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ABSTRACT We derive and study cell-centered finite volume approzimations of
reaction-diffusion equations. For Voronoi and circumscribed volumes we obtain
monotone schemes. If the volumes satisfy reqularity condition then the schemes
are H'-positive definite and first order accurate. For finite volumes satisfying
an additional symmetry condition the schemes are second order accurate.
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1. Introduction

We consider the model convection-reaction-diffusion equation

V- (-AVu+bu)+cu=f in Q, u=0 on 002, (1)
where € is a bounded domain in R%,d = 2,3, A(z) = {a;;}{;_,, ¢(x), f(z), and
b = (b1 (z),...,ba(x)) are given sufficiently smooth functions in Q that satisfy
the following conditions: ¢7A(x)€ > apé'¢, ap > 0, € € RY, %V-b(x)%—c(m) >
0. These assumptions guarantee that the model problem (1) has a unique solu-
tion in H} (Q). In groundwater applications A is the diffusion-dispersion tensor,
u is the concentration of the contaminant, b is the Darcy’s velocity, and c is
the reaction rate, and f is the strength of the sources (sinks). For such appli-
cations inflow and outflow boundary conditions may be specified on parts of
the boundary and transient regimes of flow and transport leading to parabolic
problems can be considered. The technique developed in this paper is applica-
ble for such problems as well. The solution of this model problem has various
interesting properties which correspond to the properties of the physical model:



conservation of mass in each volume, monotonic solution (of the homogeneous
equations), stable solution in maximum and energy norms, etc. For such ap-
plications desirable properties of the numerical method include: 1) stability
in maximum and energy norms; 2) the approximation method conserves the
“mass” element by element; 3) the discrete solution satisfy the maximum prin-
ciple; 4) the corresponding matrix is positive definite; 5) the method works for
general domains and fairly general grids.

Finite volume approximation strategy is based on the discretization over
a partition of  into cell-centered or vertex-centered finite volume. Vertex-
centered finite volume approximations have been derived in the pioneering work
of Tikhonov and Samarskii [11]. It has been proven that for 1-D problems
with discontinuous coefficients the discrete conservation property is a necessary
condition for the convergence of the finite difference schemes. A consistent
theory of vertex-centered schemes on rectangular and triangular grids has been
developed in [9] and [5], respectively. Interesting results for quadrilateral finite
volumes have been reported in [8]. Approximation of the balance equation over
the finite volume partition with polynomial extension of grid functions over the
finite elements led to finite-volume element method (see, e.g. [1, 3, 10]) and
box schemes (see, e.g. [2]).

We focus our study on cell-centered uniform triangular and rectangular
grids, Voronoi meshes, and Delaunay meshes. Such schemes are natural for
polygonal partition of the domain. In general, a polynomial interpolation on
the polygons is not available and an approach which is closer to finite difference
technique has to be used. The constructed schemes are locally mass conser-
vative and satisfy the discrete maximum principle. Two geometric conditions
are formulated, and under these conditions coercivity and error estimates in
the discrete H'-norm are derived. For general grids, the constructed schemes
have first order of accuracy. In special cases of grids with certain symmetry
property the schemes are second order accurate.

2. Discretization schemes

We suppose that the domain 2 is covered by finite number of convex poly-
gons (polyhedra in 3-D). We call these polygons finite volumes. In the interior
of each finite volume one point, called cell-center, is chosen. The cell-centers
(and the finite volumes) are numbered in a unique way, i.e., {x; : i =1,...,n},
and correspondingly {V; : i = 1,...,n}. We denote by @ the cell-centered
mesh, @ = {x;}7,, by w the interior grid points, i.e., w = N Q, and by
v =wnNoN. We also need the index set X(7) of all neighbors of x; in @, i.e.,
J € X(3) if the finite volumes V; and V; have a common face v;;, v;; = Vi N Vj.

We require that finite volumes be chosen in a such way that there exists
a circumscribed circle around each finite volume and the cell-center coincides
with the center of the circumscribed circle, or cell-centered finite volumes are
Voronoi regions. Voronoi regions have the property that each point in the



Figure 1: Voronoi diagram

interior of given finite volume is closer to the cell-center of that volume than to
any other cell-center. We call the former one a circumscribed cell-centered grid
and the latter one a Voronoi cell-centered grid. Simple examples of Voronoi
and circumscribed cell-centered grids are shown on Fig. 1 and Fig. 2.

