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Abstract. A theoretical analysis of the mixed least—squares finite ele-
ment approximations to Dirichlet problem for second—order linear ellip-
tic equations with variable coefficients in bounded domains is presented.
Three different least-squares functionals are introduced and the coerciv-
ity of the corresponding weak forms is proved. It is shown that the finite
element approximation are stable and yield symmetric positive definite
systems. The conditioning of the linear systems is discussed and error
estimates for the approximate solutions are obtained.

1 Introduction

Many classical boundary value problems for second order linear elliptic equa-
tions can be transformed into the first order systems of equations, involving the
gradient of solution as a new unknown. Such formulation of the problem is called
mixed formulation (see [9]).

The unknown functions in the mixed formulations often have appropriate
physical interpretation (temperature and flux, displacement and stress etc.) and
give direct information about the considered quantities. For example, the vector
variable (the flux) belongs to the space H(div;2) and has a trace (in a weak
sense) of the normal component on each surface and therefore the finite element
space will consist of vector functions with continuous normal component at the
inter-element boundaries. From numerical point of view, the nodal values of the
solution gradient are obtained directly from the discrete problem, rather than
by post-processing in the standard formulation.

Ritz—Galerkin formulation of the finite element method for mixed problems
requires relatively weak smoothness of the input data, which in turn requires
weak assumptions for the smoothness of finite element approximations. On the
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other hand, the finite dimensional spaces used in the Ritz—Galerkin method
must satisfy so called LBB condition (Ladyzhenskaya—Babuska—Brezzi, see [20],
[3], [7]) which substantially restrict the choice of feasible finite element spaces.
Moreover, the solution is a stationary point of the saddle point functional, while
the corresponding linear system is symmetric but indefinite. This seriously re-
strict the possibilities of a good choice of a solution algorithm.

Contrary to the Ritz—Galerkin method, the least—squares method for mixed
problems is not subject to LBB condition, while the corresponding linear system
is symmetric and positive definite. This approach has been applied to various
second order problems [2], [10], [11], [14], [17], [18], [23], [24], [25], Stokes equa-
tions [5], [8], [13], [15], [16], and Navier-Stokes equations [4]. In this note we
discuss three particular formulations of the least-squares finite element method
for symmetric second order elliptic problems. Similarly to the mixed finite ele-
ment method, we have a direct approximation of the vector variable. The main
thrust of our paper is the second formulation (case II of the next section). In this
case the finite element solution is either continuous or has continuous normal to
the inter-element boundaries component. The main advantage of the proposed
formulation is that the finite element spaces are not subject to the LBB condition
and the obtained system is symmetric and positive definite.

Let 12 be a bounded domain in RY, N = 2 or 3, with boundary I" = 2.
For the sake of simplicity, in the sequel we suppose that 2 is a polygon u IR?,
or polyhedron in IR®. Let us consider the Dirichlet boundary value problem

Lu=—div(Agradu) = f in (2,
u=20 on I

(1)

where, as usual

T
_ (o2 o
gradu—(a—;‘l,...,ﬁ) ,
: 1 T _ 9q1 Oqn
divg =div (g1, - .-, gn) =gt g,

and A = AT = (a;;(2))};—1, = € £2. We assume that the coefficients of the
matrix A are bounded functions, a;; € L*({2), while A is a positive definite
matrix, i.e. there exist positive constants ay and a; such that

ay y<y Ay<aiy'y (2)
for all y € RY and all z € 0.
Denoting —Agradu =p = (p1, ..., pn)7 the Dirichlet problem (1) reduces

to a first—order system for v and p:
p+ Agradu =0 in 2,
divp—f=0 in (2, (3)
u =0 on I

Note that in various engineering applications the vector variable p represents
a physical quantity (for example, heat or mass flux, phase velocity, current, etc.)
which might be of main interest in the particular application.



Remark. In various applications the right hand side f might be considered as
linear bounded functional on Hg({2), i.e. an element in the space H 1(§2)
(H$(£2))'. Then, we can assume that it has the form (see [27]):

f = fo+divf, where fos f1, ..., fn € L*(12). (4)

In this case instead of (3) one can introduce a slightly different splitting of the el-
liptic equation into a system of first order, namely, p+ A gradu = f, and divp—
fo = 0. This splitting will give better balanced system which in case II will be
easier to analyze.

