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1. Introduction. The general goal of this presentation is preconditioning techniques for mixed
and nonconforming finite element approximations of elliptic boundary value problems. A special
emphasis is placed on problems in three dimensions with possibly large anisotropy in the coefficients
of the PDE’s along with large jumps in the coefficients across the interfaces separating subregions.

The optimal preconditioners developed exploit the techniques of domain decomposition meth-
ods, algebraic substructuring, and multigrid methods. As a result, the proposed iterative processes
converge with rates independent of the mesh size, the jumps of the coefficients, and the ratio of
anisotropy.

Using an equivalence between nonconforming finite element methods and hybrid-mixed methods
[1] the iterative methods constructed for algebraic systems with symmetric positive definite matrices
are extended to saddle-point problems which arise from mixed finite element approximations [13].

Let © be a convex bounded domain in R?, d = 2,3, with boundary dQ. Consider an elliptic
problem

—div(K-Vu) = f in Q,
(1.1) u = 0 on Iy,
(KVu,n) = 0 on I'y,

where K (x) is a positive definite, uniformly bounded symmetric tensor, f(x) € L*(Q), To UT; = 09,
I'oNT; = 0. We shall consider the case when Ty = 'y # (). The pure Neumann problem (Ty = ())
can be treated in a similar way but for the sake of simplicity is not described here.

Let Ty be a regular partitioning of € into simplices 7 with mesh-size h and let V() be the
Py —nonconforming finite element space of functions v € L?*(Q) [1] such that v|, are linear for all
T € Th, v are continuous at the barycenters of 7 € T, and vanish at the barycenters of the boundary
faces on I'y. Note that the space V() is not a subspace of H!((2).

Define the bilinear form on V4, (Q2) by

(1.2) al (u,v) = Z (KVu,Vv),, Y u,v € Vi(9),
TETH

where (-,-); is the inner product in L?*(7), 7 € 7. Then the Pi—nonconforming finite element
discretization of (1.1) has the form: find up € V3 () such that

(1.3) al (up,v) = (f,v), Vv € V().

Once a nodal basis {y; (x)}i\;1 for V() is chosen, (1.3) leads to a system of linear algebraic
equations:

(1.4) Au=f,

where Aji = a’?)(@i:@j% fj = (fa @j)’ ihj=1,...,N.

Although the methods of solving (1.4) have been extensively studied in the past few years (see,
e.g., [1, 5, 9, 10, 14]), their efficiency depends on the coefficient matrix K(x), and in the case of
strong anisotropy in the coefficients the question of constructing effective solution techniques is still
open.
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In this work we propose several preconditioners for P;-nonconforming finite element approxima-
tions of anisotropic problems using substructuring ideas [20, 16] and domain decomposition methods
[4, 8, 29].

The substructuring approach makes it possible to construct very efficient preconditioning tech-
niques for problems with a high anisotropic ratio in the coefficients in domains of simple form such
as a topological parallelepiped [13, 16, 22].

To construct the iterative methods for solving the anisotropic problems approximated by the
nonconforming P; elements in domains of complex geometric shape we consider numerical methods
which involve a solution of analogous problems in domains of relatively simple form. We note that
an important difference between nonconforming an conforming cases is that there are no nodes at
the vertices (or wire basket) of the subregions. Thus, there is no problem of crosspoints which
is an essential part of the domain decomposition method when using conforming finite elements
[7, 15, 27, 29]. It makes the construction of the preconditioner for the Schur complement on the
interfaces between subdomains very clear and easy. An iterative process whose convergence rate
is independent of the mesh step size and the ratio of anisotropy in the coefficients is constructed
[24, 26]. It is shown that the number of arithmetic operations required for realization of the method
with a given accuracy is proportional to the number of unknowns of the original algebraic problem.

A new construction of iterative methods for mixed finite element approximations of elliptic
PDE’s on nonmatching grids is considered. The computational domain is considered as a union of
nonintersecting subdomains. In each subdomain the grid is constructed in accordance with its own
coordinate system (for example, using the main directions of anisotropy) [25]. The original elliptic
problem is posed as a problem with Lagrange multipliers at the interface between the subdomains,
which ensure the continuity conditions of the solution (in a weak sense) [21, 23]. A mortar finite
element subspace is constructed in the space of Lagrange multipliers, which results in algebraic
systems of a saddle-point type.