We denote by m(S) the measure of the set S, and by d(x,y) the Euclidean
distance between the points x and y. Functions defined for x € w are called grid
functions. We use the subindex h to indicate the dependence of the grid and
the value at a given point is referred by the index of the point, i.e., up(x;) =
up,;. For given grid functions up, and v, we define the following discrete inner
products and norms:

(wn,vn) = > m(Vi)univni, Nunllge = (un, un),
T;Ew
1 Uh,i — Up,j 2
lunlt, = 5 ). Y mlyi)d(zi,zg) (——=2)
’ 2 i ) d(xi’xj)
zi€w jEX(1)
lunll = llunllpe + lunli.

For such triangulations we add an extra regularity condition.

Assumption 1 (regular triangulations) There exist two positive constants
C1 and Cy such that the following inequalities hold fori=1,... n:
Cym(yij)d(xi, x5) < m(Vi) < Com(vij)d(zi, 2;) Vj € X(i),
Cih? <m(V;) < Cah?,

where h is the characteristic size of the mesh.

Let u be a sufficiently smooth function in €2 and the grid function uj be such
that wp,; = u(x;). Assumption 1 guarantees that ||up|l1,. — ||ull1,0 when
max;(m(V;)) — 0.



Figure 2: Cell-centered control volume

In general, the rate of convergence of of the approximation method depends
on the geometric properties of the triangulation. For some special triangula-
tions we will prove that higher rates of convergence can be achieved for properly
designed finite volume methods. Such triangulations usually exhibit some spe-
cial symmetries of the position of the point z;; = (z;, ;) N;; with respect to
the points z; and z; and to the face v;;. The exact conditions are formulated
in the following assumption.

Assumption 2 (symmetry assumption) The following conditions hold true:
(i) @5 is the middle point of the interval (z;,x;);
(it) for triangular faces v;;, x;j is the barycenter of v;;. Otherwise, we
require that v;; has two perpendicular azes of symmetry and x;; is their inter-
section point.

Now we derive the finite volume approximation of the equation (1). First,
we introduce the diffusive and convective fluxes W = —A(x)Vu(x) and V =
b(x)u(x). Next, we split the boundary of each finite volume in the following
way: Vi = Ujex(i)vij- Finally, integrating (1) over each finite volume V;, i =
1,...n, using Green’s formula, and dividing by m(V;) we get

1 1
) Z<>/ (Won+ Von)ds = m<m>/w(f (2) —cupdx,  (2)

ij

where n is the outer nomal unit vector to the boundary 9V;.
This equation, called balance equation, is the basis of our approximation.
We split the approximation of the balance equation (2) in three parts

Apup = Agf)uh—l—Ag)uh -f-A;LO)’LLh = Z wi j + Z Vi,j +Thi, Ti€w, (3)
JEX(i) JEX(3)

where Af) is the approximation of the diffusive flux, AS) comes from the

approximation of the convection flux, and Ago) is an approximation of the
reaction term.



In this presentation w;;, v;; and zj; are some approximations of the cor-
responding integrals f%—,— W.nds, f%_j V.nds, and fVl_ cudz. Now, in order to
complete the approximation we have to express the discrete fluxes w;; and
v;; and the reaction term through the approximate solution wup(z) at the
grid points. In order to simplify our presentation we consider only the case
A(x) = a(x)I. For more details see [7].

We use the following approximations:

m(yij) . [Un,j — un,i]
g = ol il 4
wig () n(V) " d(r,2y) @
vij(x) = Buni+ Bung, Thi= Cithi,

where k;;, ﬁ% and f;; are properly chosen. Central difference, exponentially
fitted and two upwind schemes on grids introduced above were derived and
studied in [7]. Special case of rectangular uniform partitionings were discussed
in [6]. Particularly simple is the case b(x) = 0 which we shall discuss further
in this paper. A possible choice for k;; is:

o= (e |, ) ®

The discrete problem corresponding to (1) is defined as follows: find a grid
function wuy, such that

Apup = dp in w, u=0 on 7, (6)

where ¢, ; = W Jv, f(x)dx.

