
Object�oriented structures for Domain

Decomposition methods

J� Gopalakrishnan� R� Lazarov� J� Pasciak

Abstract

A set of data structures useful in implementing domain decomposi�

tion methods are described� A code that uses these data structures to

implement the conjugate gradient method� with the operator evaluations�

inner�products and vector additions done in parallel� is described� and its

parallel speedup is analyzed� Possible extensions to the code are pointed

out�

� Introduction

This report describes a set of object�oriented structures useful in implementing
domain�decomposition methods for solving �nite element systems� In particular�
it is suited for massively parallel computations of �ows in porous media�

To explain the approach� suppose we are required to solve a �ow equation
�pressure� saturation� concentration etc�� for a given domain subject to various
boundary conditions and a source term� The given domain is triangulated into
�nite elements� and the resulting mesh is split into sub�domains of almost equal
size and minimal interface �like in �gure ��� Domain decomposition deals with
methods to solve the system on the whole domain by doing independent com�
putations on separate sub�domains and transfering data between sub�domains
when necessary� Since the whole computation is broken up into computationally
independent tasks on sub�domains� a sub�domain with its data and functional�
ity� may be associated with one of a number of concurrent processes�

A sub�domain may therefore be thought of as an object processing its own
data� and communicating with other sub�domain objects� This� and the struc�
tured nature of �nite element computations� makes the choice of language as
C�� irresistible� Further� since each sub�domain operates on its own data� we
may expect to execute the code in distributed memory parallel machines �and
certainly shared memory ones��

A code that provides such a sub�domain class and uses it to parallelise the
operator evaluations� inner�products and vector additions that occur in the con�
jugate gradient method is presently available� Since the current code has been
written with the objective of demonstrating parallelism of the proposed struc�
tures� incorporation of a wide range of physical parameters for input has received
lesser priority� In its present state� it can compute the piecewise linear �nite

�



Figure �	 Domain Decomposed

element approximation to the solution of �
u � f� with zero Dirichlet or free
Neumann boundary condition� on arbitrary triangulations� However� the struc�
tures are designed so that extension to more general equations and boundary
conditions are easy to accomplish� and this will indeed be the next step in the
development of this code� We �rst explain the data structures and procedures
used in the code� Next� conventions used in reading input to the program are
given� Finally we report some examples that were run to illustrate the code
performance�

� The code structure

The aim is to solve a �nite element problem on a large domain by partitioning
the domain into sub�domains� and assigning the sub�domains and their asso�
ciated data to processors� The computation required to get the �nite element
approximation need to be reduced to parallel computations on the sub�domains
plus some interface communications�

It is also required that the classes constructed be general enough to permit
implementation of a variety of Domain Decomposition methods �� ���

With these in mind� data structures are designed� To get an overview of
the structure of the code refer �gure  in page �� Note that �gure  is only a
guideline� and all features there are not as yet implemented�





D
om

ai
nD

ec
om

pP
ro

bl
em

R
ig

ht
 h

an
d 

si
de

 f
un

ct
io

n
E

st
im

at
e 

er
ro

r
C

oe
ff

ic
ie

nt
s 

in
 p

.d
.e

..
C

om
pu

te
 G

al
er

ki
n 

r.
h.

s.

M
es

h
B

ou
nd

ar
y

St
ri

p
So

lu
tio

n
R

.h
.s

.
   

L
oc

al
 S

ol
ve

rs
: (

1)
PC

G
 (

2)
FF

T
 (

3)
 M

ul
tig

ri
d

Pa
ck

et
s

Se
nd

R
ec

ei
ve

E
le

m
en

ts
N

od
es

FE
M

 O
pe

ra
to

r 
(l

oc
al

) 
ac

tio
n

N
od

es
A

re
a

 A
ttr

ib
ut

es
St

if
fn

es
s 

M
at

ri
x

xy
-c

o-
or

ds
A

ttr
ib

ut
es

Su
bD

om
ai

n

Figure 	 Objects and their dependencies

�



��� Classes of Problems

An abstract Domain Decomposition Problem class �DomainDecompProblem� is
constructed� from which various speci�c problems can be derived �see �gure ���
each derived problem di�ering in the way it will solve the domain decomposition
problem�

DomainDecompProblem

NonOverlapProblem OverlappingProblem ParallelPCGProblem

With various preconditioners With various precondtionersWith various preconditioners

Figure �	 Problem classes

Any object belonging to a Domain Decomposition class must have a def�
inition of coe�cient functions and the right hand side function of the partial
di�erential equation to be solved� In the event the right hand side function
is known only discretely� the routine that can compute the right hand side of
Galerkin equations may be overloaded to work with such discrete data�

�ParallelPCGProblem� is derived from �DomainDecompProblem�� It can
�Solve��� the Domain Decomposition Problem using Preconditioned Conjugate
Gradient iterations� by taking advantage of the fact that Conjugate Gradient
can be coded to be run in parallel� Conjugate Gradient is coded as a template
which can operate on any structure irrespective of how the structure stores the
vector of values iterated �see subsection ���� The supporting routines needed
by Conjugate Gradient	 the �nite element matrix � vector multiplications� the
l� inner�product� scalar�multiplication and additions of vectors� can all be done
in parallel locally on each SubDomain and corrected to true global values by
communicating with neighboring SubDomains� At run time� each processor
calls Conjugate Gradient� The supporting routines �operator evaluation� inner�
product� scalar multiplication and addition of vector structures� of each invoked
conjugate gradient communicate with supporting routines of conjugate gradients
invoked in other processors� The net result is that this parallel process mimics
a serial conjugate gradient� i�e�� the residual norms� the scaling factor for search
direction etc� are all the same as a serial conjugate gradient applied to the
problem on the un�partitioned domain� The results should di�er only due to
computer round�o� errors�

however the supporting routines communicate with other processors� so that
the net result is that each of the initiated Conjugate Gradient�s behave the same
way �residual norms� the scaling factor for search direction etc� are all the same��

Code Extendibility� Another derived class of �DomainDecompProblem� that
will be coded in future is called �NonOverlapProblem�� This class will have a

�



di�erent �Solve���� It will implement a more complicated Domain Decompo�
sition algorithm	 To �nd a �nite element projection u onto the �nite element
space Sh� given by A�u� v� � �f� v� �v � Sh we solve problems on smaller sub�
domains �i �with corresponding local �nite element spaces S�

h��i� � f� � Sh 	
supp��� � ��ig � and correct as follows�

�� Compute ui on S�
h��i� that solves

A�ui� �� � �f� �� �� � S�
h��i�

� Compute � that solves the following problem on the interface boundaries
created when the domain was broken up�

h�� �i � �f� ����

mX

i��

A�ui� ��� �� � Sh���

where � � �� � �i��i� Sh��� consists of restrictions of basis functions
with nodes on �� �� for a � � Sh��� is the trivial extension �by �� of �
into � and h�� �i form is de�ned as h�� �i � A��� � ���� with �� and ��
standing for discrete harmonic extensions of � and � into ��

�� Compute uh� the discrete harmonic extension of � computed in step ��
and add it to ui of step ���

u � uh �

mX

i��

ui

to get the �nal solution�

For this algorithm� usually referred to as the non�overlapping domain decom�
position algorithm �or the Schur complement method�� it is well�known how to
precondition the boundary problem �step �� The preconditioner will also be im�
plemented� In fact presently a serial code with simulated parallelism exists that
implements this algorithm with almost the same data structures as explained
here�

Overlapping Domain Decomposition algorithms may be implemented in fu�
ture by constructing yet another derived class �OverlappingProblem�� Note
that the de�nitions of communicating objects �Packets� �see sub�section ���
are amorphous enough for it to be acceptable as communicating objects in a
possible implementation of overlapping domain decomposition algorithms�

��� Sub�domains

A �SubDomain� basically consists of a �Mesh� �see subsection ���� a bound�
ary �see ���� and an optional Strip� Finite Element structural requirements

�



are taken care of �Mesh�� while all communication structures are in �SubDo�
mainBdry��

The member Strip is a collection of triangles which have at least one node
on the interface boundaries of �SubDomain� �interface boundary meaning the
boundaries created while decomposing the original domain into sub�domains��
The constructor for �SubDomain� has the option for leaving Strip unconstructed�
as Strip is not a structural necessity for all kinds of �DomainDecompProblem�s�

Code Extendibility� SubDomains can solve Finite Element problems posed
on them by using preconditioned Conjugate Gradient� If the SubDomain is
square with uniform triangulation� it can solve Poisson�s equation faster using
Sine Transform� �A Multigrid solver for nested meshes is also in the works��
The ability to do local solves is not utilised by �ParallelPCGProblem�� but will
be useful for other problems� if and when they are implemented�

��� Sub�domain boundaries and communications

�SubDomainBdry� is a collection of �Packet�s� It can send or receive packets
to or from other sub�domains� This is the way all communications are handled�
A �Packet� between SubDomains Si and Sj is a subset of the set of vertices
�or rather the set of vertex numbers� that are both in Si and Sj � It also has
space to contain data on those vertices� Note that a node that is shared by
Si and Sj though conceptually a single entity will exist dichotomously in both
the processor containing Si and in the one containing Sj � Necessarily therefore�
�Packet�s exist in pairs � a �Packet� of Si that transmits information to Sj
has a mirror image of itself in Sj that will transmit information from Sj to Si�
�Packet�s may therefore be thought of as communication bu�ers� Declaring
the space for bu�ering right in the data structures of the code� before any
communication starts� makes the code safer� in that an exit at run time for lack
of bu�ering space will not be made�

To do the book�keeping of values on vertices that has mirror images on other
processors� we group the numbers of those vertices into packets and assign one
of the sharing sub�domains as the owner of that packet� The owner will be
responsible for maintaining correct values on the vertices in the owned packet
and transmitting them to copies when copies need to know the correct value
they should be having� For each node i� let Pi be the set of processors �or sub�
domains� which have i as a node� The sub�domain Sk will be said to own node
i� if

k � min
j�Pi

j�

The copy of node i residing in sub�domain Sk will then be called an owner node

and its mirror images in other processors will be called copy nodes�

To construct packets of say� sub�domain Si� group together its owned nodes
into packets Pc�i� j�� for j � �� �� �� as follows	 Pc�i� j� contains those nodes
which are owned by processor i and are also nodes of processor j �of course�
j � i�� i�e�� Pc�i� j� is the collection of owner nodes of Si that have its mirror
copy nodes in Sj � Of course� sub�domain Sj would have among its packets�

�



a packet mirroring the Pc�i� j� we have just constructed � it would consist of
precisely those copy nodes in Sj that mirror the nodes in Pc�i� j�� We have
presently divided the collection of all owner nodes of sub�domain Si into packets
�let �divided� not give the wrong idea	 one node can indeed belong to more than
one packet��The remaining interface boundary nodes of Sj are copy nodes� and
they will get split into packets too � packets that mirror packets in other sub�
domains who own these nodes�

To see how all this helps in communications� let us restrict ourselves to the
distributed memory version of the code� and consider this often used sequence
of member functions of �SubDomainBdry�	

OwnersPostReceive�requests��

CopiesPostSend�x� requests��

CopiesIncrement�x� requests� status��

CopiesPostReceive�requests��

OwnersPostSend�x� requests��

CopiesOverwrite�x� requests� status��

This will correct increments made by each domain to vector x to true global
increments� Here �requests� and �status� are variables required by the Message
Passing Interface �MPI�� All increments made individually by a sub�domain
to the vector x that lives in the same processor as the sub�domain �but is
part of a global vector� are loaded onto copy packets� These packets are then
transmitted to their mirror owners� There they are received and the local copy
of x is incremented� This much is completed when each processor reaches the
end of the �rst three lines above�

The owner packets are now loaded with the true global values that x should
have at its vertices that have copies elsewhere� They are now sent to the sharing
domains wherein the copy packets receive these values and overwrite the x�values
at the proper places with the received values� This much is done by the last �
lines above�

Data transmissions are made possible through the use of MPI �Message

Passing Interface� library functions ��� ��� This ensures code portability across
many distributed memory machines� All sends are ready sends that on some
machines �like Intel Paragon� will avoid some hand�shaking protocols and de�
crease communication time� This is possible because the code is designed to be
able to post �non�blocking� receives before sends and let the processors expect
the impending send� All point�to�point communications �i�e�� all communica�
tions other than collective reductions and broadcasts� are through the above
listed routines� every e�ort has been made not to let the transparency of the
structures be garbled by communication calls� No wild card matching at the
receive end is ever done� All receives know exactly who the source is� At each
point�to�point communication� two pieces of information other than the message
data needs to be transmitted	 Say� the i�th packet Pi of SubDomain S� is to be
transmitted to its mirror packet listed at the j�th position� Qj in SubDomain
S�� The message should then contain the number j so that at the receiver end