Based on the technique of domain decomposition and fictitious components methods a con-
struction of block diagonal preconditioners for the algebraic systems arising in the mortar finite
element method is developed [25, 26]. The fictitious components method is used to precondition
subdomain problems, while the interface problems are preconditioned by an inner Chebyshev itera-
tive procedure. It is shown that the developed preconditioner is spectrally equivalent to the original
saddle-point matrix.

Applications of the newly developed iterative methods and preconditioning techniques are con-

sidered. In particularly, these methods are applied in the simulator of fluid flow in porous media
[12].

2. Substructuring preconditioner for nonconforming approximations of elliptic prob-
lems with anisotropy.

2.1. Description of the approach. In this part of the talk we consider a method of construct-
ing the preconditioner for (1.4) using an idea of algebraic substructuring which can be described as
follows [22, 26].

Let us partition the domain 2 into subdomains ,, s = 1,...,n, such that each 5 is a union
of simplices T € Ty,

Q=[] Q. QSZU{T,eTh;T,cQS}.
s=1 =1

Below these subdomains 25 are called superelements.
Let us introduce local stiffness matrices A; on each superelement {2, as follows:

(Asug,ve) = > (K(X)Vun, Vo), Vup, v € Va(Q).
T1CQ;s

All these matrices are at least positive semidefinite, and the global stiffness matrix is determined



by assembling the local stiffness matrices over all the superelements:

(Au,v) = Z(Asus,vs), Vu,v € RY.

s=1

We can symbolically write A = {A4,}7_,, where {-}7_, denotes assembling with respect to the
partitioning {Qs}7_, of Q.

In the above notation each superelement matrix A, can be represented in terms of local stiffness
matrices over simplices 7; from Q,, i.e. As = {Ag} Note that matrices A, are also at least
positive semidefinite.

Following [20, 22], let us introduce on each simplex 7 € Tz another matrix Ay which has the
same kernel as Ag (i.e. Ker Ay = Ker flsl). Define the matrix A, on each superelement by
assembling flsl:

TIC82s "

~

A, = {AS’}ans'

Then it can easily be shown that Ker A, = Ker fis and the matrices fis are also at least positive
semidefinite.
Now let us define an N x N matrix A by assembling A, over all the superelements

A= {As}::l ’

It can be easily shown that to estimate the extreme eigenvalues of A='A4 it is sufficient to
consider the local problems

Agu, = ,u(s)/isus, u, 1L Ker fls,

on all the superelements Qg, s =1,...,n.
Thus, if the superelement matrices A; and A, are spectrally equivalent with respect to Ker Ay,
i.e. there exist constants cy , and c; s such that

cO,S(Asus,us) < (Asug,uy) < clys(/lsus,us), Yu, € ]RNS, Ng = dim g,

where constants co s, c1,s do not depend on mesh-size parameter h, then matrices A and A are also
spectrally equivalent, i.e.

Co (All,ll) < (All,ll) <a (Au,u), Vu e IRN:

with cp = mincy s and ¢; = maxc .
8§ 8§

Now let us partition all the unknowns in (1.4) into two groups:
u=(uf,ul)?, dim uy = Ny, dim uy = N — Ny,
so that matrix A is represented in a block form:

i A Ap ]
2.1 A= " «
21) { Ao As

such that block /122 is easily invertible. Then introducing the Schur complement S = An —
A12A2_21A21, we can rewrite matrix A as

7 S+ Ap Ayt Ay A }
2.2 A= " 22 Iy X
(22) [ Aoy Az



Following [6, 19], we construct a matrix S which is spectrally equivalent to S, i.e.
do(Sv,v) < (Sv,v) < dy(Sv,v), vv e RM,

where constants 0 < dy < d; are independent of mesh-size parameter h. Then the matrix

- 5:4- A AZ) Ay 1‘:112

2.3 B =
23) Az Asp

is spectrally equivalent to matrix A, i.e.
ro(Bu, u) < (Au,u) < ri(Bu,u), Vue ]RN>

where 7o = co min{1;dp}, r1 = ¢y max{1;d;}. To construct such a matrix S, again, we can use the
idea of the algebraic substructuring described above.