Remark 1 It is easy to check that

(i) the difference scheme defined by (4), (5) satisfies the discrete mazimum
principle and the corresponding matriz Ay, is an M-matriz;

(13) If the Assumption 1 is satisfied, then the matrixz Ay is positive definite
in the discrete H' —norm, i.e.,

(Ary,y) > Cllyll},, . for ally € D° = {y, y, = 0}.

3. Stability and error estimates

The stability of problem (6) is a simple consequence of the positive definite-
ness of the matrix Aj,. Namely, we prove the following lemma.
Lemma 1 Let the Assumptions 1 be satisfied. Then for the solution up, of (6)
the following estimate holds:

lunllrw < C sup 1(&n, vn)l ,
w0 (Va1

with a constant C' independent of h and up,.



The error analysis presented here is done in the general framework of the
methods developed in [9] and [4]. To demonstrate our idea we consider the case
a(z) = 1. Let

z(z) =up(z) —u(zr), r €w
be the error of the finite difference method. Substituting up = z + w in (6) we
obtain

Apz=¢—Apu=v =92+ 1o (7)
Then using (2)-(6) we transform  in the following form

1 —
Z + {W /v cudx—ciuh,l} =i

JEX(H) :

1
m(V;)

W.nds — w; ;

Yij

We define the local truncation error in the following way:

1 i
Ni,5 W.ads — m(V) Wi,j (8)
m (Vi) Jvi; m(Yij)
1
i = dx —m(Aij)ciun, | -
mi = | [ ewemt ]>cuh,]

Here A;; is the triangle (pyramid) with base 7;; and node x;. First we consider
the term (12, z). By the definition of the discrete inner product and v, ; we
have

[uj — wi
(2, 2) Z Z l » W.nds +m(7ij)kijm Zj .
z;Ew jEX(i) g

We can regroup the terms (we call this nonuniform summation by parts) to get

2j— 2
(Y2,2) = —5 Z Z dwlaxj 'Yz])nz,]%-
z;,2j)
Ti€w jEX(Q
By the regularity of the grid and Cauchyfschwartz inequality follows
1/2
W2) < | D D mVimi; | Nzlhew = Inllewlizlhe.

Ti€w jEX(i)

Here for convenience we denote with ||7||«, the first sum above.

Likewise
1
(to,2) = B} Z m(V;) Z 1ij + wja)zi + Z Z Viwijlzi — 2]
Ti€w JEX(1) i Cw jeX (i)
1 1
2 2
< C Zm i + i |+ | D m(Vi)ldi i s) 20110
i\

CUli e + ") 1211 -



Here we used abbreviations for the double sums and the distance d(z;, ;).
Summarizing these results and using the coercivity of the operator 4 we obtain
the following main result.

Lemma 2 Let the Assumption 1 be satisfied. The error z(z) = up(z) —
u(z), * € w of the considered finite difference scheme satisfies the a priori
estimate

120110 < C (Il + 111l + 11" ) - 9)

In order to use the estimate (9) we have to bound the corresponding norms
of the local truncation error components. These estimates are provided in the
lemma given below. Theorem 1 follows from Lemmas 1 and 2.

Lemma 3 Let the solution of the problem (1) be H®-regular, 3 < s. Then

3
Chsfd/Zfl |U|s,ei]- , 5

\dijpigl, g+ miel < CREFY™=21e) o Julitsyme -

IA

|77i,j| <s< 24 sym,

where sym = 1 if the Assumption 2 is satisfied, and zero otherwise.

Theorem 1 If the solution u(z) of the problem (1) is H®-regular, then

un — ull1,w < Ch*ulls.0

with
(i) 2 < s <2 for meshes satisfying Assumption 1;
(i1) % < s < 3 for meshes satisfying Assumptions 1 and 2.

4. Remarks and conclusion The discussed schemes were tested on various

model and applied problems. The predicted by the theory convergence rates
have been fully confirmed by the computations. For such experiments we refer
to [6, 7].

Although our theory does not cover singularly perturbed problems, i.e.
problems in which A(z) is small relatively to ¢(z) and b(x), our computer
experiments show that the predicted convergence rates are asymptotically cor-
rect for small step-size and give meaningful results for practical grids.

Important and interesting direction is application of the finite volume method
to time-dependent linear and nonlinear problems. This is a subject of current
research of one of the authors.
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