to the triangulation 7. We only need

r — 1 order approximation. Thus, we can take polynomials of degree r — 2.
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The piecewise polynomial functions can be discontinuous across triangles and
need not satisfy any boundary conditions on I'y.

The above lemma suggests a new least-squares method with flux unknowns.
Suppose that 6 is defined by (1.3) and u solves (1.1). Then

0+ AVu =0,
fh(g, u) = Fh,
[0-n]=0 on interior edges,

—0-n+aug+ Pu=0 on ['y.

Here F}, is the L?(2) projection of f onto W},. In order to simplify our notation
we introduce the bilinear form Qy((, w;d, v) defined on Vj, x W), by

Q2(C7 wy 67 U) = (Bh (fh(<7 ’LU)) 7fh(57 'U)) + (C + Avwa A_l(s + VU)
+([¢-n) [6- 0]}, + (—C-n+aws + fw, =0 - n + ave + Bu)nry
+(V-(+ Xw,V -0+ Xv).

Lemma 4.1 says that the bilinear form () is coercive and continuous in V}, x W},
equipped with the (L?)? and H' norms. It suggests the following least-squares
method.

Least-Squares Method with Fluz Unknowns: Find (,us) € Vi, X Wy, such
that

(4.5)

QQ(C}L,U}L; (S,U) == (f, fh(é,v)) + (f, AV + XU)h,

4.6
for all (0,v) € Vj, x Wj,. (4.6)

Obviously this formulation makes sense only for f € L?(Q). For f not in
L?(Q), one can make a simple modification of the scheme by dropping the
second term on the right-hand-side of (4.6). In this case, we get the following
least-squares method: Find ((p, up) € Vi, x W), such that

Q2(Ch, up; 0,v) = (f, Fr(d,v)), for all (0,v) € V}, x W), (4.7)

Here (f, Fi(d,v)) is the value of the linear functional at F,(d,v) € W. As we
show in the next theorem the reduced formulation (4.7) converges with a rate
of O(h"=!) for u € H'(Q) and 1 < y < 2.

Remark 4.1 If Vj, C V = H(div;Q), then [(4-n] |,= 0 and the corresponding
term in the least-squares method is identically zero. Here €; denotes an interior
edge (face) of the finite element 7;. If, in addition to V,, C V = H(div; Q)
a = [ = 0 and the functions in V}, satisfy the boundary condition (,-n = 0 on
'y, then this method coinsides with the least-squares method of [7]. However,
the method proposed in this paper is more general than that of [7] in two
respects:
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1. The spaces V}, are allowed to be discontinuous.

2. The Neumann and oblique derivative boundary conditions are naturally
incorporated in the bilinear form and the functions in V}, need not satisfy
these conditions.

Theorem 4.1 Assume that the triangulation is quasi-uniform and set h =
max; hy,. If u € HY(Q) for 2 < v < r then the solution ((,un) of the least-
squares method (4.6) satisfies the estimate

16n = Ollg + lun — ull, < CH lull,, (4.8)

with a constant C' independent of u, 0, and h. Furthermore, if u € HY(QY) for
1 <y < 2 then the reduced method (4.7) satisfies the error estimate (4.8).

5 Numerical Results.

We provide some numerical results in this section which illustrate the con-
vergence behavior of the least-squares methods studied in the earlier sections.
Specifically, we will consider the method which does not introduce any addi-
tional unknowns (3.19).

We only report the performance of the method on a model problem with
oblique derivative boundary condition. Specifically, let €2 be the unit square
in R?. We consider the problem of approximating solutions to

—Au=f in ()
u=20 on FD (51)
a_u"‘% =0 on FN.
on Ot

Here 'y is the right-most edge of the boundary (z = 1) and I'p = 9Q/T'y.

For approximation, we use a regular grid of triangles and a subspace W}, of
continuous piecewise linear functions defined with respect to this triangulation.
Specifically, we partion the square into N x N smaller squares of size h = 1/N
and break each of the smaller squares into two triangles by connecting the
lower left and upper right hand vertices. Functions in W}, vanish on I'p but
not on I'y.

Instead of introducing a preconditioner for this example, we use B, = T},.
Since the grid is regularly spaced, it is possible to compute the action of T},
by using the discrete Sine Transform. Indeed, let wy, =T}, f and let wy be the
function defined on 2 = [0, 2] x [0, 1] resulting from an even extension of wy,
with respect to the line x = 1. Then, wy, is the solution of

D(iy,, ¢) = (f,¢) for all ¢ € W. (5.2)
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h Discrete L? error Maximum norm error
1/8 .013 .024
1/16 .0043 077
1/32 .0012 .0022
1/64 .00033 .00062
1/128 .000085 .00017

Table 5.1: Convergence behavior for a smooth solution

Here D denotes the inner product in Hl(Q), W), is the approximation subspace
resulting from reflecting the mesh and f is the even extension of f. Functions
in W), vanish on 0€). Since the mesh is uniform, the discrete Sine Transform
provides an algorithm for expanding solution vectors in terms of the discrete
eigenvectors corresponding to the stiffness matrix for (5.2). The solution is
readily obtained by multipling by the inverse of the discrete eigenvalues and
transforming back. The inverse transform is also a discrete Sine Transform.
The cost of this evaluation is O(N?log(N)) since the Sine Transform can be
evaluated in terms of the Fast Fourier Transform.

For the first example, we consider a problem with smooth solution. Specif-
ically, we take as a solution,

uw=ax(y —y?

along with the corresponding right-hand-side function f and non-homogeneous
oblique boundary condition

ou Ou
on * ot Y

Let U be the solution of (3.20). Table 5.1 gives the error u—U in the discrete
L? and L*™ norms as a function of h. Note that the asymptotic convergence
appears to be second order in both norms. This is better than predicted by
the theory and only holds for smooth solutions.

Smooth solutions of (5.1) are somewhat artificial. In general, the solutions
to the above problem fail to be in H?({2) because of singular behavior at the
vertex (1,1). We next illustrate the convergence behavior on a more realistic
problem. Specifically, we set up a solution w of (5.1) which illustrates the
typical singular behavior while resulting in right-hand-side data f in L?().
Let n(r) be a C? function satisfying

Lif r € [0,1/4],
n(r) = {0 if r > 1/2.

on FN.
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h Discrete L? error Maximum norm error
1/8 .033 11
1/16 .017 .063
1/32 .0078 .037
1/64 .0030 .024
1/128 .0012 .017
1/256 .00048 .012

Table 5.2: Convergence behavior for a singular solution

We then define u by
u(x) = r'/?sin(¢/2) n(r)
where (7, ¢) are the polar coordinates with origin at (1,1). It is easy to see
that u satisfies (5.1) with f = —Awu in L?(Q).
Table 5.2 gives the error w — U in the discrete L? and L norms as a
function of h. As expected, the convergence rate is less than second order but
somewhat better than first order for the L2-norm of the error.
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