Concluding this overview, we can say that the algebraic substructuring procedure consists of

the following main steps:
(A) the reconstruction of the directed graph of matrix A from (1.4) in such a way that the
resulting matrix A has the same kernel and is still positive definite (or positive semidefinite
if matrix A is singular);
(B) the representation of matrix A in 2 x 2 block form (2.1) in such a way that one of the blocks,
12111 or 12122, is easily invertible;
(C) the replacement of the Schur complement S in (2.2) by a spectrally equivalent matrix S;
we can use steps (A) and (B) to construct such a matrix S.
Note that we can first represent matrix A in 2 x 2 block form (2.2) and then use steps (A)—(C)
to construct a preconditioner for the Schur complement S = Ay — A12A;21A21. Implementing a
finite number of these steps, we can get matrix B which is spectrally equivalent to the given matrix
A.

Because of the algebraic nature of such a procedure this approach strongly depends on the
structure of the graph of matrix A and consequently on the type of the nonconforming finite element
space V.

2.2. Model three-dimensional problem. To explain this approach we consider the model
problem when € is a unit cube in IR®, I'y is a union of some faces of 2, the boundary conditions
are homogeneous, and K (x) satisfies the following assumption.

ASSUMPTION 2.1. Assume that the coefficient matriz of equation (1.1) is a diagonal tensor
K(x) = diag{ky, k2, ks}, where k;, i = 1,2, 3, are constants over the cube ) such that a coefficient k.
in some direction is not less then the coefficients in the other directions. For the sake of definiteness
we assume that this is the “z-direction”. That is k = min {ks/k1,ks/k2} > 1.

The extension of the method to the case in which ) is a union of topological parallelepipeds
and the tensor K(x) is a full symmetric matrix satisfying some requirements can be found in
[22, 24, 25, 26].

Let C, = {C"*)} be a partition of Q into uniform cubes with edge length h = 1/n; here
(@i, y;,2x) is the right back upper corner of cube C3:k) | Next, we divide each cube C'7%) into 5
tetrahedra as shown in Figure 2.1. We denote this partitioning of Q into tetrahedra by 7. Note
that we have two types of partitioning of cubes C'(“7:%) into tetrahedra, the cube with one type of
partitioning having all the adjacent cubes of another type.

We introduce the set of barycenters of all the faces of the tetrahedral partition of {2 and the set
@, of those barycenters that do not belong to I'y. The Crouzeix-Raviart Py—nonconforming finite
element space V}, is defined by

(2.4) Vi = {v € L*(Q): wv|r € Pi(T), VT € Tp; v is continuous at the barycenters
2.
from @)} and vanishes at the barycenters of faces on I‘g}.

Let its dimension be N. Note that N ~ 10n>.



FIc. 2.1. Partition of cubes C("-%) into 5 tetrahedra.

2.3. Algebraic substructuring preconditioner. Here we outline the construction of the
algebraic substructuring preconditioner. We divide all the unknowns in the system into two groups:
1. The first group consists of the unknowns corresponding to the faces of the tetrahedra that
are internal for each cube.
2. The second group consists of all the unknowns corresponding to the faces of the cubes in
partition Cj, without the faces on Ty.
Splitting the space R" into two groups induces a vector presentation: v = (vI,vl), where
vi € R™ and v, € R™; here v corresponds to the unknowns of the 2-nd group. Obviously,
N1 = 4n? and Ny = N — 4n>. Then stiffness matrix A is represented in the following block form:

All A12
2.5 A=
(25) {Am A22]’

where A1 : RM —» RM corresponds to the unknowns on the faces of tetrahedra which are internal
for each cube and matrix Ass is diagonal. It can be easily verified that A;; has the form:

A =kiAs + k2 Ay + k3 A,

where the matrices A, A,, and A, do not depend on the coefficients of the problem (1.1).
Along with matrix A we introduce the matrix B

_ 3h [ By 0
(2.6) B—A+2[ 0 0},

where Bll = (k1 + k2)A.. Thus, matrix B can be represented in the form:

3h |: BH A12 :|

B=—
2 Aoy As

where B11 = kl (Az + Az) + kQ(Ay + Az) + k3AZ.
Using superelement analysis it is easy to verify that the eigenvalues p of the problem

(2.7) Au = pBu

belong to the interval [1/3,1] provided Assumption 2.1.
Let us denote by By; = By — A12A;21A21 the Schur complement of B obtained by elimination
of the vector vy. Then By = By1 + A12A2_21A21 and hence matrix B has the form:

Bii + A1g A5 Asy Agy ]
2.8 B = 22 )
(28) [ Aoy An»

Now we need to develop a preconditioner for matrix By1. Again, using algebraic substructuring
we can construct a sparse separable matrix Bj; spectrally equivalent to Bi; so that the resulting
matrix

(2.9) B= [ By +A12A2_21A21 Al ]

A21 A22



is spectrally equivalent to the initial matrix A. In this case we shall use the method of separation
of variables and discrete fast Fourier algorithm in order to solve the system of linear equations with
matrix Bn.

