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Abstract� A theoretical analysis of the mixed least�squares �nite ele�
ment approximations to Dirichlet problem for second�order linear ellip�
tic equations with variable coe�cients in bounded domains is presented�
Three di�erent least�squares functionals are introduced and the coerciv�
ity of the corresponding weak forms is proved� It is shown that the �nite
element approximation are stable and yield symmetric positive de�nite
systems� The conditioning of the linear systems is discussed and error
estimates for the approximate solutions are obtained�

� Introduction

Many classical boundary value problems for second order linear elliptic equa�
tions can be transformed into the �rst order systems of equations� involving the
gradient of solution as a new unknown� Such formulation of the problem is called
mixed formulation �see ��	
�

The unknown functions in the mixed formulations often have appropriate
physical interpretation �temperature and �ux� displacement and stress etc�
 and
give direct information about the considered quantities� For example� the vector
variable �the �ux
 belongs to the space H�div��
 and has a trace �in a weak
sense
 of the normal component on each surface and therefore the �nite element
space will consist of vector functions with continuous normal component at the
inter�element boundaries� From numerical point of view� the nodal values of the
solution gradient are obtained directly from the discrete problem� rather than
by post�processing in the standard formulation�

RitzGalerkin formulation of the �nite element method for mixed problems
requires relatively weak smoothness of the input data� which in turn requires
weak assumptions for the smoothness of �nite element approximations� On the

� AMS Subject Classi�cations ������� ��N�
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other hand� the �nite dimensional spaces used in the RitzGalerkin method
must satisfy so called LBB condition �LadyzhenskayaBabu�skaBrezzi� see ���	�
��	� ��	
 which substantially restrict the choice of feasible �nite element spaces�
Moreover� the solution is a stationary point of the saddle point functional� while
the corresponding linear system is symmetric but inde�nite� This seriously re�
strict the possibilities of a good choice of a solution algorithm�

Contrary to the RitzGalerkin method� the leastsquares method for mixed
problems is not subject to LBB condition� while the corresponding linear system
is symmetric and positive de�nite� This approach has been applied to various
second order problems ��	� ���	� ���	� ���	� ���	� ���	� ���	� ���	� ���	� Stokes equa�
tions ��	� ��	� ���	� ���	� ���	� and Navier�Stokes equations ��	� In this note we
discuss three particular formulations of the least�squares �nite element method
for symmetric second order elliptic problems� Similarly to the mixed �nite ele�
ment method� we have a direct approximation of the vector variable� The main
thrust of our paper is the second formulation �case II of the next section
� In this
case the �nite element solution is either continuous or has continuous normal to
the inter�element boundaries component� The main advantage of the proposed
formulation is that the �nite element spaces are not subject to the LBB condition
and the obtained system is symmetric and positive de�nite�

Let � be a bounded domain in IRN � N � � or �� with boundary � � ���
For the sake of simplicity� in the sequel we suppose that � is a polygon u IR��
or polyhedron in IR�� Let us consider the Dirichlet boundary value problem

Lu � �div �A gradu
 � f in ��
u � � on ��

��


where� as usual

gradu �
�
�u
�x�

� � � � � �u
�xN

�T
�

divq � div �q�� � � � � qN 

T � �q�

�x�
� � � �� �qN

�xN
�

and A � AT � �aij�x


N
i� j�� � x � ��� We assume that the coe�cients of the

matrix A are bounded functions� aij � L���
� while A is a positive de�nite
matrix� i�e� there exist positive constants �� and �� such that

�� y
Ty � yTAy � �� y

Ty ��


for all y � IRN and all x � ���
Denoting �A gradu � p � �p�� � � � � pN 


T the Dirichlet problem ��
 reduces
to a �rstorder system for u and p�

p�A gradu � � in ��

divp� f � � in ��

u � � on ��

��


Note that in various engineering applications the vector variable p represents
a physical quantity �for example� heat or mass �ux� phase velocity� current� etc�

which might be of main interest in the particular application�



Remark� In various applications the right hand side f might be considered as
linear bounded functional on H�

� ��
� i�e� an element in the space H����
 ��
H�

� ��

��
� Then� we can assume that it has the form �see ���	
�

f � f� � div f � where f�� f�� � � � � fN � L���
� ��


In this case instead of ��
 one can introduce a slightly di�erent splitting of the el�
liptic equation into a system of �rst order� namely� p�A gradu � f � and divp�
f� � �� This splitting will give better balanced system which in case II will be
easier to analyze�

Let V and W be two Banach spaces such that u � V � p �W� Based on the
relations ��
� for v � V and q �W we introduce the functional

J�v� q
 � kdivq� fk���� � kq�A grad vk����� ��


where the norms k � k��� and k � k��� will be de�ned later� Thus� the system ��

can be replaced by the minimization problem for the leastsquares functional
��
�

�nd �u� p
 � V �W such that

J�u� p
 � inf
�v�q��V�W

J�v� q
 �
��


Obviously� the solution of the original problem ��
 will make this functional
zero� if the corresponding norms in ��
 are �nite� A particular choice of the norms
in the quadratic functional ��
 will de�ne a particular least�squares method� We
shall consider three di�erent settings which will lead to three di�erent least�
squares methods�

The �rst choice of norms is the most popular and has been used and studied
by many authors �see� e�g� ��	� ���	� ���	� ���	� ���	� ���	� ���	� ���	
� One simply
takes jj�jj��� and jj�jj��� to be the L��norms in the corresponding Banach spaces
of scalar and vector functions� This formulation� included in our paper as case
I� is natural and leads to a standard �nite element method� A weak point of
this approach is the fact that the error estimates are not optimal with respect
to the required regularity of the solution �see Theorem �
� For example� the
convergence rate in H��norm for u is O�h
 for solutions in H���
� Secondly�
there is no e�cient method for solving the resulting system of linear equations�

Analyzing this fact� Bramble et al� ��	 have come to a least�squares formula�
tion in which the norms in ��
 are chosen in more natural way� Namely� jj�jj��� is
the H���norm in V and jj�jj��� is the L

��norm inW� This formulation has several
advantages compared with the previous one� First� the least�squares functional
is well de�ned for f � H����
� Second� the �nite element method for this for�
mulation is optimal with respect to the regularity of the solution� Finally� the
�nite element system is easily preconditioned� However� a major di�culty had
to be overcome in ��	� how to replace the H���norm in the �nite element formu�
lation with a discrete and e�ciently computable norm� which is equivalent to
H�� for function in the �nite element space� This problem has been successfully



resolved in ��	 using the recent advances in the preconditioning techniques for
elliptic problems�

In this note we propose a simpler reformulation of the H���least squares
of Bramble et al� ��	 for the case of symmetric second order elliptic problems�
This reformulation �presented as case II
 leads to a least�squares �nite element
method of optimal with respect to the regularity and the mesh�size h parameter
error estimates�

Finally� for completeness� we also consider a third choice �case III
 of the
norms in ��
� jj�jj��� is the standard L��norm in V and jj�jj��� is the H�div��
�
norm in W� This leads to a C���nite element method with optimal error esti�
mates� but with condition number O�h��
 �here h is the mesh�size parameter
�

In the sequel� by � � � � 
s�� � j � js� � and k � ks� � we shall denote respectively
the inner product� semi�norm and norm of the Sobolev space Hs��
 �see ��	
�
while by � � � � 
s���N � j � js���N and k�ks���N we will denote the inner product�

semi�norm and norm of the space
�
Hs��


�N
�

By C and Ci we shall denote positive generic constants� which can take
di�erent values in di�erent formulas�

� Existence and Uniqueness of the Solution

Let us consider three cases� according to di�erent choice of norms in ��
�

Case I� We set

kvk��� � kvk�� � � kqk��� � kA����qk�� ��N �

V � V� � H�
� ��
 � fv � H���
 � v � � on �g� and

W �W� � H�div� �
 � fq � �L���

N � divq � L���
g�

��


The norm in W� is de�ned by

kqkH�div��� �
�
kqk�����N � kdivqk����

����
�

Taking variations of the functional ��
 with respect to v and q we obtain the
following weak statement of the problem ��
�

�nd �u� p
 � V� �W� such that

a��u� p� v� q
 � l��v� q
 for all �v� q
 � V� �W�� ��


where

a��u� p� v� q
 � �divp� divq
�� � � �A�� p� gradu�q�A grad v
�� ��N � ��


l��v� q
 � �f� divq
�� � � ���


The following assertions hold�



Theorem�� ��see ���	��� Bilinear form ��
 is coercive on V��W�� i�e� there
exists a constant C � � such that for all �v� q
 � V� �W�

a��v� q� v� q
 � C
�
kvk��� � � kqk�H�div���

�
� ���


Theorem�� ��see ���	��� Let f � L���
 � Then the problem ��
 has a unique
solution �u� p
 � V� �W� and the following estimate holds

kuk��� � kpkH�div��� � C kfk��� �

Case II� Let

kvk��� � kvk���� � �L�� v� v

���
�� � � kqk��� � kA����qk�� ��N �

V � V� � H�
� ��
 and W �W� � �L���

N �

���


Under previous assumptions on the matrix A� there exists the inverse operator
L�� � H����
 �

�
H�

� ��

��
� H�

� ��
 �see ���	
� so the norm kvk��� is well
de�ned� Further

kdivp �fk����� � kLu� fk���� � �
�
L�� �Lu� f
� Lu� f

�
�� �

� �Lu� u
�� � � � �u� f
�� � � �L�� f� f
�� �

� �A gradu� gradu
�� ��N � � �u� f
�� � � k fk�����

� �A�� p� p
�� ��N � � �u� f
�� � � k fk����� �

In such a manner� the functional ��
 reduces to

J�v� q
 � �A�� q� q
�� ��N � �q�A grad v� A�� q� grad v
�� ��N

�� �v� f
�� � � k fk����� �
���


Above we have used the de�nition of the vector variable through the gradient
of the solution u of the original problem ��
� However� at this point there is
no guarantee that the pair �u�p
 will minimize the quadratic functional ���
�
Nevertheless� the minimization of the quadratic functional ���
� leads to the
following weak formulation�

�nd �w� r
 � V� �W� such that

a��w� r� v� q
 � l��v� q
 for all �v� q
 � V� �W� � ���


where

a��w� r� v� q
 � �A�� r� q
�� ��N � �r�A gradw�A�� q� grad v
�� ��N � ���


l��v� q
 � �v� f
�� � � ���


Now we can study the relationship between the pair �w� r
 which satis�es the
integral identity ���
 and the solution �u�p
 of the original problem ��
� In order
to compare these two pairs we have to �nd the Euler equation for the problem



���
� Taking �rst ��� q
 and next �v� �
 for v � V� and q � W� we get the
following two integral identities�

�r�A gradw� grad v
�� ��N � �f� v
�� � � �� for all v � V�

and

��r�A gradw�A�� q
�� ��N � �� for all q �W��

By simple manipulations one veri�es that w � �u and r � p� From this
relation one can easily recover the solution of the problem ��
 from the solution
of the problem ���
� Similar analysis can be done in the case when the right�hand
side f includes a term div f �

Similarly to the previous case one shows that the bilinear form ���
 is coercive
and the problem ���
 has a unique solution�

Theorem�� Bilinear form ���
 is coercive on V� � W�� i�e� there exists a
constant C � � such that for all �v� q
 � V� �W�

a��v� q� v� q
 � C
�
kvk���� � kqk��� ��N

�
� ���


Proof� From ���
� it follows

a��v� q� v� q
 � ��A�� q� q
�� ��N � � �q� gradv
�� ��N � �A gradv� grad v
�� ��N

� �
� �A

�� q� q
�� ��N � �
� �A grad v� grad v
�� ��N 


� �
���

kqk��� ��N � ��
� kgradvk

�
�� ��N �

Using ��
 and Poincar�eFriedrichs inequality �see ���	


kvk���� � C kgrad vk��� ��N

we easily get ���
� We note that the constant in ���
 depends on the domain �
and linearly on the ratio ������

Theorem�� If f is an element in H��
� ��
 then the problem ���
 has a unique

solution �u� p
 � V� �W� and

kuk��� � kpk����N � C kfk���� �

Proof� We de�ne the norm in V� �W� by

kvk��� � kqk�� ��N � v � V�� q �W��

From ���
 and ��
 it follows that the bilinear form ���
 is coercive and bounded
on V� �W�� Obviously� the linear form ���
 is bounded on V� �W� and the
result follows from the LaxMilgram lemma �see ���	� ���	
� ut



