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�� Introduction� The general goal of this presentation is preconditioning techniques for mixed
and nonconforming �nite element approximations of elliptic boundary value problems� A special
emphasis is placed on problems in three dimensions with possibly large anisotropy in the coe�cients
of the PDE�s along with large jumps in the coe�cients across the interfaces separating subregions�

The optimal preconditioners developed exploit the techniques of domain decomposition meth�
ods� algebraic substructuring� and multigrid methods� As a result� the proposed iterative processes
converge with rates independent of the mesh size� the jumps of the coe�cients� and the ratio of
anisotropy�

Using an equivalence between nonconforming �nite element methods and hybrid�mixed methods
��� the iterative methods constructed for algebraic systems with symmetric positive de�nite matrices
are extended to saddle�point problems which arise from mixed �nite element approximations ��	��

Let 
 be a convex bounded domain in IRd� d � �� 	� with boundary �
� Consider an elliptic
problem

�div 
K � ru� � f in 
�
u � � on ���


Kru�n� � � on ���

����

whereK
x� is a positive de�nite� uniformly bounded symmetric tensor� f
x� � L�

�� �� � �� � �
�
�� � �� � �� We shall consider the case when �� � �� �� �� The pure Neumann problem 
�� � ��
can be treated in a similar way but for the sake of simplicity is not described here�

Let Th be a regular partitioning of 
 into simplices � with mesh�size h and let Vh

� be the
P��nonconforming �nite element space of functions v � L�

� ��� such that vj� are linear for all
� � Th� v are continuous at the barycenters of � � Th and vanish at the barycenters of the boundary
faces on ��� Note that the space Vh

� is not a subspace of H�

��

De�ne the bilinear form on Vh

� by

ah�
u� v� �
X
��Th


Kru�rv�� � � u� v � Vh

��
����

where 
�� ��� is the inner product in L�
��� � � Th� Then the P��nonconforming �nite element
discretization of 
���� has the form� �nd uh � Vh

� such that

ah�
uh� v� � 
f� v�� �v � Vh

��
��	�

Once a nodal basis f�i
x�gNi�� for Vh

� is chosen� 
��	� leads to a system of linear algebraic
equations�

Au � f �
����

where Aji � ah�
�i� �j�� fj � 
f� �j�� i� j � �� � � � � N �
Although the methods of solving 
���� have been extensively studied in the past few years 
see�

e�g�� ��� �� �� ��� ����� their e�ciency depends on the coe�cient matrix K
x�� and in the case of
strong anisotropy in the coe�cients the question of constructing e�ective solution techniques is still
open�
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In this work we propose several preconditioners for P��nonconforming �nite element approxima�
tions of anisotropic problems using substructuring ideas ���� ��� and domain decomposition methods
��� �� ����

The substructuring approach makes it possible to construct very e�cient preconditioning tech�
niques for problems with a high anisotropic ratio in the coe�cients in domains of simple form such
as a topological parallelepiped ��	� ��� ����

To construct the iterative methods for solving the anisotropic problems approximated by the
nonconforming P� elements in domains of complex geometric shape we consider numerical methods
which involve a solution of analogous problems in domains of relatively simple form� We note that
an important di�erence between nonconforming an conforming cases is that there are no nodes at
the vertices 
or wire basket� of the subregions� Thus� there is no problem of crosspoints which
is an essential part of the domain decomposition method when using conforming �nite elements
��� ��� ��� ���� It makes the construction of the preconditioner for the Schur complement on the
interfaces between subdomains very clear and easy� An iterative process whose convergence rate
is independent of the mesh step size and the ratio of anisotropy in the coe�cients is constructed
���� ���� It is shown that the number of arithmetic operations required for realization of the method
with a given accuracy is proportional to the number of unknowns of the original algebraic problem�

A new construction of iterative methods for mixed �nite element approximations of elliptic
PDE�s on nonmatching grids is considered� The computational domain is considered as a union of
nonintersecting subdomains� In each subdomain the grid is constructed in accordance with its own
coordinate system 
for example� using the main directions of anisotropy� ����� The original elliptic
problem is posed as a problem with Lagrange multipliers at the interface between the subdomains�
which ensure the continuity conditions of the solution 
in a weak sense� ���� �	�� A mortar �nite
element subspace is constructed in the space of Lagrange multipliers� which results in algebraic
systems of a saddle�point type�

Based on the technique of domain decomposition and �ctitious components methods a con�
struction of block diagonal preconditioners for the algebraic systems arising in the mortar �nite
element method is developed ���� ���� The �ctitious components method is used to precondition
subdomain problems� while the interface problems are preconditioned by an inner Chebyshev itera�
tive procedure� It is shown that the developed preconditioner is spectrally equivalent to the original
saddle�point matrix�

Applications of the newly developed iterative methods and preconditioning techniques are con�
sidered� In particularly� these methods are applied in the simulator of �uid �ow in porous media
�����

�� Substructuring preconditioner for nonconforming approximations of elliptic prob�

lems with anisotropy�

���� Description of the approach� In this part of the talk we consider a method of construct�
ing the preconditioner for 
���� using an idea of algebraic substructuring which can be described as
follows ���� ����

Let us partition the domain 
 into subdomains 
s� s � �� � � � � n� such that each 
s is a union
of simplices � � Th�


 �

n�
s��


s� 
s �

ns�
l��

f�l � Th � �l 	 
sg�

Below these subdomains 
s are called superelements�
Let us introduce local sti�ness matrices As on each superelement 
s as follows�


Asus�vs� �
X
�l��s


K
x�ruh�rvh��l � �uh� vh � Vh

s��

All these matrices are at least positive semide�nite� and the global sti�ness matrix is determined

�



by assembling the local sti�ness matrices over all the superelements�


Au�v� �

nX
s��


Asus�vs�� �u�v � IRN �

We can symbolically write A � fAsgns��� where f�gns�� denotes assembling with respect to the
partitioning f
sgns�� of 
�

In the above notation each superelement matrix As can be represented in terms of local sti�ness
matrices over simplices �l from 
s� i�e� As � fAslg�l��s

� Note that matrices Asl are also at least
positive semide�nite�

Following ���� ���� let us introduce on each simplex � � TT another matrix �Asl which has the
same kernel as Asl 
i�e� Ker Asl � Ker �Asl�� De�ne the matrix �As on each superelement 
s by
assembling �Asl�

�As �
n
�Asl

o
�l��s

�

Then it can easily be shown that Ker As � Ker �As and the matrices �As are also at least positive
semide�nite�

Now let us de�ne an N 
N matrix �A by assembling �As over all the superelements

�A �
n
�As

on
s��

�

It can be easily shown that to estimate the extreme eigenvalues of �A��A it is su�cient to
consider the local problems

Asus � ��s� �Asus� us � Ker �As�

on all the superelements 
s� s � �� � � � � n�
Thus� if the superelement matrices As and �As are spectrally equivalent with respect to Ker As�

i�e� there exist constants c��s and c��s such that

c��s
 �Asus�us� � 
Asus�us� � c��s
 �Asus�us�� �us � IRNs � Ns � dim 
s�

where constants c��s� c��s do not depend on mesh�size parameter h� then matrices �A and A are also
spectrally equivalent� i�e�

c�
 �Au�u� � 
Au�u� � c�
 �Au�u�� �u � IRN �

with c� � min
s

c��s and c� � max
s

c��s�

Now let us partition all the unknowns in 
���� into two groups�

u � 
uT� �u
T
� �

T � dim u� � N�� dim u� � N �N��

so that matrix �A is represented in a block form�

�A �

�
�A��

�A��

�A��
�A��

�

����

such that block �A�� is easily invertible� Then introducing the Schur complement S � �A�� �
�A��

�A����
�A��� we can rewrite matrix �A as

�A �

�
S � �A��

�A����
�A��

�A��

�A��
�A��

�
�
����

	



Following ��� ���� we construct a matrix �S which is spectrally equivalent to S� i�e�

d�
 �Sv�v� � 
Sv�v� � d�
 �Sv�v�� �v � IRN� �

where constants � � d� � d� are independent of mesh�size parameter h� Then the matrix

B �

�
�S � �A��

�A����
�A��

�A��

�A��
�A��

�

��	�

is spectrally equivalent to matrix A� i�e�

r�
Bu�u� � 
Au�u� � r�
Bu�u�� �u � IRN �

where r� � c�minf�� d�g� r� � c�maxf�� d�g� To construct such a matrix �S� again� we can use the
idea of the algebraic substructuring described above�

Concluding this overview� we can say that the algebraic substructuring procedure consists of
the following main steps�


A� the reconstruction of the directed graph of matrix A from 
���� in such a way that the
resulting matrix �A has the same kernel and is still positive de�nite 
or positive semide�nite
if matrix A is singular��


B� the representation of matrix �A in �
� block form 
���� in such a way that one of the blocks�
�A�� or �A��� is easily invertible�


C� the replacement of the Schur complement S in 
���� by a spectrally equivalent matrix �S�
we can use steps 
A� and 
B� to construct such a matrix �S�

Note that we can �rst represent matrix A in �
 � block form 
���� and then use steps 
A��
C�
to construct a preconditioner for the Schur complement S � A�� � A��A

��
�� A��� Implementing a

�nite number of these steps� we can get matrix B which is spectrally equivalent to the given matrix
A�

Because of the algebraic nature of such a procedure this approach strongly depends on the
structure of the graph of matrix A and consequently on the type of the nonconforming �nite element
space Vh�

���� Model three�dimensional problem� To explain this approach we consider the model
problem when 
 is a unit cube in IR�� �� is a union of some faces of 
� the boundary conditions
are homogeneous� and K
x� satis�es the following assumption�

Assumption ���� Assume that the coe�cient matrix of equation 
���� is a diagonal tensor

K
x� � diagfk�� k�� k�g� where ki� i � �� �� 	� are constants over the cube 
 such that a coe�cient k�
in some direction is not less then the coe�cients in the other directions� For the sake of de�niteness

we assume that this is the �z�direction�� That is � � min fk��k�� k��k�g 
 ��
The extension of the method to the case in which 
 is a union of topological parallelepipeds

and the tensor K
x� is a full symmetric matrix satisfying some requirements can be found in
���� ��� ��� ����

Let Ch � fC�i�j�k�g be a partition of 
 into uniform cubes with edge length h � ��n� here

xi� yj � zk� is the right back upper corner of cube C�i�j�k�� Next� we divide each cube C�i�j�k� into �
tetrahedra as shown in Figure ���� We denote this partitioning of 
 into tetrahedra by Th� Note
that we have two types of partitioning of cubes C�i�j�k� into tetrahedra� the cube with one type of
partitioning having all the adjacent cubes of another type�

We introduce the set of barycenters of all the faces of the tetrahedral partition of 
 and the set
Qh of those barycenters that do not belong to ��� The Crouzeix�Raviart P��nonconforming �nite
element space Vh is de�ned by

Vh �
n
v � L�

� � vjT � P�
T �� �T � Th� v is continuous at the barycenters

from Qh and vanishes at the barycenters of faces on ��

o
�


����

Let its dimension be N � Note that N � ��n��

�



�
��

�
��

�
��

�
��

�
��

�
��

Fig� ���� Partition of cubes C�i�j�k� into � tetrahedra�

���� Algebraic substructuring preconditioner� Here we outline the construction of the
algebraic substructuring preconditioner� We divide all the unknowns in the system into two groups�

�� The �rst group consists of the unknowns corresponding to the faces of the tetrahedra that
are internal for each cube�

�� The second group consists of all the unknowns corresponding to the faces of the cubes in
partition Ch� without the faces on ���

Splitting the space IRN into two groups induces a vector presentation� vT � 
vT� �v
T
� �� where

v� � IRN� and v� � IRN� � here v� corresponds to the unknowns of the ��nd group� Obviously�
N� � �n� and N� � N � �n�� Then sti�ness matrix A is represented in the following block form�

A �

�
A�� A��

A�� A��

�
�
����

where A�� � IR
N� � IRN� corresponds to the unknowns on the faces of tetrahedra which are internal

for each cube and matrix A�� is diagonal� It can be easily veri�ed that A�� has the form�

A�� � k�Ax � k�Ay � k�Az�

where the matrices Ax� Ay� and Az do not depend on the coe�cients of the problem 
�����
Along with matrix A we introduce the matrix B

B � A�
	h

�

�
�B�� �
� �

�
�
����

where �B�� � 
k� � k��Az� Thus� matrix B can be represented in the form�

B �
	h

�

�
B�� A��

A�� A��

�
�

where B�� � k�
Ax �Az� � k�
Ay �Az� � k�Az�
Using superelement analysis it is easy to verify that the eigenvalues � of the problem

Au � �Bu
����

belong to the interval ���	� �� provided Assumption ����
Let us denote by �B�� � B�� �A��A