Let V and W be two Banach spaces such that u € V, p € W. Based on the
relations (3), for v € V' and q € W we introduce the functional

J(v, @) = [ldivag = flIty) + lla+ Agradvlf,), (5)

where the norms || - [|1) and || - [|(2) will be defined later. Thus, the system (3)
can be replaced by the minimization problem for the least—squares functional
(5):
find (u,p) € VxW such that
_ (6)
J(“’a p) - (v,q)lg‘f;xw J(Ua q) .

Obviously, the solution of the original problem (1) will make this functional
zero, if the corresponding norms in (5) are finite. A particular choice of the norms
in the quadratic functional (5) will define a particular least-squares method. We
shall consider three different settings which will lead to three different least-
squares methods.

The first choice of norms is the most popular and has been used and studied
by many authors (see, e.g. [2], [10], [11], [17], [18], [23], [24], [25]). One simply
takes ||.||(1) and ||.]|(2) to be the L*-norms in the corresponding Banach spaces
of scalar and vector functions. This formulation, included in our paper as case
I, is natural and leads to a standard finite element method. A weak point of
this approach is the fact that the error estimates are not optimal with respect
to the required regularity of the solution (see Theorem 9). For example, the
convergence rate in H'-norm for u is O(h) for solutions in H3({2). Secondly,
there is no efficient method for solving the resulting system of linear equations.

Analyzing this fact, Bramble et al. [6] have come to a least-squares formula-
tion in which the norms in (5) are chosen in more natural way. Namely, |[[.|[1) is
the H~'-norm in V" and ||.||») is the L?-norm in W. This formulation has several
advantages compared with the previous one. First, the least-squares functional
is well defined for f € H1(£2). Second, the finite element method for this for-
mulation is optimal with respect to the regularity of the solution. Finally, the
finite element system is easily preconditioned. However, a major difficulty had
to be overcome in [6]: how to replace the H~'-norm in the finite element formu-
lation with a discrete and efficiently computable norm, which is equivalent to
H~! for function in the finite element space. This problem has been successfully



resolved in [6] using the recent advances in the preconditioning techniques for
elliptic problems.

In this note we propose a simpler reformulation of the H~!-least squares
of Bramble et al. [6] for the case of symmetric second order elliptic problems.
This reformulation (presented as case II) leads to a least-squares finite element
method of optimal with respect to the regularity and the mesh-size h parameter
error estimates.

Finally, for completeness, we also consider a third choice (case III) of the
norms in (5): [|.||(1) is the standard L?-norm in V" and ||.||(2) is the H(div; £2)-
norm in W. This leads to a C'-finite element method with optimal error esti-
mates, but with condition number O(h=*) (here h is the mesh-size parameter).

In the sequel, by (-, -)s, 2, ]| -|s,2 and || -||s, 2 we shall denote respectively
the inner product, semi-norm and norm of the Sobolev space H*({2) (see [1]),
while by (-, )s,2;n, |*|s, 25 and ||-||s, 2, v we will denote the inner product,

semi-norm and norm of the space (H*(12))
By C and C; we shall denote positive generic constants, which can take
different values in different formulas.

2 Existence and Uniqueness of the Solution

Let us consider three cases, according to different choice of norms in (5).

Case I. We set,

lollay = lollo, 2 llall) = 147" 2allo, ;v
V=Vi=H}2)={ve H () :v=0 on I'}, and (7)
W =W, = H(div; 2) = {q € (L*(2))Y : divqg € L*(2)}.

The norm in W3 is defined by

. 1/2
lall ez aiv; 2) = (”q”%,Q;N + ||d1Vq“(2),9) :

Taking variations of the functional (5) with respect to v and q we obtain the
following weak statement of the problem (3):

find (u, p) € Vi x W1 such that
aj (U’a p;v, q) = ll (Ua q) for a‘ll (Ua q) € Vi X Wl: (8)
where

ax (U, | SHOM q) = (le P, div q)O, o+ (A71 P + gradu)q"_ Agradv)ﬂ, 2; N, (9)
Li(v, @) = (f, diva)o, o- (10)

The following assertions hold:



Theorem 1. —(see [24])—. Bilinear form (9) is coercive on Vi x W1, i.e. there
exists a constant C' > 0 such that for all (v, q) € Vi x Wy

ai (v, 4;v, @) = C ([0l o + lallFraiv: o)) - (11)

Theorem 2. —(see [24])—. Let f € L*(£2) . Then the problem (8) has a unique
solution (u, p) € Vi x W1 and the following estimate holds

llull1, @ + 1Pl E(div: 2) < Cllfllo, 2 -

Case II. Let

ol = loll-1.0 = (£ 0, )5, llalle) = 147 2dllo, ;v

V=V,=HYQ) and W=W,=(L*)". 12)

Under previous assumptions on the matrix A, there exists the inverse operator
!