The use of discrete fast Fourier transform yields a total number of arithmetic operations pro-
portional to Ny In(Ny) or N In(0.4N), where the constants of proportionality do not depend on the
number of unknowns N and on coefficients k1, k2, and k3.

REMARK 2.1. In the method outlined above, we note that the condition number depends
neither on mesh-size h nor on the value of the coefficients when k3 > max {k1,k2}. Because the
condition number of matrix B~ A depends on the value of parameter & it is very important to choose
the “z-direction” in the proper way. If, for example, we have the problem in which coefficient &k is
greater than coefficients k; and k3, we rearrange the variables so that the new variable z coincides
with the old variable z. It means that we simply rename the axes of the coordinate system.

2.4. Results of numerical experiments. The method of preconditioning is tested on the
model problem (1.1) with diagonal matrix coefficient K = diag {ki, ko, k3 }.

The domain is divided into n® cubes (n in each direction). Each cube is partitioned into 5
tetrahedra. The dimension of the original algebraic system is N = 10n® — 6n2. The problem (1.4)
is solved by preconditioned conjugate method (PCG) with accuracy e = 107%. Coefficients k;,
i1 =1,2,3, are constants on each cube. The results are summarized in Table 2.1.

TABLE 2.1
Dependency on parameters K;.

16 x 16 x 16 20 x 20 x 20 30 x 30 x 30

N = 39424 N = 77600 N = 264600
k1 ko ks Iter Cond Iter Cond Iter Cond
1 1 1 14 4.87 14 4.93 14 5.03
1 1 10 12 3.72 12 3.94 12 4.28
1 1 100 9 2.28 10 2.55 10 3.00
1 1 1000 8 1.55 8 1.58 8 1.73
1 1 10000 8 1.48 8 1.49 8 1.51
1 1 0.1 31 19.4 31 19.6 31 19.8
1 1 0.01 62 133. 71 149. 82 168.
10 1 1 24 12.0 25 12.1 25 12.1
1 10 1 24 12.1 24 12.1 24 12.0
100 1 1 58 99.3 63 100. 62 100.
1 100 1 62 100. 60 100. 60 99.5
1 10 10 14 4.72 14 4.81 14 4.94
1 10 100 12 3.62 12 3.85 12 4.25
1 10 1000 9 2.14 10 2.42 10 2.92
1 100 10000 9 2.20 10 2.42 10 2.92

From Table 2.1 we see that the condition number depends on the maximal ratio

a kv ko
K=max§ -—, — ¢ -

ks ks
The numerical results are in full agreement with the theoretical estimates. One can see that the
proposed preconditioner is optimal if K < 1. In the case of k < 1 the method has a better convergence
than in the case of the Poisson equation (i.e. k1 = ks = k3 = 1). If K > 1, the preconditioner looses

its optimal order and the corresponding relative condition numbers increased strongly with . It is a
rather predictable result since we defined preconditioning matrix B in (2.6), taking some “additional



positiveness” from the direction with the dominated anisotropy (z-direction) to other directions.
Experiments show that this procedure is “well behaved” if the coefficient in the z-direction (k3) is
greater than coefficients k; and k. And the method loses its effectiveness if we choose the wrong
direction, i.e. coefficient k3 is small compared with coefficients k; and ks.

Remember that in the method described here we need only an assumption that coefficient k.,
in some direction is not less then the coefficients in the other directions. Thus, if, for example, we
have the problem where coefficient k; is not less than coefficients k2 and k3 we can simply rename
variables in such a way that a new z variable corresponds to the old z variable. The results will be
the same.