Case III� Let

kvk��� � kvk��� � kqk��� �
�
kA����qk�����N � kdivqk����

����
�

V � V� � H���
 �H�
� ��
� and W �W� � H�div� �
�

���


Then the functional ��
 reduces to

J�v� q
 � kdivq� fk��� � � kA�����q�A grad v
k��� ��N

�kdiv�q�A grad v
k��� � �
���


The weak formulation of the problem ��
 is

�nd �u� p
 � V� �W� such that

a��u� p� v� q
 � l��v� q
 for all �v� q
 � V� �W� � ���


where

a��u� p� v� q
 � �divp� divq
�� � � �p�A gradu� A��q� gradv
�� ��N

�
�
divp� div �A gradu
� divq� div �A grad v


�
�� �

� ���


l��v� q
 � �f� divq
�� � � ���


The following assertions hold�

Theorem�� Assume that
�aij
�xk

� L���
� i� j� k � �� � � � � N and the domain

� is a convex polygon �polyhedron�� Then there exists a constant C � � such
that for all �v� q
 � V� �W�

a��v� q� v� q
 � C
�
kvk��� � � kqk�H�div���

�
� ���


Proof� According to Theorem �� we have for ���


a��v� q� v� q
 � C
�
kvk��� � � kqk�H�div���

�
� kdivq�L vk��� � � ���


From here it follows

a��v� q� v� q
 � C
�
kvk��� � � kqk��� ��N � kdivqk��� �

�

�kdivqk���� � � �divq� L v
�� � � kL vk����

� C
C	�

�
kvk���� � kqk��� ��N � kL vk����

�
�

���


Since the partial derivatives of the coe�cients aij � i� j � �� � � � � N� are
bounded functions and the domain is a convex polygon �polyhedron
� the so
called �second fundamental inequality� �see ���	
 is valid�

jvj��� � � C� kL vk
�
��� � C� kvk

�
��� � ���


Combining ���
� ���
 and ���
 we obtain ���
� ut



Theorem�� Let the assumptions of the Theorem � hold and f � L���
� Then
the problem ���
 has a unique solution �u� p
 � V� �W� and

kuk��� � kpkH�div��� � C kfk��� �

Proof� Let us de�ne the norm in the space V� �W� by

kvk��� � kqkH�div���� v � V�� q �W��

From ���
 and ��
 it follows that the bilinear form ���
 is coercive and bounded
on V��W�� For f � L���
 the linear form ���
 is bounded on V��W� and by
LaxMilgram lemma �see ���	� ���	
 the result of the theorem easily follows� ut

� Finite Element Approximation

Let Th be a partition of the domain � into �nite elements� � � 	K�ThK �
and h � max

�
diam�K
 � K � Th

�
� Let Vm�h and Wm�h be �nitedimensional

subspaces of Vm andWm� m � �� �� �� which have the following approximation
properties�

inf
vh�Vm�h

kv � vhk��� � C hk kvkk	�� � � m � �� � ���


inf
vh�Vm�h

kv � vhk��� � C hk�� kvkk	�� � � m � � ���


inf
qh�Wm� h

kq� qhk�� ��N � C hl	� kqkl	�� ��N � m � � ���


inf
qh�Wm� h

kq� qhkH�div��� � C hl kqkl	�� ��N � m � �� � ���


where k � � and l � � are integers� Standard choices for Vm�h and Wm�h are
spaces of continuous piecewise polynomial functions� i�e��

Vm�h �
�
vh � Vm � vhjK � Pk�K
 � 
K � Th

�
�

Wm�h �
�
qh �Wm � qh� ijK � Pl�K
 � 
K � Th � i � �� � � � � N

�
�

Here Ps�K
 is the space of polynomials of degree not greater than s on K� In
case II for the vector variable one can also use the Raviart�Thomas mixed �nite
elements ���	 which satisfy ���
 with l � ��

In the following we will assume that the domain � is covered by �nite ele�
ments exactly� and that integration is exact� This assumption will eliminate the
di�culties related to numerical integration and approximation of the domain�

The �nite element approximation of the problems ��
� ���
 and ���
 is�

�nd �uh� ph
 � Vm� h �Wm�h such that

am�uh� ph� � vh� qh
 � lm�vh� qh
 for all �vh� qh
 � Vm�h �Wm�h�
���




where m takes respectively the values �� � and �� From Theorems �� � and �
follows the uniqueness of the solution of the problem ���
 for m � �� � and ��
Moreover� in all three cases the error satis�es the orthogonality condition

am�u� uh� p� ph� vh� qh
 � �

for all �vh� ph
 � Vm� h �Wm�h �
���


Now we estimate the condition number of the linear systems obtained in
���
� Suppose that the �nite element partition is quasi�regular �see ���	
� i�e�
there exists a constant � � � such that

� h � diam�K
 � h ���


for all K � Th and all su�ciently small h�
Let 	m� �� � � � � 	m�Lm and 
m� �� � � � � 
m�Mm

be sets of nodal basis func�
tions in Vm� h and Wm�h� m � �� �� �� We suppose that there exist positive
independent of the grid�size parameter h constants Am� �� Am� �� Bm� � and Bm� �

such that for all real vectors ��m� �� � � � � �m�Lm
 and ��m� �� � � � � �m�Mm



Am� � h
N

LmX
i��

��m� i �

����
LmX
i��

�m� i 	m� i

����
�

�� �

� Am� � h
N

LmX
i��

��m� i � ���


Bm� � h
N

MmX
j��

��m� j �

����
MmX
j��

�m� j 
m� j

����
�

�� ��N

� Bm� � h
N

MmX
j��

��m� j � ���


Notice that such inequalities are ful�lled for all well�known �nite element spaces
for quasi�uniform partitions�

The following assertions hold�

Theorem�� �see ���	�� If ���
 and ���
 are satis�ed the condition number of
linear system ���
 for m � � is O�h��
�

Theorem	� If ���
 and ���
 are satis�ed the condition number of linear system
���
 is O�h��
 for m � � � and O�h��
 for m � ��

Proof� From coercivity and boundness of the bilinear form ���
 follows

C�

�
kvhk

�
�� � � kqhk

�
�� ��N

�
� a��vh� qh� vh� qh


� C�

�
kvhk

�
�� � � kqhk

�
�� ��N

�
�

���


From ���
 and the inverse estimate �see ���	


jvhj��K � C h�� kvhk��K � 
 vh � V�� h � H���
� 
K � Th ���


follows that

kvhk��� � kvhk��� � C h�� kvhk�� � �



Substituting in ���
�

C�

�
kvhk

�
��� � kqhk

�
����N

�
� a��vh� qh� vh� qh


� C� h
�� kvhk

�
�� � � C� kqhk

�
�� ��N � C� h

��
�
kvhk

�
�� � � kqhk

�
����N

�
�

���


Since the system ���
 is symmetric� setting in ���
 vh �
PL�

i�� ��� i 	�� i and

qh �
PM�

j�� ��� j 
�� j and using relations ���
 and ���
 we obtain the �rst part
of the assertion�

For m � � � instead of ���
 we have

C�

�
kvhk

�
�� � � kqhk

�
H�div���

�
� a��vh� qh� vh� qh


� C�

�
kvhk

�
�� � � kqhk

�
H�div���

�
�

where from� using ���
 and ���
� one obtains

C�

�
kvhk

�
�� � � kqhk

�
�� ��N

�
� a��vh� qh� vh� qh


� C
 h
��
�
kvhk

�
�� � � kqhk

�
�� ��N

�
�

From here� in the same manner as in the previous case� we obtain the second
part of the assertion� ut

� Error Estimates

The error estimates are obtained in a standard way using the coercivity and
the boundness of the bilinear forms ��
� ���
 and ���
 and the orthogonality
condition ���
�

C
�
ku� uhk

�
Vm

� kp� phk
�
Wm

�
� am�u� uh� p� ph�u� uh� p� ph


� am�u� uh� p� ph�u� vh� p� qh


� C�

�
ku� uhk

�
Vm

� kp� phk
�
Wm

�����
ku� vhk

�
Vm

� kp� qhk
�
Wm

����
�

���


where vh and qh are arbitrary elements in Vm andWm and k � kVm and k � kWm

denote norms in spaces Vm and Wm� de�ned by ��
� ���
� or ���
� respectively�
From ���
� for m � � � using ���
 and ���
� one gets

ku� uhk�� � � kp� phkH�div��� � C
�
hk kukk	��� � hl kpkl	����N

�

� C hs
�
kukk	�� � � kpkl	�� ��N

�
�

where s � min fk� lg � In such a manner� in the case I one obtains the optimal
convergence rate estimate when k � l � s �

We summarize this result in the following theorem�

Theorem
� ��see ���	��� The solution of the problem ���
 for m � � and
l � k satis�es the error estimate

ku� uhk��� � kp� phkH�div��� � C hk
�
kukk	��� � kpkk	�� ��N

�
�



Now� let us estimate the error for the cases II and III� i�e� m � �� �� First�
for case II from ���
� ���
� ���
  ���
 we obtain

ku� uhk�� � � kp� phk����N � C
�
hk kukk	�� � � hl	� kpkl	�� ��N

�

� C hs
�
kukk	��� � kpkl	�� ��N

�
�

where s � min fk� l� �g �
Finally� for case III from ���
� ���
� ���
 and ���
 we obtain

ku� uhk�� � � kp� phkH�div��� � C
�
hk�� kukk	��� � hl kpkl	�� ��N

�

� C hs��
�
kukk	�� � � kpkl	�� ��N

�
�

where s � min fk� l � �g � Thus� one obtains optimal with respect to the dis�
cretization parameter h order error estimates for both cases II and III when
k � l � � � s � We summarize these error estimates in the following assertion�

Theorem��� The �nite element solutions of the problems ���
 for m � � and
� and l � k � � satisfy respectively the error estimates

ku� uhk�� � � kp� phk����N � C hk
�
kukk	��� � kpkk� ��N

�
� m � ��

ku� uhk�� � � kp� phkH�div��� � C hk��
�
kukk	��� � kpkk� ��N

�
� m � ��

Note that the error estimate for case II �i�e� m � �
 is optimal also with
respect to the regularity of the solution u� For example� the �rst estimate from
Theorem �� holds true for k � � and l � �� i�e� for piece�wise linear elements for
the scalar function u and Piece�wise constant functions for the vector functions
p� This estimate is optimal with respect to both the regularity of the solution
and the order of the step�size parameter h� However� this is not an interest�
ing application of the proposed methods� since it coincides with the standard
Galerkin method with piece�wise linear functions� We can achieve continuity of
the pressure gradient by choosing piece�wise quadratic elements for u and piece�
wise linear elements for p� An obvious choice is piece�wise linear elements for
both the u and p� However� in this case the error estimates will be not optimal
with respect to the order of approximation� i�e� the �nite element solution ph
converges slower that the best approximation of p in the �nite element space�
An optimal error we can get by using Raviart�Thomas elements ���	� The gain in
this case is symmetric and positive de�nite matrix of the �nite element system�

Remark� Using interpolation one can easily obtain estimates of order O�h�
 for
all � � ��� k	 in the case II �i�e� m � �
 and � � ��� k � �	 in the case III�

� Numerical Experiments

Below we present some numerical results for the least�squares method described
in case II� We have considered Poisson equation in a unit square �i�e� A � I



and � � ��� �
�
 with homogeneous Dirichlet boundary data and known smooth
solutions� Namely� we consider�

Example �� f � �x��� x
 � �y��� y
 and u � �x��� x
y��� y
�

Example �� f � ���sin��x
sin��y
 and u � sin��x
sin��y
�

In Tables � and � we report the computational results for Examples � and ��
respectively� The l��error for u is computed as �

P
�u�P 
� uh�P 



�
���h� where
the summation is over all nodes P of the mesh and is divided by the maximum
value of the solution over the domain �� In a similar way the max�error is
computed as max ju�P 
�uh�P 
j� where the maximum is over all nodes P of the
mesh and divided by the maximum value of the solution over the domain �� In
a similar manner we de�ne the errors for the vector �eld p�

Table �� Error of the least�squares solution �case II� for Example �

h � ���� h � ���� h � ���� h � ���� h � ����� � order

l��error for u ����e�� ����e� ����e� ���e�� ����e�� �
max�error for u ����e�� ����e�� ��
e� ����e� ����e�� �
l��error for p ���e�� ����e�� ����e� ����e� ���e�� ���

max�error for p ����e�� 
���e�� ����e�� ����e�� ����e�� �

� unknowns �� 
�  �� �� �� �� ���

Table �� Error of the least�squares solution �case II� for Example �

h � ���� h � ���� h � ���� h � ���� h � ����� � order

l��error for u ���e�� ����e� ����e� ����e�� ����e�� �
max�error for u 
���e�� ����e�� ���
e� ��e� ��e�� �
l��error for p ��
e�� ����e�� 
��
e� ��
�e� ����e�� ���

max�error for p ���e�� ���e�� 
���e�� ���e�� ��
�e�� �

� unknowns �� 
�  �� �� �� �� ���

From the computational results one can conclude that for smooth solutions
the error behaves as predicted by the theory� A better convergence rate is ob�
served in the L��norm for the vector��eld p� We have not considered any post�
processing of the results� neither we have searched for superconvergence points�
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