��
�� A�� the Schur complement of B obtained by elimination

of the vector v�� Then B�� � �B�� �A��A
��
�� A�� and hence matrix B has the form�

B �

�
�B�� �A��A

��
�� A�� A��

A�� A��

�
�
����

Now we need to develop a preconditioner for matrix �B��� Again� using algebraic substructuring
we can construct a sparse separable matrix �B�� spectrally equivalent to �B�� so that the resulting
matrix

�B �

�
�B�� �A��A

��
�� A�� A��

A�� A��

�
�
����

�



is spectrally equivalent to the initial matrix A� In this case we shall use the method of separation
of variables and discrete fast Fourier algorithm in order to solve the system of linear equations with
matrix �B���

The use of discrete fast Fourier transform yields a total number of arithmetic operations pro�
portional to N� ln
N�� or N ln
���N�� where the constants of proportionality do not depend on the
number of unknowns N and on coe�cients k�� k�� and k��

Remark ���� In the method outlined above� we note that the condition number depends
neither on mesh�size h nor on the value of the coe�cients when k� 
 max fk�� k�g� Because the
condition number of matrix �B��A depends on the value of parameter � it is very important to choose
the �z�direction in the proper way� If� for example� we have the problem in which coe�cient k� is
greater than coe�cients k� and k�� we rearrange the variables so that the new variable z coincides
with the old variable x� It means that we simply rename the axes of the coordinate system�

���� Results of numerical experiments� The method of preconditioning is tested on the
model problem 
���� with diagonal matrix coe�cient K � diag fk�� k�� k�g�

The domain is divided into n� cubes 
n in each direction�� Each cube is partitioned into �
tetrahedra� The dimension of the original algebraic system is N � ��n� � �n�� The problem 
����
is solved by preconditioned conjugate method 
PCG� with accuracy 	 � ����� Coe�cients ki�
i � �� �� 	� are constants on each cube� The results are summarized in Table ����

Table ���

Dependency on parameters �i�

��
 ��
 ��
N � 	����

��
 ��
 ��
N � �����

	�
 	�
 	�
N � ������

k� k� k� Iter Cond Iter Cond Iter Cond
� � � �� ���� �� ���	 �� ���	
� � �� �� 	��� �� 	��� �� ����
� � ��� � ���� �� ���� �� 	���
� � ���� � ���� � ���� � ���	
� � ����� � ���� � ���� � ����

� � ��� 	� ���� 	� ���� 	� ����
� � ���� �� �		� �� ���� �� ����

�� � � �� ���� �� ���� �� ����
� �� � �� ���� �� ���� �� ����
��� � � �� ���	 �	 ���� �� ����
� ��� � �� ���� �� ���� �� ����

� �� �� �� ���� �� ���� �� ����
� �� ��� �� 	��� �� 	��� �� ����
� �� ���� � ���� �� ���� �� ����
� ��� ����� � ���� �� ���� �� ����

From Table ��� we see that the condition number depends on the maximal ratio

� � max

�
k�
k�
�
k�
k�

�
�

The numerical results are in full agreement with the theoretical estimates� One can see that the
proposed preconditioner is optimal if � � �� In the case of � � � the method has a better convergence
than in the case of the Poisson equation 
i�e� k� � k� � k� � ��� If � 
 �� the preconditioner looses
its optimal order and the corresponding relative condition numbers increased strongly with �� It is a
rather predictable result since we de�ned preconditioning matrix B in 
����� taking some �additional

�



positiveness from the direction with the dominated anisotropy 
z�direction� to other directions�
Experiments show that this procedure is �well behaved if the coe�cient in the z�direction 
k�� is
greater than coe�cients k� and k�� And the method loses its e�ectiveness if we choose the wrong
direction� i�e� coe�cient k� is small compared with coe�cients k� and k��

Remember that in the method described here we need only an assumption that coe�cient k�
in some direction is not less then the coe�cients in the other directions� Thus� if� for example� we
have the problem where coe�cient k� is not less than coe�cients k� and k� we can simply rename
variables in such a way that a new z variable corresponds to the old x variable� The results will be
the same�

�� Block bordering method for anisotropic problems� In this section we present a con�
struction of the domain decomposition method for solving systems of grid equations approximating
boundary value problems for second�order elliptic problems with anisotropic coe�cients� We con�
sider problems for which the computational domain 
 can be represented as a union of nonoverlap�

ping subdomains 
 �
m�
i��


i inside which the equation coe�cients vary insigni�cantly�

A variant of the block bordering method ���� for the anisotropic problem is considered� This
algorithm uses the well de�ned multigrid or substructuring preconditioners for problems in subdo�
mains 
e�g�� the preconditioner outlined in Section ��� For the problem at the interfaces we construct
a preconditioner in the form of the inner Chebyshev iterative procedure� More precisely� this is a
preconditioner for the Schur complement of the original symmetric positive de�nite matrix� which
results after eliminating the block corresponding to the unknowns in the subdomains�

This approach combines the ideas of domain decomposition methods ��� �� ��� 	�� and the
algorithms of multilevel and algebraic multigrid methods ��� �� ��� with the bordering method for
solving systems of mesh equations�

���� Problem formulation� Let 
 be a bounded domain on a plane IR�� which is composed
of open rectangles 
i whose sides are parallel to the coordinate axes 
 �

Sm
i�� 
i� Consider an

elliptic problem 
���� with a positive de�nite symmetric coe�cient matrix K
x��
Assume that the interior of each side of the rectangles 
i either entirely belongs to �� or ���

or lies inside 
� Also assume that 
i� i � �� � � � �m� can have either a common side or only a
common vertex� or they do not overlap� It is obvious that any domain composed of rectangles can
be partitioned by additional lines into subdomains 
i satisfying this assumption�

Again we consider a regular partitioning Th of 
 into simplices � with mesh�size h and P�
nonconforming �nite element space of functions Vh

� as described in Section ��

Assumption ���� We assume that there exist a diagonal coe�cient matrix �K
x� � diag fkx
x��
ky
x�g such that kx
x� � kx�i� ky
x� � ky�i� x � 
i� i � �� � � � �m� with constants kx�i 
 �� ky�i 
 ��
such that the bilinear form ah�
�� �� de�ned by 
���� and bilinear form

�ah�
u� v� �
X
��Th


 �Kru�rv�� � �u� v � Vh

��

satisfy inequalities

�� � �ah�
u� u� � ah�
u� u� � �� � �ah�
u� u�� �u � Vh

��
	���

with some positive constants ��� ���
Inequalities 
	��� suggest considering form �ah�
�� �� as a preconditioning form to ah�
�� ��� Thus

below we consider the problem 
���� with diagonal coe�cient matrix K�
Let u�i� and v�i� denote the vectors corresponding to the �nite element functions u and v from

Vh

i�� Let A
�i� denote the local sti�ness matrix arising from ah�i


�� ���


A�i�u�i��v�i�� � ah�i

u� v�� �u� v � Vh

i��
	���

For each subdomain 
i� i � �� � � � �m� we can partition the degrees of freedom u�i� into two sets� The

�rst set includes the degrees of freedom at the nodes in the interior of subdomain 
i� denoted u
�i�
I �






and the second set corresponds to the degrees of freedom at the nodes on the boundary �
i n ���
denoted u

�i�
	 � Such a partitioning induces the partitioning of A�i� given by


A�i�u�i��v�i�� �

��
A
�i�
II A

�i�
I	

A
�i�
	I A

�i�
		

��
u
�i�
I

u
�i�
	

�
�

�
v
�i�
I

v
�i�
	

��
�
	�	�

Finite element system 
���� has the obvious algebraic representation�	




�

A
���
II � A

���
I	

� � �
���

� A
�m�
II A

�m�
I	

A
���
	I � � � A

�m�
	I A		

�




�

	



�
v
���
I

���

v
�m�
I

v	

�



� �

	



�
g
���
I

���

g
�m�
I

g	

�



� �
	���

with block A		 de�ned by


A		u	�v	� �

mX
i��


A
�i�
		u

�i�
	 �v

�i�
	 ��
	���

Note that blocks A
�i�
II � i � �� � � � �m� correspond to the boundary value problems in rectangles 
i

ah�i

uh� v� � G
v�� �v � Vh

i�� i � �� � � � �m�
	���

with homogeneous Dirichlet boundary conditions imposed on the boundaries �
i� Denote the

number of degrees of freedom in
m�
i��


i and
m�
i��

�
i n �� by NI and N	� respectively�

Eliminating the unknowns v
�i�
I � i � �� � � � �m� in 
	���� we obtain the following Schur system�

!	v	 �G	�
	���

where

!	 � A		 �
mX
i��

A
�i�
	I

h
A
�i�
II

i��
A
�i�
I	� G	 � g	 �

mX
i��

A
�i�
	I

h
A
�i�
II

i��
g
�i�
I �
	���

Thus� the solution to system 
	��� can be reduced to the construction of an e�cient algorithm
for solving systems 
	��� in subdomains and system 
	����

The algorithm for solving subdomain problems with matrices A
�i�
II 
for 	D problem� is considered

in Section �� It can be shown that these problems can be solved very e�ciently�
The main goal of this section is to construct an easily invertible matrix B which is spectrally

equivalent to matrix !	�

c�
B	v	�v	� � 
!	v	�v	� � c�
B	v	�v	�� �v	 � IRN� �

where constants c� and c� are independent of mesh size parameter h� the subdomain diameters� and
value of the coe�cients�

���� Preconditioner for interface problems� In this subsection we construct a precondi�
tioner for the problem at the interface in the form of an inner iterative procedure� More precisely�
we construct a preconditioner for the Schur complement of the original matrix�

The method is based on the following statement ���� ����
Lemma ���� There exists an h�independent constant � such that

� � h 
A		u	�u	� � 
!	u	�u	� � 
A		u	�u	�� �u	 � IRN� nKer !	�
	���

�



The preconditioner B	 is de�ned in the form of an inner Chebyshev iterative procedure ��� �� ����
From Lemma 	�� we know that the eigenvalues of matrix A��		!	 belong to segment ��h� ��� Let
PL
y� be the polynomial of least deviation from zero on this segment and that satis�es the condition
PL
�� � �� Denote by �l� l � �� � � � � L� the inverses of the roots of the polynomial PL
y�� The
formulae for PL
y� and its roots ���l� l � �� � � � � L� can be found� e�g�� in ����� Then preconditioner
B	 for matrix !	 is determined by�

B��	 �

�
I	 �

LY
l��

�
I	 � �lA

��
		!	

��
!

	 �
	����

Lemma 	�� and the theory of Chebyshev iterative methods imply the following result �����

Statement ���� Let L 
 
��h�
���

� Then matrix B	 in 
	���� is spectrally equivalent to matrix

!	 with constants of equivalence independent of mesh size parameter h and the value of coe�cients

kx�i� ky�i� i � �� � � � �m� in the subdomains�

Using the partial solution technique �	� ��� one can show that the procedure of multiplying a
vector by matrix B��	 can be implemented for O
h�� � h���� ln� 
h�����

Now assume that we use the algebraic multigrid method 
AMG� to solve the subdomain prob�
lems� Then the arithmetical complexity of solving the problem 
���� is estimated by O
N �
N��� ln� 
N���

���� Results of numerical experiments� In this subsection the domain decomposition
method is tested on the model problem in the unit square 
 � ��� ��� with diagonal coe�cient
matrix K
x� � diagfkx� kyg� Domain 
 is composed of � subdomains as shown in Figure 	���
Coe�cients kx and ky are constants in each subdomain�

��

kx � k

ky � �

��

kx � �

ky � k

��

kx � �

ky � k

��

kx � k

ky � �

Fig� ���� Coe�cients in the subdomains for a model problem�

The domain is divided into n� squares 
n in each direction� and each square is partitioned into
� triangles� The dimension of the original algebraic system is N � 	n� � �n and the dimension of
the Schur complement after elimination of the subdomain problems is N	 � �n� The problem 
����
is solved by preconditioned conjugate method 
PCG� with accuracy 	 � ����� The degree of matrix
polynomial 
	���� equals L �

�p
���n

�
� �� where �
� is an integer part of 
� The condition number

of matrix A��		!	 is calculated by the relation between the conjugate gradient and the Lanczos
algorithm ����� The results are summarized in Table 	���

�� Domain decomposition method on nonmatching grids� In this section we describe
an algorithm for solving systems of linear algebraic equations arising from nonconforming �nite
element approximations of the anisotropic di�usion equations on nonmatching grids�

First� the original di�erential problem 
���� is represented in the hybrid�mixed form using the
Arnold�Brezzi formulation ��� via nonoverlapping domain decomposition using additional Lagrange
multipliers to enforce the necessary continuity of the solution on the interfaces between subdomains
���� ��� �	�� Next� using the equivalence between hybrid�mixed and nonconforming �nite element
methods we replace the original three��eld formulation in each subdomain with the simple noncon�
forming one� The original elliptic problem is thus imposed as a nonconforming discrete problem
with Lagrange multipliers at the interfaces between the subdomains� into which the original do�
main is decomposed� At these interfaces certain continuity conditions on the solution are imposed�

�



Table ���

Results of experiments with bordering method�

���
 ���
N � �����

���
 ���
N � ������

���
 ���
N � ������

k Iter Cond Iter Cond Iter Cond
� �	 ���� �� ���� �� ����
�� �	 ��� �� ��� �� ����
��� �� ��	 �� ��� �� ���
���� �� ��� �� ��� �� ���
����� � ��� � ��� � ���
������ 	 ��� � ��� � ���

This construction is done to inherit the properties of the Lagrange multiplier space de�ned on the
interfaces between the subdomains� The Dirichlet boundary conditions� if any� are also given by
the Lagrange multipliers� We should note that the corresponding matrix is symmetric but indef�
inite� The iterative method to be considered involves a block diagonal preconditioner with the
inner Chebyshev iterative procedure and the preconditioned Lanczos method as an outer iterative
procedure�

In each subdomain we introduce its own grid� namely� a triangular one in two dimensions and
a tetrahedral one in three dimensions and corresponding P��nonconforming �nite element space� A
mortar �nite element space is constructed in the space of the Lagrange multipliers�

Using a variant of �ctitious domain method ���� it is shown that for subdomains we can choose
the substructuring preconditioners constructed in Section �� For the problem on the interfaces
the preconditioner is introduced in the form of the inner Chebyshev procedure for the matrix
which is spectrally equivalent to the Schur complement� The construction and the analysis of this
preconditioner is based on the new approach recently developed in ���� ��� for solving �nite element
problems on nonmatching grids with Lagrange multipliers on the interfaces between the subdomains�

It is shown that the proposed block�diagonal preconditioner is spectrally equivalent to the
original saddle�point matrix with constants independent of mesh�size parameter and coe�cients
of the problem� We remind that the symmetric matrix A and the symmetric positive de�nite
matrix B are said to be spectrally equivalent if the spectrum of matrix B��A belongs to the set
�d�� d�� � �d�� d��� d� � d� � � � d� � d�� with the boundaries of the segments independent of the
mesh size parameter h�

Using the partial solution technique �	� ��� it can be shown that the arithmetical complexity
of the proposed algorithm for solving problem 
���� in two�dimensional domains is estimated from
above by O
N ln� 
N�m��� where N is the dimension of the problem and m is a number of subdo�
mains� This estimate is independent of mesh size parameter h� size of subdomains� and coe�cients
of the problem K
x��

���� Results of numerical experiments� In this subsection we present the results of nu�
merical experiments with the domain decomposition method on nonmatching grids for the model
problem in unit square 
 � ��� ����

�
�X

i�j��

�

�xi

kij

�u

�xj
� � f� in 
� u � �� on �
�
����

Domain 
 is composed of � subdomains� The coe�cients kij � i� j � �� �� are constants in each
subdomain�

K� �

�
� �
� k

�
� K� �

�

�

�
k�� k��
k�� k��

�
� K� �

�

�

�
��k ��k
��k ��k

�
� K� �

�
k �
� �

�
�

with some parameter k� The main directions of the anisotropy in each subdomain and an example
of the grids used in experiments are shown in Figures ���a and ���b� respectively�
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�a� Main directions of the anisotropy� �b� Nonmatching grids�

Fig� ���� Main directions of the anisotropy and grids in the subdomains�

Each subdomain 
k is embedded in a rectangle "k constructed in the local coordinate system
as described in ����� Each rectangle "k is divided into n� squares 
n in each direction� and each
square is partitioned into � triangles� The dimension of the original algebraic system is N �

The results are summarized in Table ���� Here Iter denotes the number of iterations of the
generalized Lanczos method and Cond denotes the condition number of preconditioned interface
system�

Table ���

Results of experiments with nonmatching grids�

n � ���
N � �� ���

n � ���
N � 	�� ���

n � ���
N � � ��� ���

k Iter Cond Iter Cond Iter Cond
� �� ���	 �� �	�� �� ���	
�� �	 ���� �� ���� �� ����
��� �� ��� �� ��� �� ����
���� �� ��� �� ��� �� ���
����� �� 	�� �� ��� �� ���
������ �� ��� �� ��� �� ���
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