3. Block bordering method for anisotropic problems. In this section we present a con-
struction of the domain decomposition method for solving systems of grid equations approximating
boundary value problems for second-order elliptic problems with anisotropic coefficients. We con-
sider problems for which the computational domain {2 can be represented as a union of nonoverlap-

ping subdomains = .T_Lr,IL1 Q; inside which the equation coefficients vary insignificantly.

i=

A variant of the block bordering method [27] for the anisotropic problem is considered. This
algorithm uses the well defined multigrid or substructuring preconditioners for problems in subdo-
mains (e.g., the preconditioner outlined in Section 2). For the problem at the interfaces we construct
a preconditioner in the form of the inner Chebyshev iterative procedure. More precisely, this is a
preconditioner for the Schur complement of the original symmetric positive definite matrix, which
results after eliminating the block corresponding to the unknowns in the subdomains.

This approach combines the ideas of domain decomposition methods [4, 8, 29, 30] and the
algorithms of multilevel and algebraic multigrid methods [2, 9, 19] with the bordering method for
solving systems of mesh equations.

3.1. Problem formulation. Let Q be a bounded domain on a plane IR?, which is composed
of open rectangles ; whose sides are parallel to the coordinate axes Q = ", ;. Consider an
elliptic problem (1.1) with a positive definite symmetric coefficient matrix K (x).

Assume that the interior of each side of the rectangles 2; either entirely belongs to I'g or I'y,
or lies inside €. Also assume that Q;, i = 1,...,m, can have either a common side or only a
common vertex, or they do not overlap. It is obvious that any domain composed of rectangles can
be partitioned by additional lines into subdomains ; satisfying this assumption.

Again we consider a regular partitioning 73 of Q into simplices 7 with mesh-size h and P
nonconforming finite element space of functions V3 () as described in Section 1.

ASSUMPTION 3.1. We assume that there exist a diagonal coefficient matriz K (x) = diag {k,(x),
ky(x)} such that ky(X) = kayi, ky(X) = kys, x € Qi, 0 = 1,...,m, with constants k,; >0, ky; >0,
such that the bilinear form ali(-,-) defined by (1.2) and bilinear form

ab(u,v) = Y (KVu,Vv)r,  VYu,v € Vi(Q),
TETH

satisfy inequalities
(3.1) ag - al(u,u) < al(u,u) < ay -al(u,u), Yu € Vi, (Q),

with some positive constants ag, o .

Inequalities (3.1) suggest considering form af(,-) as a preconditioning form to a&(-,-). Thus
below we consider the problem (1.1) with diagonal coefficient matrix K.

Let u(® and v(¥ denote the vectors corresponding to the finite element functions v and v from

Vi(Q;). Let A® denote the local stiffness matrix arising from ad. (- ):

(3.2) (ADu vy = agi (u,v), Yu,v € Vi ().

For each subdomain €, i = 1,...,m, we can partition the degrees of freedom u(? into two sets. The

first set includes the degrees of freedom at the nodes in the interior of subdomain 2;, denoted uy),



and the second set corresponds to the degrees of freedom at the nodes on the boundary 0Q; \ T'o,
denoted ugf ). Such a partitioning induces the partitioning of A given by

(4) (4) (4) (4)
(33) <A<i>u“>,v“>)=< ) [“{a ,[V{a D
Arr App up vr

Finite element system (1.4) has the obvious algebraic representation:

1 1
Af) 0 AR TV gl
01 Ag I : Agr) ng) ggm)
AL ooalm A vr gr

with block Arr defined by

m
(3.5) (Arrur,vr) = Z(Agl)““g)avl(f))-

i=1
Note that blocks Agil), i=1,...,m, correspond to the boundary value problems in rectangles €;
(3.6) agi (up,v) = G(v), Yo € Vi (), i=1,...,m,

with homogeneous Dirichlet boundary conditions imposed on the boundaries 0);. Denote the
number of degrees of freedom in 61 Q; and 61 00; \ 'y by Ny and Nr, respectively.

1= 1=

(4)

Eliminating the unknowns v;’, ¢ =1,...,m, in (3.4), we obtain the following Schur system:
(3.7) Arvr = Gr,
where
mo q1—1 . mo. E T
69 Ar=aw A0 [0 AR Gro - SoAR[A0] e
i=1 i=1

Thus, the solution to system (3.4) can be reduced to the construction of an efficient algorithm
for solving systems (3.6) in subdomains and system (3.7).

The algorithm for solving subdomain problems with matrices A?I) (for 3D problem) is considered
in Section 2. It can be shown that these problems can be solved very efficiently.

The main goal of this section is to construct an easily invertible matrix B which is spectrally

equivalent to matrix Arp:
co(Brvr,vr) < (Arvr,vr) < ¢ (Brvr, vr), Vvr € R,

where constants ¢y and ¢; are independent of mesh size parameter h, the subdomain diameters, and
value of the coefficients.

3.2. Preconditioner for interface problems. In this subsection we construct a precondi-
tioner for the problem at the interface in the form of an inner iterative procedure. More precisely,
we construct a preconditioner for the Schur complement of the original matrix.

The method is based on the following statement [24, 26].

LeEMMA 3.1. There exists an h-independent constant o such that

(39) a-h (AFFIIF,UF) < (A[‘ll[‘,llp) < (A[Tllp,llp), Yur € IRNF \Ker AF.



The preconditioner Br is defined in the form of an inner Chebyshev iterative procedure [2, 8, 19].
From Lemma 3.1 we know that the eigenvalues of matrix Ar:Ar belong to segment [ah, 1]. Let
Py, (y) be the polynomial of least deviation from zero on this segment and that satisfies the condition
P,(0) = 1. Denote by 3, 1 = 1,...,L, the inverses of the roots of the polynomial Py (y). The
formulae for Py (y) and its roots 1/8;, L =1,..., L, can be found, e.g., in [18]. Then preconditioner
Br for matrix Ar is determined by:

L
(3.10) Byl = {IF — 11 (&r — BiAL AY) } Af

=1

Lemma 3.1 and the theory of Chebyshev iterative methods imply the following result [26].

STATEMENT 3.1. Let L > (5/h)1/2. Then matriz Br in (3.10) is spectrally equivalent to matriz
Ar with constants of equivalence independent of mesh size parameter h and the value of coefficients
ke, kyi, i =1,...,m, in the subdomains.

Using the partial solution technique [3, 28] one can show that the procedure of multiplying a
vector by matrix Bp' can be implemented for O(h=2 + h=%/21n* (h™1)).

Now assume that we use the algebraic multigrid method (AMG) to solve the subdomain prob-
lems. Then the arithmetical complexity of solving the problem (1.4) is estimated by O(N +
N3/41n* (N)).

3.3. Results of numerical experiments. In this subsection the domain decomposition
method is tested on the model problem in the unit square Q@ = [0,1]? with diagonal coefficient
matrix K(x) = diag{ks;,k,}. Domain Q2 is composed of 4 subdomains as shown in Figure 3.1.
Coefficients k, and k, are constants in each subdomain.

Qs Q
ky =1 ky =
ky =k ky =1
o Q9
ke =k ke =1
ky =1 ky =

Fic. 3.1. Coefficients in the subdomains for a model problem.

The domain is divided into n? squares (n in each direction) and each square is partitioned into
2 triangles. The dimension of the original algebraic system is N = 3n? — 2n and the dimension of
the Schur complement after elimination of the subdomain problems is Ny = 4n. The problem (1.4)
is solved by preconditioned conjugate method (PCG) with accuracy e = 106, The degree of matrix
polynomial (3.10) equals L = [v/2.5n] + 1, where [n] is an integer part of 5. The condition number
of matrix AE%AF is calculated by the relation between the conjugate gradient and the Lanczos
algorithm [18]. The results are summarized in Table 3.1.

4. Domain decomposition method on nonmatching grids. In this section we describe
an algorithm for solving systems of linear algebraic equations arising from nonconforming finite
element approximations of the anisotropic diffusion equations on nonmatching grids.

First, the original differential problem (1.1) is represented in the hybrid-mixed form using the
Arnold-Brezzi formulation [1] via nonoverlapping domain decomposition using additional Lagrange
multipliers to enforce the necessary continuity of the solution on the interfaces between subdomains
[11, 17, 23]. Next, using the equivalence between hybrid-mixed and nonconforming finite element
methods we replace the original three-field formulation in each subdomain with the simple noncon-
forming one. The original elliptic problem is thus imposed as a nonconforming discrete problem
with Lagrange multipliers at the interfaces between the subdomains, into which the original do-
main is decomposed. At these interfaces certain continuity conditions on the solution are imposed.



TABLE 3.1
Results of experiments with bordering method.

100 x 100 200 x 200 400 x 400

N = 29800 N = 119600 N = 479200

k Iter | Cond Iter Cond Iter Cond

1 23 10.7 25 10.9 26 10.9
10 23 9.2 24 9.8 26 10.2
100 20 8.3 19 7.9 20 8.1
1000 12 4.2 14 6.2 14 6.4
10000 6 1.5 7 2.0 7 2.1
100000 3 1.1 4 1.1 4 1.1

This construction is done to inherit the properties of the Lagrange multiplier space defined on the
interfaces between the subdomains. The Dirichlet boundary conditions, if any, are also given by
the Lagrange multipliers. We should note that the corresponding matrix is symmetric but indef-
inite. The iterative method to be considered involves a block diagonal preconditioner with the
inner Chebyshev iterative procedure and the preconditioned Lanczos method as an outer iterative
procedure.

In each subdomain we introduce its own grid, namely, a triangular one in two dimensions and
a tetrahedral one in three dimensions and corresponding P;-nonconforming finite element space. A
mortar finite element space is constructed in the space of the Lagrange multipliers.

Using a variant of fictitious domain method [26] it is shown that for subdomains we can choose
the substructuring preconditioners constructed in Section 2. For the problem on the interfaces
the preconditioner is introduced in the form of the inner Chebyshev procedure for the matrix
which is spectrally equivalent to the Schur complement. The construction and the analysis of this
preconditioner is based on the new approach recently developed in [25, 26] for solving finite element
problems on nonmatching grids with Lagrange multipliers on the interfaces between the subdomains.

It is shown that the proposed block-diagonal preconditioner is spectrally equivalent to the
original saddle-point matrix with constants independent of mesh-size parameter and coefficients
of the problem. We remind that the symmetric matrix 4 and the symmetric positive definite
matrix B are said to be spectrally equivalent if the spectrum of matrix B~'A belongs to the set
[di,ds] U [d3,d4], di < dy <0 < ds < dy, with the boundaries of the segments independent of the
mesh size parameter h.

Using the partial solution technique [3, 28] it can be shown that the arithmetical complexity
of the proposed algorithm for solving problem (1.1) in two-dimensional domains is estimated from
above by O(N In? (N/m)), where N is the dimension of the problem and m is a number of subdo-
mains. This estimate is independent of mesh size parameter h, size of subdomains, and coefficients
of the problem K (x).

4.1. Results of numerical experiments. In this subsection we present the results of nu-
merical experiments with the domain decomposition method on nonmatching grids for the model
problem in unit square Q = [0, 1]*:

2
0 ou
(4.1) - —(kij=—)=f, inQ, u=0, onJdN.
Z 61‘1 ]al’j

ij=1

Domain  is composed of 4 subdomains. The coefficients k;;, i,j = 1,2, are constants in each
subdomain:

[1 0 1kl k-1 L[ 14k 1-k k0
Kl_{o k]’K2_§[l~c—1 k+1]’K3_§[1—k 1+k]’K4—{0 1]’

with some parameter k. The main directions of the anisotropy in each subdomain and an example
of the grids used in experiments are shown in Figures 4.1a and 4.1b, respectively.
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(a) Main directions of the anisotropy. (b) Nonmatching grids.

F1g. 4.1. Main directions of the anisotropy and grids in the subdomains.

Each subdomain €2}, is embedded in a rectangle II; constructed in the local coordinate system
as described in [26]. Each rectangle I, is divided into n? squares (n in each direction) and each
square is partitioned into 2 triangles. The dimension of the original algebraic system is V.

The results are summarized in Table 4.1. Here Iter denotes the number of iterations of the
generalized Lanczos method and Cond denotes the condition number of preconditioned interface
system.

TABLE 4.1
Results of experiments with nonmatching grids.
n = 100 n = 200 n = 400
N =90 600 N =361 200 N =1 442 400
k Iter | Cond Iter Cond Iter Cond
1 25 12.3 28 13.9 29 14.3
10 23 10.2 25 11.8 27 11.2
100 20 9.4 22 9.9 22 10.1
1000 17 6.2 19 7.2 19 7.4
10000 16 3.5 18 4.0 18 4.1
100000 16 2.1 18 2.1 17 2.1
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