L7t H Q) = (H§(2)) — H(82) (see [19]), so the norm |[v]|¢1) is well
defined. Further
Idivp —fl|Zy o = 1Lu—flI2) o = (L7 (Lu—f), Lu=Ff), ,
= (Lu, u)o,2 —2(u, flo,e + (L7 f, flo,@
= (Agradu, gradu)o, o;n — 2 (u, flo,.e + | 21 o
=(A7'p, Plo, ;N —2(u, flo,e + | flIZ1 o

In such a manner, the functional (5) reduces to

J(v,q) = (A q, q)o,o;~ + (q+ Agradv, A~ q + gradv)o, o; v
—2(v, flo,2 +| f||31,9-

Above we have used the definition of the vector variable through the gradient
of the solution w of the original problem (1). However, at this point there is
no guarantee that the pair (u,p) will minimize the quadratic functional (13).
Nevertheless, the minimization of the quadratic functional (13), leads to the
following weak formulation:

(13)

find (w, r) € Vo x W2 such that
as(w, r;v, q) =l(v, q) forall (v, q) € Vo x Wy, (14)
where
as(w, r;v, q) = (A7'r, @)o, 0. v + (v + Agradw, A~ q + gradv)o, o. v, (15)
l2(v, q) = (v, f)o, 2 (16)

Now we can study the relationship between the pair (w, r) which satisfies the
integral identity (14) and the solution (u, p) of the original problem (3). In order
to compare these two pairs we have to find the Euler equation for the problem



(14). Taking first (0, q) and next (v, 0) for v € V2 and q € W3 we get the
following two integral identities:

(r+ Agradw,gradv)o, o; v — (f,v)0,2 =0, for all v € V5

and
(2r + Agradw, A q)o, . ; = 0, for all g € W.

By simple manipulations one verifies that w = 2u and r = p. From this
relation one can easily recover the solution of the problem (3) from the solution
of the problem (14). Similar analysis can be done in the case when the right-hand
side f includes a term div f.

Similarly to the previous case one shows that the bilinear form (15) is coercive
and the problem (14) has a unique solution.

Theorem 3. Bilinear form (15) is coercive on Vo x Wy, i.e. there ezists a
constant C > 0 such that for all (v, q) € Vo x Wy

az(v, q;v, @) > C (|[vllf o + llalle, o; ) - (17)
Proof. From (15), it follows

2(‘4_1 q, q)07 2;N +2 (q7 gradv)o, 2; N + (A grad’l}, grad ’U)O7 ;N
> (A7 q, 9)o, o; v + 5(Agradv, gradv)o, o, n)

> sezllallf, o v + % llgradvllf o, v
Using (2) and Poincaré-Friedrichs inequality (see [12])
0I5, < C llgradvll§ o, n

we easily get (17). We note that the constant in (17) depends on the domain (2
and linearly on the ratio a; /ag.

Theorem 4. If f is an element in H, *(§2) then the problem (14) has a unique
solution (u, p) € Vo X Wa and

lully, @ +lIpllo, 2;v < ClIfll-1,2-
Proof. We define the norm in V5 x Wy by
lvlli, 2 + llallo, 2; velz, qe W,
From (17) and (2) it follows that the bilinear form (15) is coercive and bounded

on V5 x Way. Obviously, the linear form (16) is bounded on Vo x Wy and the
result follows from the Lax—Milgram lemma (see [22], [12]). a



Case III. Let

Ivlloy = o, Nalley = (147 2all gy + divall o)
V=V,=H(Q)NHYN), and W =W,;=H(div; Q).
Then the functional (5) reduces to
S @) = [diva~flf o + 47 A @ Amado o
+||div(q + Agradv)”%ﬂ.
The weak formulation of the problem (3) is
find (u, p) € V3 x W3 such that
az(u, p;v, q) =I3(v, q) forall (v, q) € Vs x W3, (20)
where
as(u, p;v, q) = (divp, divq)e, o + (p + Agradu, A~'q + gradv)o, o; 5
+(divp + div (A grad u), divq + div (4 grad v))o’ o (21)

l3(v, @) = (f, diva)o, - (22)

The following assertions hold:

Theorem 5. Assume that %aTiZ € L>*(), i,j,k=1,..., N and the domain

2 is a convex polygon (polyhedron). Then there exists a constant C > 0 such
that for all (v, q) € V3 x W3

az(v, 4;v, @) = C ([vll2, o + lallFraiv: 2)) - (23)
Proof. According to Theorem 1, we have for (21)
az(v, @3, @) > C ([ollf, o + llalliraiv; ) + ldiva = Lo[3 o (24)
From here it follows
as(v, v, @) = C ([[vll o + lallf o, n + lldivallf o)
+Hdivall§ o —2(diva, Lv)o, e + L0[lF o (25)

> o1 (Il o + lallf, o, n + L0113, )

Since the partial derivatives of the coefficients a;5, i¢,j = 1,..., N, are
bounded functions and the domain is a convex polygon (polyhedron), the so
called ”second fundamental inequality” (see [21]) is valid:

03, 2 < CLILIG o + Ca vl o (26)

Combining (24), (25) and (26) we obtain (23). O



Theorem 6. Let the assumptions of the Theorem 5 hold and f € L*({2). Then
the problem (20) has a unique solution (u, p) € V3 x W3 and

lull2, 2 + 1Pl e (div: 2) < Cllfllo, 2 -

Proof. Let us define the norm in the space V3 x W3 by
||U||2y0 + ||q||H(div; 2) (S ‘/37 q¢€ Ws.

From (23) and (2) it follows that the bilinear form (21) is coercive and bounded
on V3 x W3. For f € L%(2) the linear form (22) is bounded on V3 x W3 and by
Lax-Milgram lemma (see [22], [12]) the result of the theorem easily follows. O

3 Finite Element Approximation

Let Tp be a partition of the domain (2 into finite elements, 2 = Uger, K,
and h = max{diam(K) : K € T,}. Let V;,,, and W, j, be finite-dimensional
subspaces of V,;, and W,,,, m = 1, 2, 3, which have the following approximation
properties:

inf o —onlh, 0 < CB* o]l 0, m=1,2 (27
VhEVin, n

inf lv—wallz,0 <CRE 0llksa, 0, m =3 (28)
Vh€EVim, n

inf  [la—danllo,o;5 < CAT [|allis1, o; N, m =2 (29)
ahEWm, b

inf fla— anll#@ive) < CH Al o, m=1,3 (30)
ahEWm b

where £ >0 and [ > 0 are integers. Standard choices for V,,, » and W, j are
spaces of continuous piecewise polynomial functions, i.e.,

Vin,n = {vn € Vin s vn|x € Pi(K), YK € Th},
Woh={an € Wi taqnilk €EPi(K), VKE€T,; i=1,...,N}.

Here Ps(K) is the space of polynomials of degree not greater than s on K. In
case II for the vector variable one can also use the Raviart-Thomas mixed finite
elements [26] which satisfy (29) with [ > 0.

In the following we will assume that the domain (2 is covered by finite ele-
ments exactly, and that integration is exact. This assumption will eliminate the
difficulties related to numerical integration and approximation of the domain.

The finite element approximation of the problems (8), (14) and (20) is:

find (Uh, ph) E Vi, h X Wy gy such that (31)
A (Uhy Ph» Vhy dn) = lm(vn, Q) for all (va, qn) € Vinn X W,



where m takes respectively the values 1, 2 and 3. From Theorems 1, 3 and 5
follows the uniqueness of the solution of the problem (31) for m =1, 2 and 3.
Moreover, in all three cases the error satisfies the orthogonality condition

am (U — up, P— PhiVh, qn) =0

(32)
for all  (vn, Pr) € Vi, o X Wi
Now we estimate the condition number of the linear systems obtained in
(31). Suppose that the finite element partition is quasi-regular (see [12]), i.e.
there exists a constant § > 0 such that

§h < diam(K) < h (33)

for all K € 7}, and all sufficiently small h.

Let ©m,1, .-+ Ym,L,, and ¥, 1, ..., ¥y m,, be sets of nodal basis func-
tions in Vj, p, and Wy, , m = 1, 2, 3. We suppose that there exist positive
independent of the grid-size parameter h constants A, 1, Am, 2, Bm,1 and By, o

such that for all real vectors (am,1, ..., @m,L,.) and (Bm, 1, - .-, Bm, M,,)
Lo Lom 2 Lom
A BN Y ad <D i omi < Apa BN Y an i, (34)
i=1 i=1 0,8 i=1
My, My, 2 My,
B BNy B i <\ D2 B P i < B b Y 6 (39)
j=1 j=1 0,2; N j=1

Notice that such inequalities are fulfilled for all well-known finite element spaces
for quasi-uniform partitions.
The following assertions hold:

Theorem 7. (see [24])— If (34) and (35) are satisfied the condition number of
linear system (31) for m =1 is O(h™?).

Theorem 8. If (34) and (35) are satisfied the condition number of linear system
(31) is O(h=2) for m =2, and O(h™*) for m = 3.

Proof. From coercivity and boundness of the bilinear form (15) follows

C1 (llonllF, o + llanll, o, &) < a2(vn, an;vn, an)

(36)
< Co (llonllf o + lanlld o, n) -

From (33) and the inverse estimate (see [12])
|'Uh|1,K §0h71 ||Uh||0,K; Vo, € Vo, CHl(Q), VK €T, (37)

follows that
onllo, 2 < llvnlly, @ < Ch™lvnllo, 2 -



Substituting in (36),

C1 (llonllg, o + llarlls, o, &) < a2(vn, an; vn, an)

- _ (38)
< Csh2|lunll o + Callanlls o, v < Coh™ (lonllf o + llanllg o, ) -

Since the system (31) is symmetric, setting in (38) v, = Efjl Qs ;@2 ; and
an = E;M:zl B2, ; ¥ ; and using relations (33) and (35) we obtain the first part
of the assertion.
For m = 3, instead of (36) we have
C1 (lonll3, @ + Nanllzraiv; o)) < as(vn, anson, an)
<Gy (“Uh“g(z + ||Qh||%1(div; Q)) )
where from, using (33) and (37), one obtains
C1 (lloallg, o + llanlls, o, &) < az(vn, an;vn, an)
< Cs bt (|lvall, @ + llanllf, ; v) -

From here, in the same manner as in the previous case, we obtain the second
part of the assertion. O

4 Error Estimates

The error estimates are obtained in a standard way using the coercivity and
the boundness of the bilinear forms (9), (15) and (21) and the orthogonality
condition (32):

C (llu = unll},, + IIp — Prlldy, ) < @m(u—un, P — Pr;u— un, P — Pr)

= am(u — Un, P — Ph;U — U, P — dn) (39)

1/2 1/2
<Ci(lu—unlly, +llp—pully,) " (lu—wvll}, +1p—arlliy,)

where vj, and qy, are arbitrary elements in V;,, and W,,, and || - ||v,, and || - ||w,,
denote norms in spaces V,, and W, defined by (7), (12), or (18), respectively.
From (39), for m = 1, using (27) and (30), one gets
lu = unll, @ + [P = Prllgaiv o) < C (B* ullir, 2 + B [[pllit1, 2, )
< Oh° (|lullk+r, @ + IPllerr, 2 nv) 5

where s = min {k, [}. In such a manner, in the case I one obtains the optimal
convergence rate estimate when k=1=s.
We summarize this result in the following theorem:

Theorem 9. —(see [24])—. The solution of the problem (31) for m =1 and
l =k satisfies the error estimate

lu = unlli, @ + 1P = Pallaaiv: o) < Ch* (lullesr, @ + 1PN+, 2 v) -



Now, let us estimate the error for the cases II and III, i.e. m = 2, 3. First,
for case II from (39), (12), (27) — (30) we obtain

lu—unlli, 2 + 1P = Pallo, 2 v < C (B¥ lullesr, @ + A IDllis, 2 )
<O (1ullkrs, @ + 1Pl 2: 5) 5

where s = min {k, [ + 1}.
Finally, for case III from (39), (18), (28) and (30) we obtain

lu = unll2, @ + 1P = Pallaaiv; 2) < C (B ullisr, 2 + b [Pllir, 25 )
<Ch 7 (lullerr, 2 + Pl 2:n) 5

where s = min{k, [ + 1}. Thus, one obtains optimal with respect to the dis-
cretization parameter h order error estimates for both cases II and IIT when
k=1+1=s. We summarize these error estimates in the following assertion:

Theorem 10. The finite element solutions of the problems (31) for m =2 and
3 and | = k — 1 satisfy respectively the error estimates

lu = unlls, 2 + [P = Pallo, 2 v < CB* ([ullesr, 2 + [Pllk, 2 ), m =2,

lu = unll2, @ + 1P = Prllaaiv 2) < CR*Y (lullksr, 2 + [pllk, 2sv),  m=3.