�



S� knows which among all its packets should receive the incoming information�
The message should also indicate in some way if the incoming data is to be in�
cremented or overwritten at the receiver end� Both these pieces of information
are coded together into one number and that number becomes the message tag�
A posted receive knows the tag with which its expected message will come with�
so no wild card matching is done for tags too� This imposes a small limitation	
MPI only guarantees that tags in the range ����� ��� are accepted� This for our
code translates to saying that a SubDomainBdry cannot have more than �� ��
packets� hardly a serious limitation�

Implementations of MPI on shared memory architectures are presently be�
coming available� though some have not been used enough to be rid of bugs� So
it may be expected that the version of the code written using MPI may soon be
ported even to shared memory machines easily�

The other version of the code that is now being run on shared memory SGI
uses a simulated network to communicate� There sub�domain boundaries post
�Message�s �which is a de�ned data type� on an object called �Network� �which
is nothing but a linked list of �Message�s� and receive �Message�s from the
�Network�� whenever there is a need to communicate� �Posting� and �receiving�
are implemented as appending and extracting from the linked list called �Net�
work�� Otherwise� with packets as before� the structure of �SubDomainBdry�
is the same as in the version using MPI�

Code Extendibility� An attractive feature of MPI that we have not used is the
notion of Virtual Topologies� An application like ours where a communication
graph is known before hand may bene�t from telling MPI to renumber processes
so that the application demands may match the hardware connectivity� This
feature can be incorporated easily into the code if a communication graph can
be given as input to the program� To make this easy� the MPI communication
context �a pointer� is made a member of �DomainDecompProblem�� The code
always uses this member name instead of explicitly naming the MPI communi�
cator� At the time of construction of the problem class it is presently set to the
default MPI COMM WORLD� It may just as well be set to a communicator
with a prescribed virtual topology�

��� Mesh

�Mesh� consists of �Triangle�s �Elements� and �Vertex�s �Nodes�� Given a
vector of values �at nodal positions�� it can produce the result of action of the
�nite element matrix operator on the vector�

�Triangles� are composed of �Vertex�s� and have in addition its element
sti�ness matrix stored as a member� It is easy to put in more attributes if
necessary to these elements �like material properties�� Members of �Vertex�s
have information about the x� y� co�ordinates of the point it represents �again
more attributes may be added to vertices if need arises��

�



��� Conjugate Gradient Template

The Preconditioned Conjugate Gradient Method �PCG� that solves a symmetric
positive de�nite system of linear equations is implemented as a C�� template
���� There is a provision for incorporating a preconditioner if one is available�
The routine takes as input � objects of unknown type and a user speci�cation
as to whether an estimate of condition number is to be calculated� The �rst
� objects conveys to Conjugate Gradient� problem information� initial guess�
and right hand side in some way �not explicitly known to the template�� The
condition number estimation is done with the help of LAPACK library� It is
possible to specify at compile time that condition number estimations be not
done �to make the routine a little more e�cient�� Two other parameters that
also need to be tuned at compile time are	 the maximum number of iterations
permissible� and error tolerance level below which if successive updates di�er�
the routine should exit�

To perform the algorithm� the template relies on � routines �to solve Au � b�	

�� Given x compute Ax�

� Given x� y� compute l� inner�product �x� y��

�� Given scalars a� b� and vectors x� y� compute ax� by�

�� Given x� compute Bx� where B is a preconditioner to A�

The de�nitions of these routines overloaded to work with speci�c data types
will be used at an instantiation of the template with those data types�

As a result of this template mechanism� the same code can be used for local
sub�domain solves using PCG� for a global parallel PCG solve� or for solving
the �boundary problem� in the Non�overlapping domain decomposition case�

� Input and Output

Each process collects its own data from a set of � �les that contains data to
build the one and only sub�domain that is associated with that process� Upon
�nishing computations� each process writes the values of the computed solution
on the sub�domain associated with it� In this sense the I O is parallel�

��� Input �le names

The input for the program consists of a sequence of �les each of which contains
data for constructing elements� nodes� or boundary of one sub�domain� For ex�
ample� Domain����ele� Domain����node� and Domain����bdr would give data
for constructing elements� nodes and boundaries respectively of SubDomain No�
��� The pre�xed string �in this case �Domain�� can be arbitrary� but should
remain the same for all �les pertaining to one problem� The number in a �le
name that follows the pre�x identi�es the particular sub�domain for which the

!



data is being provided� The extension speci�es if the data pertains to elements�
nodes� or boundary of the sub�domain speci�ed by the number in the �le name
�for example ��ele� speci�es that �le contains element data�� Such a pre�x
string� an output �le name �i�e�� a string that will be a common pre�x to all
output �le names�� and an integer representing the total number of sub�domains
are the only terminal inputs to the program�

��� Input File Formats

The ��ele� and ��node� �les follow the same format as the Mesh Generator
Triangle �see the web�page http	  www�cs�cmu�edu quake triangle�html ��

We adopt the following convention for boundary markers �in ��node� �les��

� � node not on any boundary �neither the interior nor

the global boundary�

�� � node on interior boundaries

�� � node on global boundary with a Neumann	Robin bc


�� � node on global boundary with another Neumann	Robin bc


�� � node on global boundary with yet another Neumann	Robin bc


� � and similarly more �ve integers for various

other Neumann	Robin bc


� � node on global boundary with Zero Dirichlet bc


� � node on global boundary with some other Dirichlet bc


� � and higher �ve integers for various other Dirichlet bc


Note that nodes on interior �or interface� boundaries created when breaking up
the domain must be marked ���

It is assumed that Vertex numbering in a sub�domain starts with � �not ���
The ��bdr� �les gives information to construct packets and hence sub�domain

boundaries �see ���� A ��bdr� �le is organised as	

��������������������beginning of file����������������������

no np

pnd� add� lad� own�

nd�

nd�

nd�

nd�

�

�

�

nd�

pnd� add� lad� own�

nd�

nd�

nd�

�

��



�

�

nd�

pnd� add� lad� own�

nd�

nd�

�

�

etc







��������������������end of file����������������������������

where all symbols are integers and have the following meanings	

no � SubDomain Number


np � Number of packets for this SubDomain � SubDomain�no� �


pnd�� Number of nodes in Packet��� of SubDomain�no�


add�� Address of Packet���� i
e� Number of SubDomain where

Packet��� will be sent


lad�� Local address of Packet���� i
e
� the packet number of the

copy of Packet��� residing in SubDomain�add��


own�� Number of the SubDomain that owns Packet���


nd� Generic name for node numbers


pnd�� Number of nodes in Packet���


add�� 

similarly



lad�� 

similarly



It is assumed that in the list of nodes for a packet and for its mirror image in
another sub�domain �these lists will appear in two di�erent �les� the numbers
of the nodes and those of its mirror images should appear in the same order�

��� Output

Each sub�domain writes its computed solution values on a �le� These �les have
names with a common pre�x string which is speci�ed at terminal input� The
string obtained by concatenating this pre�x with the sub�domain number gives
the name of the output �le of that sub�domain� The solution values at nodal
points are written into this �le element by element� That is� the �le contains
output data split into � columns	 �rst col for x�values� second for y�values� third
for Solution values at �x�y�� The �rst three lines should give the three �x�y�z�
sets for the three nodes of the �rst triangle� The second three lines for the
second triangle� and so on� �Obviously there are many repetitions��

Maple for example� can use such �les to plot the solution� �However� to view
solutions of really large problems� Maple is not be used� as the worksheet that
plots values on general triangulations is clumsy and ine�cient��

The program reports relative errors �if true solution is known� in max�norm
and l��norm�

��



It also reports condition numbers of problems solved through Conjugate
Gradient if a request for condition number estimation was given to Conjugate
Gradient �and if LAPACK libraries were successfully linked��

� Test Runs

All runs are made on a distributed memory ��node Intel Paragon� Some are
made also on a shared memory � CPU SGI Power Challenge� The Paragon is
capable of doing ��� MFLOPS per �oat �and �� MFLOPS per double�� while
the SGI is capable of ��� MFLOPS per �oat�

��� A Dirichlet Problem

P�D�E� �
u � cos�r�
r

� sin�r�� Note that the singularity on the right hand side
is integrable�
Domain� Circle centered at � of radius ��	�
Boundary condition� u � �� on the circle of radius ��	�
True Solution� ��� � sin�r��� Note the kink at origin�

-4

-2

0

2

4

-4

-2

0

2

4

-2

-1.5

-1

-0.5

0

True solution

Mesh� has ���� vertices and ���� triangles� It is re�ned on a circular region
near the center� in the hope of recovering the kink of the true solution nicely�
Sub�Domain splitting� The re�ned circular region near the center forms one sub�
domain� The remaining annular region is split into � equal angular sectors� The
total number of triangles gets split between sub�domains as

�� � ���� ���� � ���� � ����

and the collection of vertices gets divided as �some are shared�

��� � �!! � ��� � ��� � �����

�



Computational results� All �gures are for a run on Intel Paragon�

CG iterations ���
CG exit when krkl� � !������� �����

�p�Ap�l� � ������!� ������
�r � residual� p �search direction�

Times taken For construction	 ��!���������!� secs
For solving	 �����!����!!!� secs

Errors Relative l� error� �����!!�������
Relative l� error�����������!���

A plot of the computed solution is below	

��



-4

-2

0

2

4

-4

-2

0

2

4

-2

-1.5

-1

-0.5

0

Computed solution

��� A Neumann Problem

As of this writing� the code cannot handle all kinds of Neumann �or Robin�
boundary conditions� Note that in our structures we do not have as yet a
provision for incorporating �edges� of elements� This imposes a limitation in
the kinds of Neumann boundary conditions we can input to the code� As it
stands� a Neumann boundary condition of the form

�u

�n
� �

on a segment of boundary can be prescribed as input �by assigning the appro�
priate attribute to the boundary vertices where the Neumann condition stands��
Here "n stands for the outward normal vector de�ned on the boundary�

P�D�E� �
u � sin�r�
r

� cos�r��
Domain� Semi�circle about � of radius ��	�
Boundary condition� �u

�n
� �� on straight edge y � �� and u � � on the curved

edge r � ��	�
True Solution� cos�r��
Mesh� has ��� vertices and �!�� triangles�
SubDomain splitting� The semi�circle is broken up into � equal angular sectors�
The total number of triangles get split into � sub�domains as

��� � ��� � ��� � �� � �!��

��



and the collection of vertices get divided as �some are shared�

�� � �� � �� � �� � ����

Computational results� All �gures are for a run on Intel Paragon�

CG iterations ���
CG exit when krkl� � ��������� �����

�p�Ap�l� � �����!�� ������
�r � residual� p �search direction�

Times taken For construction	 ������� secs
For solving	 �������� secs

Errors Relative l� error� ����!�����������
Relative l� error�������!!!�����!

A plot of the computed solution follows	

��



-4

-2

0

2

4
0

1
2

3
4

-1

-0.5

0

0.5

1

��� Convergence with re�nement

The unit square is broken into � sub�domains and triangulated� Though the
runs were made in parallel� the parallel aspects of the code are not critical in
this case� The aim here is to get �nite element approximations to the true
solution x��� x�y���� y� of the problem

�
u � y���� y�� x��� x���� y� � �x��� x�y

on successive re�nements of a mesh� and verify the theoretically predicted error
decay rate� The meshes are re�ned by breaking each triangle into � similar
triangles �by creating � new edges joining the midpoints of each existing edge��
so that the diameter of each triangle is halved on each re�nement� The errors
and other information are tabulated below �the �rst line is for the coarsest
mesh��

Diameter Condition No� of l� error l� error
Number iterations �relative� �relative�

h ��!!!�e��� � ������������! �����������!��!
h  ����!��e�� �� �������������� �����!��������!�
h � ������!�e�� �� ���������!������ �������!��������
h � ���!!��e��� �� ������������� ��������!�������

Note that the condition numbers grow like O�h��� and the relative l� er�
ror �equivalent to error in L� norm� grows like O�h��� both as theoretically
predicted�

��� A problem on a general domain

The purpose of this example is to demonstrate the kinds of general domains on
which problems can be solved through this code�

��



P�D�E� �
u�x� y� � y���� y�� x��� x���� y� � �x��� x�y�
Domain� As shown below�

Boundary condition� Zero Dirichlet�
True Solution� Unknown�
Mesh� has ������� vertices� and �!��� triangles� This is the largest size prob�
lem we have run�
SubDomain splitting� The domain is split into sub�domains as shown below�

Computational results� All �gures are for a run on Intel Paragon�

CG iterations !��
CG exit when krkl� � !��!�!��� �����

�p�Ap�l� � ��������� ������
�r � residual� p �search direction�

Times taken For construction	 ������� secs
For solving	 �������!� secs

��



��� Parallel speedup

The two examples to be described now were run on both the Paragon and
SGI� The maximum number of nodes accessible on Paragon was �� and the
maximum number of concurrent CPUs accessible on SGI was �� Though the
overall structure of the code run on both machines remain the same� they are
not alike verbatim� The code run on Paragon uses MPI protocol for message
passing� Parallelism on SGI is achieved through multiprocessing C�� compiler
directives�

For this reason� on SGI� the speedup achieved has been far below those
achieved on Paragon� Speci�cally� the problem arises because we found it nec�
essary to switch between parallel and serial regions very often� the overhead for
which is not negligible� Arguably this could be avoided� but at the cost of sub�
stantial code re�design� which we were not willing to do� especially as statement
level parallelism using compiler directives� at least in its present state� cannot be
ported across all shared memory machines� The only standard that we know of�
fers portability across most shared memory machines now is the POSIX threads
library� We have chosen not to use it because it involves some fairly low�level
programming� and it did not seem worth the e�ort� Hopefully in the near future
some standardisation e�ort for shared memory parallel machines will become
successful enough to o�er software that can take full advantage of the intrinsic
parallel nature of our algorithm�

Example ��

P�D�E� �
u � y���� y�� x��� x���� y� � �x��� x�y�
Domain� Unit square ��� ��� ��� ���
Boundary condition� u � � on all boundary

True Solution� x��� x�y���� y��
Mesh� has ����� vertices and ���!�� triangles� It is not shown here as some of
the triangles are too small to be resolved� The lower half of the unit square is
re�ned so that the triangles there are about � times smaller than those in the
upper half�
SubDomain splittings� Several cases are run� First the mesh is split into  sub�
domains and the problem is given to  concurrent CPUs� Next the same mesh
is split into � sub�domains and given to � CPUs� Similar are the � sub�domain
and � sub�domain cases� Note that the splittings are not done with minimising
the interface lengths as an objective� In fact this issue is completely ignored for
convenience� The sub�division is shown below �the darkly shaded areas represent
the re�ned part��

2 sub-domains 4 sub-domains 6 sub-domains 24 sub-domains

��



Computational results� are tabulated below� There �Speedup� for k processors
is calculated by

Time taken to solve by � processor

Time taken to solve by k processors� k

and the p and r at CG exit refers to the search direction and residual vectors
respectively�

Parallel Solving Speedup No� of Relative Error CG exit
Nodes time �#� iterations in l� �p�Ap�l�

�seconds� in l� krkl�

� ������� $ ��� ���������������� �������������

���������������! !����!!�������

 ����� !���# ��� ������!!!����� ������!�������

���������������� !�����!������

� ����� !���# ��� ������!!!������ ��������������

��������������! ��!�!�������

� ������ !��# ��� ������!!���!�!! �����!!�������

�����������!� !�!��!������

� ������ ����# ��� ������!!������� �������������

�����������!���! !��!����������

The results tabulated above are for a run on Intel Paragon� The speedup shown
by � �� and � node cases are good by any standards� It is to be expected that the
� node case cannot exhibit the same level of speedup� because when the mesh
is split into so many sub�domains the length of interface boundary increases�
Also� the area of each sub�domain decreases� These two factors together make
the ratio of the time spent in computation to the time spent in communication
by each sub�domain lower�

Below is a similar table for a run on SGI Power Challenge for the same
problem� As can be seen� parallel speedup is considerably lower than that
achieved on the Paragon� It also drops sharply with increase in number of
CPUs� We believe it is the overhead in spawning new threads at each switch to
parallel region from a serial region� is the cause of this low speedup�

�!