Note that the error estimate for case II (i.e. m = 2) is optimal also with
respect to the regularity of the solution u. For example, the first estimate from
Theorem 10 holds true for £ = 1 and [ = 0, i.e. for piece-wise linear elements for
the scalar function u and Piece-wise constant functions for the vector functions
p. This estimate is optimal with respect to both the regularity of the solution
and the order of the step-size parameter h. However, this is not an interest-
ing application of the proposed methods, since it coincides with the standard
Galerkin method with piece-wise linear functions. We can achieve continuity of
the pressure gradient by choosing piece-wise quadratic elements for u and piece-
wise linear elements for p. An obvious choice is piece-wise linear elements for
both the u and p. However, in this case the error estimates will be not optimal
with respect to the order of approximation, i.e. the finite element solution py
converges slower that the best approximation of p in the finite element space.
An optimal error we can get by using Raviart-Thomas elements [26]. The gain in
this case is symmetric and positive definite matrix of the finite element system.

Remark. Using interpolation one can easily obtain estimates of order O(h®) for
all @ € [0, k] in the case IT (i.e. m =2) and « € [0,k — 1] in the case IIL.

5 Numerical Experiments

Below we present some numerical results for the least-squares method described
in case II. We have considered Poisson equation in a unit square (i.e. A = I



and 2 = (0,1)?) with homogeneous Dirichlet boundary data and known smooth
solutions. Namely, we consider:

Example 1: f = 82(1 —z) + 8y(1 — y) and u = 4z(1 — z)y(1 — y).
Example 2: f = 272sin(nz)sin(my) and u = sin(7wz)sin(ry).

In Tables 1 and 2 we report the computational results for Examples 1 and 2,
respectively. The ly-error for u is computed as (3 (u(P) — up(P))?)*/?h, where
the summation is over all nodes P of the mesh and is divided by the maximum
value of the solution over the domain (2. In a similar way the max-error is
computed as max |u(P) — up(P)|, where the maximum is over all nodes P of the
mesh and divided by the maximum value of the solution over the domain (2. In
a similar manner we define the errors for the vector field p.

Table 1. Error of the least-squares solution (case II) for Example 1
| [h = 1/10[h = 1/20[h = 1/40[h = 1/80]h = 1/160[~ order]
ls-error for u 2.10e-2 | 5.60e-3 | 1.44e-3 | 3.64e-4 | 9.15e-5 2
magz-error for u|| 5.69e-2 | 1.55e-2 | 3.97e-3 | 1.00e-3 | 2.52e-4 2
l>-error for p || 3.22e-2 | 1.18e-2 | 4.24e-3 | 1.50e-3 | 5.32e-4 1.5
maz-error for p|| 1.02e-1 | 7.12e-2 | 4.02e-2 | 2.12e-2 | 1.11e-2 1
# unknowns 239 793 3113 | 12361 | 50 066

Table 2. Error of the least-squares solution (case II) for Example 2
| [h = 1/10[h = 1/20[h = 1/40[h = 1/80]h = 1/160[~ order]
ls-error for u 2.36e-2 | 6.28¢e-3 | 1.61e-3 | 4.06e-4 | 1.02e-4 2
maz-error for u|| 7.29e-2 | 2.04e-2 | 5.27e-3 | 1.33e-3 | 3.34e-4 2
l>-error for p || 6.37e-2 | 2.26e-2 | 7.87e-3 | 2.74e-3 | 9.59e-4 1.5
maz-error for p|| 2.30e-1 | 1.36e-1 | 7.09e-2 | 3.58e-2 | 1.79e-2 1
# unknowns 239 793 3113 | 12361 | 50 066

From the computational results one can conclude that for smooth solutions
the error behaves as predicted by the theory. A better convergence rate is ob-
served in the L?-norm for the vector-field p. We have not considered any post-
processing of the results, neither we have searched for superconvergence points.
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