Parallel Solving Speedup No� of Relative Error CG exit
CPUs time �#� iterations in l� �p�Ap�l�

�seconds� in l� krkl�

� ������ $ �� ���������������! ���!����������

���������������� ��!��!!�������

 ������ ���# ��� ������!!!����� �������������

������������!�� ��!����������

� ��� ��# ��� ������!!������� �������������

�����������!���� !�!����������

� ����� ����# ��� ������!!!����� ��������������

������������!��� ��!�����������

Example ��

P�D�E� �
u�x� y� � y���� y�� x��� x���� y� � �x��� x�y�
Domain� Unit square ��� ��� ��� ���
Boundary condition� u � � on all boundary

True Solution� x��� x�y���� y��
Mesh� has ����� vertices and ������� triangles� It is too re�ned to be shown
here� The square sub�region ��� ����� ��� ���� is more re�ned than other regions
and the further sub�region ��� ����� ��� ���� is highly re�ned�
SubDomain splittings� Several cases are run� First the mesh is split into  sub�
domains and the problem is given to  concurrent CPUs� Next the same mesh
is split into � sub�domains and given to � CPUs� Similar are the � sub�domain �
sub�domain� �� sub�domain and � sub�domain cases� As before� and as can be
seen from the �gures below the issue of minimising the interface created while
splitting is completely ignored for convenience� The sub�domain decompositions
are pictured below �note that the mesh triangles become more numerous as we
approach the upper right corner��

 2 sub-domains 4 sub-domains 8 sub-domains 16 sub-domains 24 sub-domains

Computational results� are tabulated below� There �Speedup� for k processors
in the Intel Paragon is calculated by

Time taken to solve by  processor

Time taken to solve by k processors� k

while �Speedup� in the SGI Power Challenge run was calculated by

Time taken to solve by � processor

Time taken to solve by k processors� k

�



This di�erence was necessitated by the fact that no Intel Paragon node had
enough memory to run the whole problem by itself� so that no data for the
single node case could be collected there� The p and r at CG exit refers to the
search direction and residual vectors respectively�

Parallel Solving Speedup No� of Relative Error CG exit
Nodes time �#� iterations in l� �p�Ap�l�

�seconds� in l� krkl�

 ������� $ �!! �����������!�� ��!���������

���������������� !�������������

� ��!���� !�� # �!! �������������� �������������

�������������!�� !��!!���������

� !���� !��# �!� ���������!���� ������������

��������������� !�!����������

�� ������� ����# �!� ����������� �������������

���������������� !������������

� ������� ����# �!� ������������� �������������

���������������� !������!������

The results tabulated above are for a run on Intel Paragon� Below is a
similar table for a run on SGI Power Challenge of the same problem�

Parallel Solving Speedup No� of Relative Error CG exit
CPUs time �#� iterations in l� �p�Ap�l�

�seconds� in l� krkl�

� ����� $ ��� ������������� �������������

���������������� !�������������

 ����! ����# �� ����������!��! ������!������

���������������� !�������������

� ����� ����# ��� �������������� �����!�������

���������������� !�������������

� ����� ���# �!� �������������� �������������

������������!��� !�!����!������

Acknowledgments

This work has been supported by EPA grant % R ����������

References

�� Petter E� Bjorstad� William Gropp and Barry Smith� Domain decomposi�

tion � parallel multilevel methods for elliptic partial di�erential equations�

Cambridge University Press� �!!��

�



� James H� Bramble� J� E� Pacsiak� A� H� Schatz� The construction of

preconditioners for elliptic problems by substructuring� I� Math� Comp�
v���� �!��� pp ��������

�� William Gropp� Ewing Lusk and Anthony Skjellum� Using MPI� Portable

Parallel Programming with the Message Passing Interface� MIT Press�
�!!��

�� Claes Johnson� Numerical solution of partial di�erential equations by the

�nite element method� Cambridge University Press� �!!��

�� Marc Snir� Steve Otto� Steven Huss�Lederman� David Walker and Jack
Dongarra� MPI� The Complete Reference� MIT Press� �!!��

�� Bjarne Stroustrup� The C		 Programming language� Addison�Wesley
Publishing Company� �!!��




