
ON DISCRETIZATION AND ITERATIVE TECHNIQUES

FOR SECOND�ORDER PROBLEMS WITH APPLICATIONS

TO MULTIPHASE FLOW IN POROUS MEDIA

A Dissertation
by

Apostol Todorov Vassilev

Submitted to the O�ce of the Graduate Studies of
Texas A�M University

in partial ful�llment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

May ����

Major Subject� Mathematics



ii



Abstract

There are three related topics which are considered in this dissertation� the discretization of second�
order partial di�erential equations 	PDEs
� the development of new iterative techniques for solving the
resulting systems of equations e�ciently� and applications of this theory to the important problem of
modeling multiphase �uid �ow in porous media New fully discrete �nite element schemes of backward
Euler type which utilize local re�nement in time and space are constructed and analyzed It is shown
that these schemes are unconditionally stable and an error analysis in maximum norms is provided
New inexact nonoverlapping domain decomposition preconditioners� applied to the solution of problems
arising from Galerkin� mixed� and locally re�ned �nite element discretizations of second�order PDEs� are
constructed and analyzed The preconditioners are developed based only on the assumption that the in�
terior solves are provided by uniform preconditioning forms They exhibit the same asymptotic condition
number growth as corresponding exact preconditioners but are much more e�cient computationally In
addition� their preconditioning e�ect is independent of jumps of the operator coe�cients across subdo�
main boundaries An abstract analysis of inexact variants of the classical Uzawa iterative algorithm for
solving saddle�point problems is developed Both linear and nonlinear inexact algorithms are analyzed
and special considerations for second�order PDEs are provided Applications of the developed new dis�
cretizations and iterative algorithms to problems of �uid �ow in porous media are considered Emphasis
is given to the two�phase fractional �ow model in the context of a class of environmental applications
Illustrative numerical examples involving the new techniques developed as well as a computer simulation
of groundwater �ow and contaminant transport are included
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Chapter �

Introduction

Numerical approximation of partial di�erential equations is perhaps one of the most dynamically de�
veloping branches of numerical analysis This area of mathematical research is the place where many
di�erent scienti�c disciplines meet in an attempt either to solve existing di�cult problems or to set new
challenges Contemporary numerical analysis combines in a coherent way knowledge from mathematics�
physics� chemistry� biology� and computer science in order to tackle problems of practical interest

The typical path in solving interesting problems in numerical analysis starts with the formulation of
a boundary 	and initial
 value problem Most often these equations represent mathematical models of
physical phenomena The physical background is very important in understanding the behavior of the
possible solutions

The next step is a reformulation of the di�erential problem in a weak 	variational
 form This leads
to seeking generalized solutions in Hilbert 	or Banach
 functional spaces The study of the weak forms
results in estimates for the solution which reveal important information about the smoothness and other
properties

Based on this� a numerical approximation technique is selected The key elements in making the
decision are the stability and the error analyses The Galerkin �nite element methods are classical
discretization methods Other existing numerical techniques such as the �nite di�erence and collocation
methods will not be considered here During the last two decades� the mixed �nite element method has
become very popular due to the advantages it o�ers in solving problems from elasticity and �uid �ow
Other specialized techniques have emerged as well Examples of these are locally�re�ned discretizations
which lead to very accurate and e�cient approximations The physical background of the di�erential
equations should also be taken into account in selecting the discretization method because some of
them have features that are particularly attractive for a given physical application Examples are the
mass conservative properties of the mixed method which are very useful in �uid �ow applications For
transient problems� a time discretization is applied Most often this is performed using �nite di�erence
quotients to approximate the time derivatives This approach is then combined with the existing Galerkin
discretization in space Discretizations that use local time stepping as an extension of the spatially re�ned
discretizations are relatively new and quite important Throughout this dissertation we consider standard
Galerkin and mixed �nite element discretizations of second�order elliptic partial di�erential equations
Combinations of these techniques with backward Euler time stepping are the methods considered for
parabolic problems Locally�re�ned backward Euler�Galerkin approximations are developed as well

Once the discretization method has been chosen� the next problem to address is the solution of the
corresponding discrete system of equations It should be emphasized from the very beginning that there
are critical di�erences between small and large systems of equations The small systems can be solved
with any of the known linear algebra methods In the case of large systems� however� the amount of work
needed in the standard direct solution methods� such as the classical Gaussian elimination� increases dra�
matically and leads to a fast deterioration in their performance Finite element discretizations eventually
lead to very large systems of linear equations In the era of powerful computers� scientists are trying to
solve much larger problems than those considered as impossible even half a century ago Today� systems
with hundreds of thousands 	even millions
 of equations are often encountered� and direct methods are

�
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simply not practical when applied to them The class of iterative methods provides a needed alternative
The history of these methods dates back more than ��� years The �rst iterative methods are attributed
to Gauss� Jacobi and Seidel Even though these methods are very e�cient computationally� their dom�
inance over the direct algorithms for large�scale problems was established less than three decades ago
It was the astonishing progress in the computing technology that made this possible After almost a
century of stagnation� the theory of iterative methods also took the path of fast development The mod�
ern period begins with the breakthrough of David Young ���� in ���� which resulted in an accelerated
variant of the Gauss�Seidel iteration� known today as the SOR method

The contemporary approach to the development of new and more e�cient iterative methods relies
on a deep understanding of the mathematical nature of the system of equations to which the method
is applied In our setting these properties are determined by the properties of the di�erential equation
and the discretization technique used for the derivation of the discrete equations We shall consider
two basic types of systems of equations� namely symmetric and positive de�nite 	SPD
 and symmetric
and inde�nite The latter are also called saddle�point systems In the case of SPD systems� the main
emphasis is given to the development of e�ective preconditioners The class of domain decomposition
preconditioners has established itself as a favorable one There are three factors that have contributed
most to the popularity of these preconditioners First� they result in very good conditioning Second�
these methods provide an e�cient way of overcoming certain di�culties in designing robust iterative
procedures coming from particular features of the di�erential equation or the physical background that
often are an unsurmountable obstacle for most of the other preconditioning approaches available in the
literature Such examples are jumps in the operator coe�cients� which can be handled e�ciently within
the domain decomposition paradigm but lead to deterioration of the e�ectiveness of the bulk of other
preconditioning techniques Third� these algorithms take full advantage of existing modern computer
technology

The saddle�point systems are much more di�cult mathematical problems than SPD systems of
equations They arise� for example� when standard mixed �nite element approximations to second�order
di�erential equations are considered Correspondingly� less e�cient iterative methods for their solution
are available Naturally� the main emphasis in this case is given to the development of fast iterative
algorithms Among many other methods for saddle�point systems proposed in the literature� the classical
Uzawa algorithm stands out for its simplicity� versatility� and e�ectiveness Further improvement of the
e�ciency of this algorithm is achieved via the inexact Uzawa algorithm However� the properties of the
latter method are not well understood� and signi�cant de�ciencies exist in the theory available for the
inexact method

Progress in numerical analysis and scienti�c computing is due to a great extent to the demand for
accurate and e�cient techniques for obtaining numerical approximations to di�erential models in physics
and the other natural sciences Thus� the ultimate goal of most of the research devoted to developing
numerical methods is to solve important practical problems Mathematical modeling is another large
area of active research For the purposes of our considerations� we shall restrict ourselves to the problems
of modeling multiphase �uid �ow in porous media Most of the mathematical models in this �eld have
been developed because of the need for more sophisticated technologies for oil recovery in the petroleum
industry Recently� the interest in tackling the related class of environmental problems has contributed to
the further improvement of these models Typically� when mathematical modeling of physical phenomena
is attempted� the attention is focused mainly on capturing the underlying physics as much as possible
It turns out� however� that the same physics can be modeled by quite di�erent equations� some of which
are better suited for numerical approximation than others Thus� best results are obtained when the
development of the mathematical model takes into account this fact

This dissertation aims at making progress in four di�erent but closely related areas in numerical
analysis� mathematical modeling and scienti�c computing More precisely� we shall develop and analyze
a new discretization method of backward Euler�Galerkin type for parabolic problems which utilizes local
re�nement in time and space We shall also construct and analyze new and very e�cient nonoverlapping
domain decomposition preconditioners with inexact subdomain solves A new theory that provides the
needed insights for the inexact Uzawa algorithms will be developed Finally� we shall demonstrate that
these new methods can be applied successfully in modeling two�phase �uid �ow in porous media� when
appropriate mathematical models are chosen



�

The dissertation is organized as follows Chapter � is devoted to �nite element discretizations of
second�order elliptic and parabolic problems First� fundamental facts from the theory of Sobolev spaces
are introduced Next� the standard �nite element discretizations of Galerkin and mixed types are de�ned
together with their backward Euler variants Important results from the theory of these discretizations�
which form the basis for our considerations in the remaining part of the thesis� are included The
new results in this chapter are about locally�re�ned discretizations of backward Euler�Galerkin types
of parabolic equations In the literature there is a good understanding of how to construct locally�
re�ned spatial discretizations However� the e�ects of the implicit local time stepping on the stability
and accuracy of the schemes are less well understood The main goal of the analysis in Section �� is
to provide a rigorous theory for schemes with local time stepping when linear interpolation in time is
applied next to the interfaces between the re�ned and unre�ned regions The results of Theorems ���
��� and �� establish unconditional stability and error estimates for fully implicit discretizations of
backward Euler�Galerkin type with re�nement in time and space Interesting numerical experiments
involving schemes with local time stepping are provided as well

Chapter � contains the theory of two iterative techniques for second�order problems In Section �� we
construct and analyze new nonoverlapping domain decomposition preconditioners with inexact subdo�
main solves for elliptic problems The results of Theorems �� and �� provide estimates of the asymptotic
condition number growth of these algorithms The new algorithms exhibit the same asymptotic behavior
as the corresponding algorithms with exact solves but are much more e�cient computationally They
are also robust with respect to jumps of the operator coe�cients across the subdomain boundaries
In addition� these preconditioners are quite versatile We consider applications to parabolic problems�
mixed methods and locally�re�ned discretizations and show that the new algorithms are guaranteed to
perform equally well in these settings In Section ��� we provide a new analysis of the inexact Uzawa
algorithms for solving saddle�point problems We consider two types of inexact methods� linear and
nonlinear iterations Theorem �� and Corollary �� establish a general result for convergence of the
linear inexact algorithm under minimal assumptions The main result for the nonlinear algorithm is a
su�cient condition for convergence given in Theorem �� Our approach to the analysis of these algo�
rithms is very general and applies to a variety of concrete examples We have considered applications to
mixed discretizations of second order problems as well as applications to the Stokes equation

In Chapter � we consider the modeling of two�phase �uid �ow in porous media This chapter contains
a discussion of the underlying physical principles for developing �ow models We provide a hierarchy
of di�erent models and a discussion of their mathematical properties We also demonstrate that the
new algorithms developed in Chapters � and � can be applied successfully to the solution of complex
�ow models The emphasis is given to the Richards equation and the fractional �ow model Important
aspects of these models such as wells and boundary conditions are discussed An iterative technique for
imposing boundary conditions on the two�phase fractional �ow model is proposed The development
of a sophisticated �ow simulator is discussed and interesting results from a computer simulation are
included

Finally� in Chapter � conclusions and a discussion of interesting possibilities for future research are
provided
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Chapter �

Discretization of second�order

problems

In this chapter we consider �nite element approximations to second�order linear partial di�erential equa�
tions In general� the �nite element method is based on a few simple but very powerful ideas First� one
partitions the domain �� where a given di�erential problem is posed� into a set of subdomains� called
elements Typically� the elements are triangles 	tetrahedra
� quadrilaterals� etc Second� based on such
partitioning of �� a �nite dimensional space of functions is de�ned so that when the di�erential problem
is reformulated in this space it is �easy to solve In addition� one requires that the approximation
obtained be close to the solution of the continuous problem in an appropriate sense Several �nite ele�
ment approximations to second�order problems are de�ned here Along with standard methods� we also
develop a new discretization technique for parabolic problems and provide a corresponding error analy�
sis This chapter contains fundamental theoretical results concerning the �nite element approximations
considered They will be the basis for our analysis in the subsequent chapters

The chapter is organized as follows We begin with de�nitions and basic facts from the theory of
Sobolev spaces In Section �� we introduce a model elliptic problem and discuss standard discretizations
In particular� we de�ne Galerkin and mixed �nite element methods for elliptic problems and provide
classical results concerning error estimates and properties of the discrete operators corresponding to the
above discretizations Subsequently� in Section �� we de�ne fully discrete schemes of backward Euler
type for parabolic problems and outline important facts about the analysis of such schemes Finally� in
Section �� a new discretization technique for parabolic problems using composite grids with re�nement
in time and space is developed and an error analysis is provided Results from illustrative numerical
experiments with locally re�ned discretizations are presented as well

��� Sobolev spaces

In this section we provide de�nitions and basic properties of Sobolev spaces of real valued functions over
bounded� simply connected domains � � Rn with Lipshitz continuous boundary �� 	cf ����
 Here �
denotes an open set in the n�dimensional Euclidean space Rn � n � �� �� � Throughout this thesis we
shall restrict our attention only to such functions and domains even though most of the theorems stated
below hold in much greater generality We refer to Adams ��� for the proofs of all results included in
this section concerning Sobolev spaces

Let u	x
 be a real valued function on � We de�ne a generalized derivative of u of order j�j by the
function D�u 	provided that it exists
 that satis�esZ

�

D�u	x
�	x
 dx � 	��
j�j
Z
�

u	x
D�� dx�

for all in�nitely continuously di�erentiable functions � with compact support in � Here � � 	��� � � � � �n
 �
N
n is a multi�index and j�j � Pn

i�� �i We remark that the derivative in the right�hand side of the

�
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above de�nition is understood in the classical sense
Let m be a nonnegative integer and p be an extended real number satisfying � � p � � We de�ne

a functional k � km�p by

kukm�p �

��
�

X
��j�j�m

kD�ukpp

��
�

��p

� for all � � p ���	��a


kukm�� � max
��j�j�m

kD�uk��	��b


for all functions u for which the right�hand side makes sense Here k � kp is the Lp	�
�norm given by

kukp �
�Z

�

jujp dx
���p

� for all u � Lp	�
�

It is clear that k � km�p generates a norm over any vector space of functions for which the right�hand
side of 	��a
 or 	��b
 takes �nite values Correspondingly� for � � k � m� the functional

jujk�p �
��
�
X
j�j�k

kD�ukpp

��
�

��p

� for all � � p ���	��


de�nes a k�th semi�norm 	obviously� j � j��p � k � kp

We de�ne three such spaces by

Hm�p	�
 � the completion of fu � Cm	�
 j kukm�p ��g	��a


with respect to the norm k � km�p�

Wm�p	�
 � fu � Lp	�
 jD�u � Lp	�
 � for � � j�j � mg�	��b


and

Wm�p
� 	�
 � the closure of C�� 	�
 in the spaceWm�p	�
�	��c


De�nition �� The spaces de�ned in 	��
� equipped with the norms 	��
� are called Sobolev spaces
over the domain ��

Theorem �� �Adams ���� Wm�p	�
 is a Banach space�

Theorem �� �Meyers and Serrin �
��� If � � p ��� then

Wm�p	�
 � Hm�p	�
�

The spaces W s�p	�
 where s is a positive real number can be de�ned by real interpolation of Banach
spaces 	cf ���� ���


The dual space 	W r�p	�

� can be characterized� for any p � 	���
 and any r � 	���
� as the
completion of Lp

�

	�
 with respect to the norm

kuk�r�p� � sup
v�Wr�p���

v ���

j	u� v
j
kvkr�p �	��


where ��p� ! ��p � � and 	�� �
 is de�ned by

	u� v
 �

Z
�

u	x
v	x
 dx�
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Let� for any integer m � � and any real number � � 	�� ��� Cm��	"�
 be the space of all functions in
Cm	"�
 whose m�th derivatives satisfy a H#older condition with exponent � We note that Cm��	"�
 is a
Banach space when equipped with the norm

kukCm������ � kukm����� ! max
j�j�m

sup
x�y���
x ��y

jD�u	x
�D�u	y
j
kx� yk� �

where k � k is the Euclidean norm in Rn 
A fundamental result 	cf ��� ���
 that characterizes the family of spaces de�ned in 	��
 is given in

the next theorem

De�nition �� A normed linear space X	�
 is imbedded continuously in another normed linear space
Y 	�
 �denoted X	�
 		 Y 	�
� if the space X is contained in Y with continuous injection� In other
words� there exists a positive constant C which depends only on � through the dimension n and the
properties of �� such that

kukY � CkukX � for all u � X	�
�

Theorem �� �The Sobolev imbedding theorem� Let � � Rn be a bounded� simply connected do�
main with Lipshitz continuous boundary ��� Then the following imbeddings hold for all nonnegative
integers m and all extended real numbers p such that � � p � ��

Wm�p	�
 		 Lp
�

	�
� with
�

p�
�

�

p
� m

n
� if m �

n

p
�	��a


Wm�p	�
 		 Lq	�
� for all q � ����
� if m �
n

p
�	��b


Wm�p	�
 		 C��m��n�p�	"�
� if
n

p
� m �

n

p
! ��	��c


Wm�p	�
 		 C���	"�
� for all � � � � �� if m �
n

p
! ��	��d


Wm�p	�
 		 C���	"�
� if
n

p
! � � m�	��e


��� Elliptic problems

In this section we formulate a model elliptic problem and introduce two classical techniques for its
discretization

����� A model elliptic problem� Weak formulation

We consider the Dirichlet problem

Lu � f in ��	��a


u � � on ���	��b


where f is a given function� � � R
n 	n � �� �� �
 is a bounded polyhedral domain with Lipshitz

boundary� and

Lv � �
nX

i�j��

�

�xi

�
aij

�v

�xj

	
�	��


Here the n�n coe�cient matrix faijg is symmetric� uniformly positive de�nite� and bounded above on
� This is a classical model problem for a second�order uniformly elliptic equation

In this section and throughout the entire thesis� we shall use the notation Hm	�
 and Hm
� 	�
 to

denote the special cases of Wm��	�
 and Wm��
� 	�
� respectively 	cf Theorem ��
 Similarly� k � kk and
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j � jk� � � k � m� will be used in place of k � kk�� and j � jk��� de�ned by 	��a
 and 	��
 Hm	�
 is a
Hilbert space for any positive integer m with inner product given by

	u� v
m �
X

��j�j�m

	D�u�D�v
� for all u� v � Hm	�
�

It is convenient to adopt the notation �� � D�������� ���� � � � � �n � D�������� ��� for the generalized �rst
derivatives of u

Let us de�ne the generalized Dirichlet form on � by

A	v� w
 �
nX

i�j��

Z
�

aij�iv �jw dx�	��


This symmetric bilinear form is well de�ned for functions v and w in the Sobolev space H�	�

The weak formulation of 	��
 in H�

� 	�
 is then given by the following
Given f � L�	�
� �nd u � H�

� 	�
 such that

A	u� 

 � 	f� 

� for all 
 � H�
� 	�
�	��


This problem is uniquely solvable Indeed� the bilinear form 	��
 is continuous since

A	v� w
 � Ckvk�kwk��	���


where the constant C depends on the spectral properties of the coe�cient matrix faijg Moreover� A	�� �

is H�

� 	�
�coercive� ie

A	v� v
 � c	�
kvk���	���


where the positive constant c	�
 also depends on the spectral properties of faijg In fact� because of
the positive de�niteness of faijg� there exists a positive constant c� such that

A	v� v
 � c�jvj���

Due to the boundedness of �� there exists a positive constant C	�
 such that

juj� � C	�
juj�� for all u � H�
� 	�
�	���


Hence� j � j� introduces a norm on H�
� 	�
� equivalent to k � k� and 	���
 holds We note that 	���
 is

the well known Poincar$e inequality Observe also that 	f� 

 is a bounded linear functional on H�
� 	�
�

ie there exists a positive constant C	f
 such that

j	f� 

j � C	f
k
k�� for all 
 � H�
� 	�
�

Thus� the existence and uniqueness of a solution to 	��
 follow from 	���
� 	���
� and the Riesz
representation theorem 	cf ����
 stated below

Theorem �� �Riesz representation theorem� Let X be a Hilbert space with an inner product �
�� � �� Then for any bounded linear functional F	�
 on X there exists a unique element yF � X such that

� yF � x �� F	x
� for all x � X�

Moreover� kFkX� � kyFkX �

Remark �� It is clear that A	�� �
 introduces an alternative inner product on H�
� 	�
 and one can use

A	�� �
 or j � j� as equivalent norms on H�
� 	�
� This� however� changes the Hilbert space structure�
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Remark �� It is well known �cf� ��	
� that the solution of 	��
 provides the minimum of the functional

J 	v
 �
�

�
A	v� v
 � 	f� v


in H�
� 	�
� In fact the weak formulation 	��
 is a general technique for solving many variational problems

of interest�

When the domain � is a convex polyhedron in Rn � n � �� and the coe�cient matrix faijg consists of
functions that are smooth enough on �� we shall refer to the following regularity result for the solution
u of 	��
 	cf ����


kuk�	� � Ckfk��	��	���


for some � � 	�� �� The case of � � � is known as full elliptic regularity

����� Galerkin �nite element discretization

Based on the considerations in the previous section� we de�ne a Galerkin 	also referred to as Ritz�
Galerkin in the literature
 approximation to u in 	��
 in a �nite�dimensional space S	�
 � H�

� 	�

We now specify a �nite�dimensional space To this e�ect� we partition � into triangles 	or tetrahedra


f�hi g in the usual way Here h is the mesh parameter and is de�ned to be the maximal diameter of all
such triangles By de�nition� these triangles are closed sets Unless explicitly stated� we assume that
the triangulation is quasi�uniform In the context of our considerations� quasi�uniform means that there
exists a constant c � �� independent of h� such that all triangles contain a ball of diameter ch The
collection of simplex vertices will be denoted by fxig Let S�

h	�
 be the space of continuous piecewise
linear 	with respect to the triangulation
 functions that vanish on �� Although the presentation of
the main results and algorithms to be developed in this thesis will be based on considering piecewise
linear functions only� most of them extend to higher�order elements without di�culty We shall remark
to indicate such possibilities when it is appropriate

Thus� the �nite element approximation of u is de�ned by the solution uh of the following problem�
Find uh � S�

h	�
 such that

A	uh� 

 � 	f� 

� for all 
 � S�
h	�
�	���


By convention� nodal basis functions 
i are set in S�
h	�
 Hence� every function v � S�

h	�
 is
represented by

v �

NX
i��

vi
i�

where vi are the appropriate weights and N is the total number of grid nodes
We de�ne a symmetric and positive de�nite linear operator A � S�

h	�
 
	 S�
h	�
 by

	Au� v
 � A	u� v
� for all u� v � S�
h	�
�	���


In the literature� fA	
i� 
j
g is called a sti�ness matrix� whereas the matrixM � f	
i� 
j
g is the mass
matrix Let fh be the L�	�
�projection of f into S�

h	�
 It is clear now that 	���
 admits the operator
form

Auh � fh�	���


The following estimates for the error uh�u� which assume full elliptic regularity of u� are well known
	cf ����


kuh � uk� � Chkuk��	���a


kuh � uk� � Ch�kuk��	���b


In addition� the inverse inequality below holds for functions v � S�
h	�
 	cf ����
�

kvk� � Ch��kvk��	���


We remark that inverse inequalities connecting norms with fractional indices can be obtained by inter�
polation
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����� Mixed methods

A variety of physical phenomena can be modeled by a system of �rst�order partial di�erential equations
in contrast to the second�order elliptic equation 	��
� considered in Section ��� In such models� a new
variable v is introduced by

v � Aru in ��	���a


and is set to satisfy the so�called equilibrium relation

r � v ! f � � in ��	���b


with a boundary condition

u � � on ���	���c


Here A � faijg� the coe�cient matrix introduced in 	��
� is symmetric and uniformly positive de�nite on
� This is the natural setting for many physical problems whose derivations are based on conservation
laws Steady state �uid �ow in porous media is a classical example of an elliptic problem written
in the mixed form 	���
 	cf Section ���
 In this case A is the media permeability tensor� u is
the �uid pressure and v is the �uid �ux Darcy�s law which relates the �uid �ux to the pressure
is the analogue of 	���a
 whereas the mass conservation principle corresponds to 	���b
 We shall
discuss in detail applications of the discretizations to be developed here to such problems in Chapter �
Linear elasticity models involve a similar system of equations for the displacement u and stress �elds
v Hook�s law� which in such applications relates the stress �eld to the linearized displacement by
i�j � ���	�ui��xj ! �uj��xi
� corresponds to 	���a
 In addition� the model problem 	��
 itself is
often derived from 	���
 by eliminating v For example� the steady state heat equation is obtained
from the �rst�order system above by eliminating the heat �ux v and obtaining the model 	��
 for the
temperature u There are two observations which motivate further the mixed formulation First� if
solved� 	���
 would provide a direct solution for the two variables of interest Second� the solution v is
forced to satisfy the equilibrium condition 	���b
� which is very important in many physical applications

To de�ne the weak formulation of 	���
 we need a pair of Hilbert spaces H� and H� We denote
the corresponding inner products by 	�� �
H� and 	�� �
H�  In general these two spaces must be related so
that r �� � H�� for all � � H� which can be written in abstract form as

r �H� � H��	���


Remark �� Clearly� applying the divergence operator on � � H� requires smoothness from � in order
for the result to be well de�ned� Hence� we have potentially abused the notation in the above de�ni�
tions by not distinguishing explicitly between the classical divergence operator r� and its generalization
�meaning that the derivatives participating in r� are taken to be the distributional ones� in cases where
the functions in H� will not have classical derivatives� However� the implicit switching of the context in
which di�erentiation is understood depending on the function to which it is applied will be the convention
we adopt here and later in this thesis�

Thus� the weak formulation of 	���
 in H� �H� is given by�
Find fv� ug � H� �H� such that

	A��v��
H� ! 	u�r � �
H� � �� for all � � H��	���a


	r � v� �
H� � 	�f� �
H� � for all � � H��	���b


A necessary and su�cient condition for existence and uniqueness of a solution to 	���
 is that the
well known inf�sup condition 	cf ���� ���
 holds for the pair of spaces H� �H�� ie

sup
��H�

	v�r � �
�H�

	A�����
H�

� c�kvk�H�
� for all v � H��	���
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for some positive constant c�
Therefore� the well�posed weak formulation of 	���
 is tied strongly to the spaces H� and H� A

classical setting for the second�order problem under consideration is the pair H� � H� � H	div� �
 �
L�	�
� which guarantees unique solvability of 	���
 	cf ���� ���
 The space H	div� �
 is de�ned by

H	div� �
 �


� � 	L�	�

n

��r � � � L�	�

�

	���


with a norm given by
k�k�H�div
 �� � k�k�� ! kr � �k���

Raviart�Thomas mixed �nite elements

In this section we consider an approximation of 	���
 in �nite dimensional subspaces of H	div� �
 �
L�	�
 where the corresponding pair Vh�Wh to be de�ned below belongs to the Raviart�Thomas family
of spaces ���� 	the corresponding family of spaces in R

� was originally constructed by Nedelec ����

Using the simplicial 	triangular or tetrahedral
 triangulation introduced in Section ���� for each

integer k � � we de�ne

%V�k�
h 	�
 � 	Pk	�



n ! xPk	�
�	���


where � is a �nite element� x � Rn � and Pk	�
 is a homogenious polynomial of degree k over �  Also�

W�k�
h 	�
 � Pk	�
�	���


These spaces are designed in such a way that for any � � %V�k�
h 	�
�

r � � � Pk	�
�

� � nj�� � Pk	��
�

where n is the outward normal vector to the boundary ��  Moreover� the divergence operator is surjective

from %V�k�
h onto Pk	�
 Once these spaces are de�ned over each triangle� we set

V�k�
h 	�
 �

n
� � H	div� �


����j� � %V�k�
h 	�


o
�	���


We note that the degrees of freedom for the elements of V�k�
h 	�
 are chosen so that � � n is continuous

at the interfaces of elements 	cf ����
 In this thesis we shall consider only the case of k � � which is

known as the lowest order Raviart�Thomas space Thus� Vh	�
 � V���
h 	�
 consists of functions that

are piecewise linear with respect to the triangulation with continuous normal components across the

inter�element boundaries� whereas Wh	�
 �W���
h consists of piecewise constant functions

The discrete problem here is an inde�nite system of linear equations given by�
Find fvh� uhg � Vh �Wh such that

	A��vh��
 ! 	uh�r � �
 � �� for all � � Vh�	���a


	r � vh� �
 � 	�f� �
� for all � � Wh�	���b


Here we have used 	�� �
 to denote the L�	�
�inner product on Vh andWh with a slight but nonconfusing
abuse of notation for the former space

Unlike 	���
� the well�posedness of 	���
 is not guaranteed unless Vh�Wh satis�es an inf�sup con�
dition 	���
 The R�T spaces satisfy 	���
 with uniform constant c� independent of the discretization
parameter h 	cf ����


Let us de�ne linear operators by

A � Vh 
	 Vh� 	A�� �
 � 	A���� �
� for all �� � � Vh�	���a


B � Vh 
	 Wh� 	B�� �
 � 	r ��� �
� for all � � Vh� � � Wh�	���b


BT �Wh 
	 Vh� 	BT���
 � 	��r � �
� for all � � Vh� � � Wh�	���c
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It is clear now that 	���
 admits the operator form�
A BT

B �

	 �
vh
uh

	
�

�
�
fh

	
�	���


where fh is the L�	�
�projection of f into Wh
The following estimate for the errors u� uh and v � vh is standard 	cf ���� ���


ku� uhk� ! kv � vhkH�div
 �� � Chk	jujk ! jvjk ! jr � vjk
�	���


Lagrange multipliers

Frequently� the inde�nite nature of 	���
 is a source of signi�cant di�culties when numerical solution
of this problem is attempted In this section we introduce an alternative approach to discretizing 	���

which is intended to result in better behaved systems of linear equations

Consistent with the choice of the lowest order R�T spaces� we introduce the space &�
h of functions

which are constants on each edge of the triangulation of � and zero on the edges on �� We de�ne a
bilinear form on Vh � &�

h by

� �h�wh � �
X
�

Z
��

�hwh � n d�� for all �h � &�
h� wh � Vh�	���


Let also�

%Vh	�
 �
n
� � 	L�	�

n

����j� � %V���
h 	�


o
�	���


Remark �� The main di�erence between %Vh	�
 and Vh	�
 is that the elements of the former space
do not necessarily have continuous normal components across the element boundaries� This detail is
important for the discretization de�ned in the theorem below �cf� ���
��

Theorem �� Let fvh� uhg be the solution of 	���
� Then fvh� uh� �hg is the unique solution of the
following problem� �nd fvh� uh� �hg � %Vh �Wh � &�

h such that

	A��vh��
 ! 	uh�r � �
 �� �h�r � � �� for all � � %Vh�	���a


	r � vh� �
 � 	�f� �
� for all � � Wh�	���b


� �h�r �� � � �� for all �h � &�
h�	���c


Remark �� An important information about the nature of the multipliers �h �also called Lagrange
multipliers� can be deduced from the observation that if we take an inner product of equation 	���a

with � � %Vh and integrate by parts on every simplex � we get

	A��v��
� ! 	u�r � �
� �

Z
��

uv � n d��	���


Comparing 	���
 with 	���a
 shows that the multipliers behave like u on the inter�element boundaries�

The operator form of 	���
 is given by
� "A "BT CT

"B � �
C � �

�
A

�vhuh
�h

�
A �


� �
fh
�

�
A �	���


where fh is the L�	�
�projection of f into Wh� the linear operator CT is the adjoint of C de�ned by

C � %Vh 
	 &�
h� � C�� � �� � � �� � �� for all � � %Vh� � � &�

h�	���
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and "A� "B and "BT are de�ned similarly to 	���
 with the obvious changes of the domain and range
space in view of Remark ��

Although 	���
 looks even more complicated than 	���
� this system of equations is in fact easier
to solve� due to the properties of %Vh	�
 and the nature of the multipliers �h which we emphasized
in Remark �� and Remark �� The matrix of the operator "A is block diagonal� each block being a
	n!�
�	n!�
 matrix� corresponding to one �nite element Hence� the unknown vh is easy to eliminate
at the element level Moreover� "B "A�� "BT is also block diagonal with blocks corresponding to single
elements Thus� a block Gaussian elimination procedure applied to 	���
 results in a linear system for
the multipliers� which has symmetric and positive de�nite matrix 	cf ���� ���


��� Parabolic problems

In this section we de�ne standard �nite element approximations to parabolic problems This will provide
the basis for developing in the next section a new discretization technique for such equations

Let us consider the model parabolic problem

ut ! Lu � f in Q � �� 	�� T ��	���a


u	x� t
 � � on ��� for all t � ��	���b


u	x� �
 � u�	x
�	���c


where L is de�ned in 	��
 and ut � �u

�t
 Following the approach from the previous section� we refor�

mulate 	���
 in a weak form by

	ut� 

 !A	u� 

 � 	f� 

� for all 
 � H�
� 	�
� t � ��	���a


u	x� �
 � u�	x
�	���b


Next� the above weak form is discretized both in space and time For that purpose� we triangulate � as
described in the previous section Thus� the �nite element discretizations described in Section ��� and
Section ��� can be applied Letting � be the time step and umh be the approximation in S�

h	�
 of u	t

at t � tm � m� 	m � nonnegative integer
� the time derivative ut is replaced with a backward di�erence
quotient

"�tu
m
h �

umh � um��h

�
�

which leads to backward Euler�Galerkin methods The discrete problem is then written as�
Find umh � S�

h	�
 such that

	"�tu
m
h � 

 !A	umh � 

 � 	fm� 

� for all 
 � S�

h	�
�	���a


uh	x� �
 � u�h	x
�	���b


if the �nite element method from Section ��� is used in space or as �
Find vmh � Vh and umh � Wh such that

	A��vmh ��
 ! 	umh �r ��
 � �� for all � � Vh�	���a


	r � vmh � �
� 	"�tu
m
h � �
 � 	�fm� �
� for all � � Wh�	���b


uh	x� �
 � u�h	x
�	���c


if the mixed method from Section ��� is utilized in space 	the equivalent multiplier form 	���
 can be
used as well
 u�h in the above equations is some approximation to u�	x
 in the space where umh belongs

We de�ne an operator form of 	���
 by

A�U
m � "fmh	���a


uh	x� �
 � u�h	x
�	���b




�� CHAPTER �� DISCRETIZATION OF SECOND�ORDER PROBLEMS

where the operator A� is given by

	A�
� �
 ��
��	
� �
 !A	
� �
� for all 
� � � S�

h	�
	���


and "fmh is given by

	 "fmh � 

 � 	fm� 

 ! ���	Um��� 

� for all 
 � S�
h	�
�	���


A fundamental issue in the theory of fully discrete schemes for parabolic equations is their stability

De�nition �� A time�stepping method is called stable if

kumh kp � C�ku�hkp ! C� max
����m

kf �hkq� m � ��

holds for some positive constants C� and C�� independent of � and h� and some norms k � kp and k � kq�

De�nition �� A time�stepping scheme is called conditionally stable if it is stable only for a range
of time�steps �� depending on h� A scheme is called unconditionally stable if it is stable for any ��
independent of h�

An example of conditionally stable time�stepping scheme is the forward Euler�Galerkin method 	cf
����
� where for stability � must satisfy the classical Courant�Friedrichs�Lax 	CFL
 condition

� � Ch��	���


for some constant C � � independent of h and �
It is a standard result 	cf ����
 that the backward Euler�Galerkin method 	���
 is unconditionally

stable with error ku	tm
� umh k� bounded by

	���
 ku	tm
� umh k� � ku� � u�hk� ! Chr
�
ku�kr !

Z tm

�

kutkr ds
�

! �

Z tm

�

kuttk� ds� for all m � ��

A powerful tool for investigating the stability of time�stepping schemes is the maximum principle In
the remainder of this chapter we shall use a discrete variant of this principle which is de�ned below 	cf
����


De�nition �� A mesh function ymi � y	xi� tm
 is a discrete real valued function� de�ned at the nodes
	xi� tm
 of the time�space grid in Q�

Let D be the matrix representation of a linear operator on S�
h	�
 Also let V be the vector repre�

sentation of v � S�
h	�
 with respect to the nodal basis of S�

h	�
 By convention� we shall use either V
or v to denote the same element of S�

h	�
 Let us denote by 	DV 
i the i�th element of the vector of real
numbers DV � for any V � S�

h	�
 Clearly� 	DV 
i can be written in the form

	DV 
i � b	xi� xi
Vi �
X
xj ��xi

b	xi� xj
Vj �

with some real weights b	xi� xj


De�nition �� An operator stencil ST 	D
i of the matrix D at a grid point xi � � is the set of grid
points

ST 	D
i � fxj � � j b	xi� xj
 �� �g �
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Theorem �� �Maximum principle� Let V be a nonconstant mesh function on �� Also let the fol�
lowing inequalities hold for all xi � � n ���

b	xi� xi
 � ��	���a


b	xi� xj
 � �� for all xj � ST 	D
i�	���b


d	xi
 � b	xi� xi
�
X

xj�ST �D�i

b	xi� xj
 � ��	���c


Moreover� if 	DV 
i � � 		DV 
i � �
 for all xi � � n ��� then V cannot attain its maximal positive
�minimal negative� value at any interior node xi of the triangulation of ��

It is an easy observation now that if a backward Euler�Galerkin discretization of 	���
 produces an
operator A� with a corresponding matrix that complies with 	���
 the unconditional stability of such
a scheme is guaranteed by Theorem ��

An important preliminary step in de�ning discretizations that satisfy Theorem �� is to use the
method of lumped masses 	cf ����
 The idea here is to replace the mass matrix corresponding to 	V�W 

for any V and W in S�

h	�
 with a diagonal matrix obtained by applying an appropriate quadrature rule
for evaluation of 	
i� 
j
� where 
i and 
j are basis functions for S�

h	�
 Using such quadrature rules
	cf ����
� one gets

j	
� �
h � 	
� �
j � Ch�k
k�k�k�� for all 
� � � S�
h	�
�

which leads to an equivalent method that preserves the order of approximation Here� 	
� �
h is the
lumped form In the remainder of this chapter we shall consider schemes with lumped masses only

��� Special discretization techniques for parabolic problems

In this section we introduce a new technique for discretization of parabolic problems and provide sta�
bility and error analyses It is motivated by the fact that parabolic partial di�erential equations are
used to model a variety of time�dependent di�usive or convective�di�usive processes The solution of
these equations may develop highly localized properties both in space and in time In many physical
applications� such properties are due to stationary features of the domain � such as wells� cracks� ob�
stacles� domain boundaries� etc� which are �xed in space In many other cases they are moving in time�
eg� moving point loads� sharp fronts� etc We already saw in the previous sections that the accuracy
of the approximation depends on the discretization parameters h and � Thus� in typical large�scale
applications� in order to bring the error within a desired tolerance� very �ne grids may be needed
Because of the size of the corresponding numerical model� the local properties of the solution cannot
be resolved using quasi�uniform grids even with the largest of today�s supercomputers Adaptive local
grid re�nement techniques are an attractive alternative for computing the local behavior of the solution
within a given error tolerance while saving computational resources The idea here is to �rst� introduce
a global time�space discretization for the whole time�space region Q� next� in some subdomains of ��
chosen using either adaptive mesh re�nement strategies or a priori information about potential rapid
local temporal change of the solution� one introduces time steps and mesh sizes that are fractions of the
global ones In this way a composite time�space mesh is developed

The most important problem that arises when local re�nement is used is the construction of a stable
and accurate time�stepping scheme Di�culties occur at the interface between the subregions with
di�erent time steps The available literature shows that these are the places that govern the stability
and the accuracy of the whole scheme to a great extent For example� the implicit schemes derived in ����
are based on a �nite volume approximation of the balance equation This approach produces schemes
that are both unconditionally stable and locally conservative However� this method does not allow linear
interpolation in time along the interface which leads to a loss of one half in the order of the convergence
rate The schemes constructed in ���� use a combination of an implicit approximation in the interior of
the subregions and an explicit treatment of the interfaces This results in a computationally e�cient but
conditionally stable method The schemes constructed in ���� are of backward Euler�Galerkin type and
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are unconditionally stable but still do not allow linear interpolation in time along the interface� which
again leads to a loss of one half in the order of the convergence rate

The literature cited above indicates some time�step restrictions either for stability or accuracy when
local time stepping is utilized The scope of our considerations here is to provide a theoretical analysis
of the stability and a priori error estimates of discretization schemes for parabolic problems when local
re�nement is applied in time and space We shall investigate schemes with linear interpolation in time
along the interface that preserve the unconditional stability and lead to more accurate approximation
Our analysis is based on ideas from the sequence of two papers ���� ��� where such schemes are considered
in the �nite di�erence paradigm

����� Preliminaries

Our approach to de�ning a backward Euler�Galerkin method with local re�nement is based on dis�
cretizations that comply with the maximum principle 	cf Theorem �� above
� in particular schemes
with lumped masses In order to keep the presentation short and terse� only a classical model problem
will be analyzed in detail We shall remark to indicate possible generalizations of our theory

We begin with some standard assumptions about the properties of the coe�cient matrix fai�jg and
the triangulation

Assumption �� The coecient matrix is diagonal and constant� i�e�

faijg � diagfa�� � � � � ang�
for some positive constants ai� i � �� � � � � n�

Assumption �� The triangulation of � has no elements with obtuse angles�

It is well known 	cf ����
 that Assumption �� guarantees that the resulting sti�ness matrix satis�es
the hypothesis of the maximum principle theorem

In the remainder of this chapter we shall also consider the special case of cubical domains in Rn � ie
� � ��� ��n For such domains we de�ne a triangulation by �rst subdividing � into uniform parallelepiped
cells with faces parallel to the coordinate axes The �nal triangulation is obtained by further splitting
each cell into triangles 	tetrahedra
 so that no new grid nodes are introduced The �nite element space
S�
h	�
 is then de�ned with respect to the tetrahedral discretization of � Obviously� Assumption ��

holds for such triangulations
In principle� there are few ways to construct such triangulations of cubical domains The properties of

some of them are rather useful for our purposes Our guiding observation is that there exist triangulations
of � which produce sti�ness matrices that are the same as the matrices obtained from standard �nite
di�erence discretizations To clarify the latter� let us enumerate the nodes in the grid by xl����ln in some
fashion� say lexicographical Also let yl����ln be a mesh function de�ned with respect to this grid We
de�ne a forward di�erence operator 'j by

'jyl����ln � yl����lj�����ln � yl����lj ���ln

and the related divided forward di�erence operator by

��j�yl����ln �
'jyl����ln

hj
�

Here hj is the mesh size in the j�direction Correspondingly� the backward di�erence operator "'j is
given by

"'jyl����ln � yl����lj ���ln � yl����lj�� ���ln

and the related divided backward di�erence by

"��j�yl����ln �
"'jyl����ln

hj
�
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We set h � maxfh�� � � � � hng and � � h� � � � hn
Let us further de�ne a discrete linear operator Lh � S�

h	�
 
	 S�
h	�
 by

LhV� �

nX
i��

ai�
�i� "��i�V�� for all grid points x� � �� all V � S�

h	�
�	���


Here � � l� � � � ln is a multi�index such that x� is a grid point in the discretization of �
As we indicated above� provided that Assumption �� holds� there exist triangulations of � such thatX

�

V�A	
� � 
�
 � ��LhV�� for all V � S�
h	�
�	���


There are many examples where 	���
 is satis�ed For instance� 	���
 is true for a uniform dis�
cretization of the interval ��� �� Another example is a rectangular uniform grid in ��� ��� where each
rectangular cell is subdivided into two triangles by connecting the lower left corner with the upper right
corner A less trivial case is ��� ��� The triangulation considered in ���� guarantees that 	���
 holds
It is constructed on top of an existing uniform parallelepiped grid by �rst splitting each cell into two
prisms and next subdividing them into tetrahedra by projecting the celestial diagonal on the faces This
discussion can be summarized in the following assumption

Assumption �� � � ��� ��n is triangulated so that 	���
 holds�

We conclude this section with de�nitions and results concerning the discrete operators introduced
above� needed for the analysis The discrete inner product on S�

h	�
 is de�ned by

hU� V i � �

X
�

U�V��

Correspondingly� the discrete L�	�
�norm is given by

kV k��h � hV� V i����
The discrete L�	�
�norm for grid functions is de�ned by

kV k��h � max
�

jV�j�

The following lemma establishes important norm equivalences in S�
h	�


Lemma �� Lh introduces an equivalent norm on S�
h	�
� i�e�

ckV k�� � �hLhV� V i � CkV k��� for all V � S�
h	�
�	���a


holds with constants c and C independent of h� Moreover�

ckV k� � kV k��h � CkV k�� for all V � S�
h	�
�	���b


The proof of this lemma is a straightforward consequence from the local properties of functions in �nite
element spaces and shall be omitted

Let us denote by Ah the sti�ness matrix corresponding to A� ie

Ah � fA	
i� 
j
g�
We de�ne a discrete linear operator T��h � S�

h	�
 
	 S�
h	�
 by

T��hV m � �����V m �AhV
m� for all V m � S�

h	�
�

Here �� is the appropriate local 	with respect to the grid nodes
 positive weighting factor� determined
by the mass lumping procedure
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It is clear now that if mass lumping is applied to 	
i� 
j
� then the discrete problem 	���
 takes the
algebraic form

T��hUm � "Fm
h	���a


uh	x� �
 � u�h	x
�	���b


where "Fm
h � �

�	���V m��!Fm
h 
� and Fm

h is the vector of coe�cients� representing the L�	�
�projection
of fm in 	���
 in the basis of S�

h	�


����� Meshes with local time stepping

In this section we de�ne the composite grid where the locally re�ned discretization will be formulated
We begin with discretizations that use re�nement in time only

Let us introduce closed connected sets f�igMi��� which are subsets of � with boundaries aligned with
the spatial parallelepiped discretization already de�ned and set

�� � � n
M�
i��

�i�

We shall assume that �� �� � In order to avoid unnecessary complications that contribute little to the
generality of our considerations� we also assume that

dist	�i��j
 � �h� for i� j � ��

where � � � is an integer This means that there are no two neighbor nodes x� and x� such that
x� � �i and x� � �j � for i� j � � Two nodes x� and x� are neighbors if the coe�cient b	x�� x�
 from
the operator stencil at x� is nonzero The case of nested re�nement can be treated in a similar manner
but needs additional notation and special consideration

Let � be the set of the nodes of the initial discretization of � Also let �i� i � �� � � � � M be the set
of all nodes in � that belong to �i The nodes of the initial discretization of � which reside on ��i�
i � �� do not belong to �� 	which is open relative to �
 We set

�o � � n
M�
i��

�i�

In each �i� i � �� � � � �M � let ��i be the subset of boundary nodes� ie all nodes which have at least one
neighbor not in �i It should be noted that ��i contains only nodes which do not reside on �� in case
��i  �� �� �

A discrete time step �i is associated with each �i such that� for positive integers mi�

�� � mi�i� for all i � �� � � � �M�	���


Consequently� the discrete time levels tji in �i � ��� T � are de�ned by tji � j�i� j � �� �� � � �  The set of
grid points (i in �i � ��� T � is then given by

(i �
�
x��i

j��������

	x� j�i
� for all j � �� �� � � � � i � �� � � � �M�

Finally� the set of all grid points in Q is given by

( �

M�
i��

(i�



���� SPECIAL DISCRETIZATION TECHNIQUES FOR PARABOLIC PROBLEMS ��

t��

t���
�

��

��� 	�

�i

t��j
i

�i� 	i

h� �	i

�	i

h�

� grid nodes � slave nodes

Figure ��� A grid with local time stepping in R� � t

Because of 	���
� the local re�nement in time is associated with the subdomains �i� i � �� � � � �M 
Notice also that 	x� j��
 is a grid point in ( for all x � � and all j � � Thus� it makes sense to introduce
the notation (�

i � � � �� � � � � mi� for the nodes in (i between time levels t�� and t�	�
� � ie

(�
i �

mi�
x��i
j��

	x� t�� ! j�i
 �

mi�
x��i
j��

	x� t��ji 
� t��ji � t�� ! j�i� i � �� � � � �M�

Correspondingly� the boundary nodes of (�
i are de�ned by

�(�
i �

mi�
x��i
j��

	x� t��ji 
� x � ��i� i � �� � � � �M�

Thus� the set of all grid nodes in the time slab �t��� t
�	�
� � is given by

(� �

M�
i��

(�
i �

An example of a locally re�ned grid is shown in Fig ��

����� The �nite element discretization

Now we construct a �nite dimensional space of functions for the backward Euler�Galerkin method with
time steps varying in space For each coarse time level t�� let S�

h	�
� be the usual �nite element space of
functions that are piecewise linear with respect to a tetrahedral 	triangle
 triangulation of �� satisfying
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Assumption �� Because of the di�erent time steps in some regions of �� we need to specify additional
spaces associated with each �i� i � � Let �h

i � � be an extension of �i by one mesh size h in the
interior of � Notice that such an extension of �i preserves the alignment of the boundary of �h

i with
the grid Moreover� ��h

i contains only nodes adjacent to ��i and nodes on �� in case ��i

T
�� �� �

For each intermediate time level t��ji let Sh	�
h
i 

��j be the space of piecewise linear functions with respect

to the triangulation of �h
i with support contained in the closure of �h

i whose traces on the boundary
��h

i are determined by linear interpolation in time with respect to the formula

vi	x

��j �

j

mi
v	x
�	� !

mi � j

mi
v	x
�� for all � � j � mi�	���


where x � ��h
i � v

��j
i � Sh	�

h
i 

��j � v� � S�

h	�
�� and v�	� � S�
h	�
�	� Clearly� if x � ��h

i then

	x� t��ji 
 �� (�
i  The extra grid nodes on ��h

i � t��ji needed to de�ne the �nite element approximation on
the composite grid are denoted as slave nodes in Fig ��

Once we have identi�ed approproiate �nite element spaces� we can switch to operator notation for
presenting the algebraic problem similarly to 	���
 We note that because of Assumption �� and
Assumption ��� the discrete operator here is equivalent to a �nite di�erence operator The only special
regions are the interfaces of the re�ned regions To de�ne the operator action at the points of the
interfaces� we use an interpolation in time according to 	���
 	cf ����
 The algebraic problem for
advancing from t�� to t�	�

� in (�
i � i � �� �� � � � �M � j � �� � � � �mi� is given by

T���hU �	�
� � �

����� U �
� ! F �	�

� � in (�
��	���a


T�i�hU ��j
� � �

����i U ��j��
� ! F ��j

� � in (�
i for i � �� � � � �M�	���b


U	x�� t
 � �� for all x� � ��� t � ��	���c


Let us denote by U ����	� the vector of all unknowns in 	���
 Similarly� let F ����	� be the corresponding
right hand side vector Let also G����	�	U �
 be the contribution of U � to the right hand side of 	���

due to interpolation according to 	���
 Then the above composite�grid problem can be written in the
form

T ����	�U ����	� � G����	�	U �
 ! F ����	�� in (��	���a


U	x�� t
 � �� for all x� � ��� t � ��	���b


where T ����	� is the corresponding composite�grid operator

����� Stability and error analysis

In this section we investigate the stability and approximation error of the discrete problem 	���
 Our
analysis is based on the discrete form of the maximum principle� provided by Theorem ��� combined with
norm equivalences in �nite element function spaces provided by the Sobolev imbedding theorem We
derive error estimates in the discrete maximum norm Such a technique is standard in the literature 	cf
����
 These estimates properly take into account the local properties of the solution u but usually require
higher regularity of u than the one required in the estimate 	���
 We remark that Assumption �� and
Assumption �� guarantee the existence of regular enough solutions

We �rst consider the stability of time�stepping scheme de�ned in 	���


Theorem �
 Let Assumption ��� hold� Then the time�stepping method 	���
 is unconditionally stable�

Proof� It is straightforward to check that due to the linear interpolation in 	���
 along the interfaces
of the re�ned regions� the stencil of the composite�grid operator T ����	� satis�es the hypothesis of
Theorem �� on (� In addition� U ����	� vanishes on �� for all t � �t�� t�	�� Thus� by the maximum
principle�

max
x��	

jU �	x�
j � max jU ����	�j
� max

x��	
jU ���	x�
j! Cmax jF ����	�j�
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The constant C above is independent of �i� i � �� � � � � M � and h Summing the last inequality over �
proves stability �

Remark �� Since only Assumption ��� and standard assumptions for symmetry and positive de�nite�
ness of the coecient matrix faijg �need not be diagonal� are needed in the proof of Theorem ��	� this
result guarantees stability of the time�stepping method 	���
 when domains with general geometry are
considered� In addition� it is possible to generalize our argument to include equations with convective
and reaction terms �cf� ���
��

We now turn to the error analysis of the approximation de�ned by 	���
 An estimation of the local
truncation error shall be used� due to this� we shall restrict our attention only to parallelepiped domains
in R

n  In addition� it is required that Assumption �� and Assumption �� hold Let us de�ne the error
of the approximation to the solution of 	���
 by

e	x�� t
�
�
 � u	x�� t

�
�
� U �	x�
� x� � ���

e	x�� t
��j
i 
 � u	x�� t

��j
i 
� U ��j	x�
� x� � �i� i � �� � � � �M�

According to our assumptions� the sti�ness matrix Ah reduces to the �nite di�erence operator Lh
Hence� using a Taylor series expansion� it is straightforward to check that

T���he	x�� t�	�
� 
 � �

����� e	x�� t
�
�
 ! g�	x�� t

�	�
� 
	�� ! h�
�	���a


in (�
��

T�i�he	x�� t��ji 
 � �
����i e	x�� t

��j��
i 
 ! gi	x�� t

��j
i 
	�i ! h�
�	���b


in (�
in�(�

i � � � i �M�

T�i�he	x�� t��ji 
 � �
����i e	x�� t

��j��
i 
 ! gi	x�� t

��j
i 


�
�i ! h!

���
h�

	
�	���c


on �(�
i � � i �M�

e	x�� t
 � �� on ��� t � ��	���d


where gi	x�� t
� � � i �M � are bounded grid functions which depend on the time derivatives of u	x� t

up to third order� evaluated at the point 	x�� t


We shall provide an estimate for the error e	x�� t
�
 that takes into account the special presentation

of the local truncation error in 	���
 For this purpose we introduce two types of auxiliary functions
�i	x
 and �i	x
 in S�

h	�
� one pair for each subdomain �i The functions f�i	x
gMi�� are solutions to
the problems

�Lh�i	x�
 � �i	x�
� x� � ��	���a


�i	x�
 � �� x� � ���	���b


where �i	x
 is the discrete characteristic function of �in��i and ��	x
 is the discrete characteristic grid

function of �� The functions f�i	x
gMi�� are solutions to the problems

�Lh�i	x�
 � �i	x�
� x� � ��	���a


�i	x�
 � �� x� � ���	���b


where �i	x
 is the discrete characteristic function of ��i

The following lemma provides bounds for �i	x
 and �i	x
� de�ned by 	���
 and 	���


Lemma �� The solutions f�i	x
gMi�� and f�i	x
gMi�� to 	���
 and 	���
� respectively� exist and are
nonnegative� In addition� the following estimates hold�
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k�ik� �
��
�

C� in R
� �

Cj loghj���� in R� �

Ch����� in R� �
	���


and

k�ik� �
��
�

Ch� in R� �

Chj loghj���� in R� �
Ch���� in R� �

	���


Proof� Because of 	���a
� the solutions to 	���
 and 	���
 exist They are nonnegative since the right
hand sides and the boundary conditions are nonnegative and the stencil of the operator Lh complies
with the requirements of the maximum principle

Taking an inner product of both sides of 	���a
 with �i and using 	���a
 yields

k�ik�� � Ck�ik�k�ik��
Hence�

k�ik� � C�k�ik� � C�

Applying Theorem ��� we obtain 	cf ����


k�ik� � D	h� n
k�ik��
where

D	h� n
 �

��
�

C� in R� �

Cj loghj���� in R� �

Ch����� in R
� �

	���


This proves 	���

To get a similar estimate for �i	x
� we consider �rst a subdomain with a simple boundary in a domain

� � R� 	cf Fig ��
 As indicated in Fig ��� the boundary of the i�th subdomain consists of the pieces

��
�j�
i � j � �� � � � � �� ie

��i �

��
j��

��
�j�
i �

With each boundary region ��
�j�
i we associate a grid function �

�j�
i such that

�
�j�
i �

�
�� in

�
�i � &

�j�
i

�
n ��

�� elsewhere in ��
� j � �� �� �� ��

The regions &
�j�
i correspond to the rectangular area enclosed by the end points of j�th piece of ��i and

and �� 	cf Fig ��
 Then� the grid representation of �i is given by

�i � h� "�
����

���
i ! h� "�

����
���
i � h��

����
���
i � h��

����
���
i �

Therefore� taking an inner product of 	���a
 with �i	x
� using summation by parts and 	���a
� we get

k�ik�� � C h�i� �ii
� C

�
�
D
h��

���
i � �����i

E
�
D
h��

���
i � �����i

E
!
D
h��

���
i � "�����i

E
!
D
h��

���
i � "�����i

E�
� Chk�ik��

Clearly� the same argument holds for subdomains with more complex boundaries in Rn � n � �� ��
provided that the number of times their boundaries intersect the spatial axes is bounded independent
of h Hence� by Theorem ��� 	���
 holds �

The next theorem establishes error estimates for the locally re�ned discretization de�ned above
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Figure ��� Auxiliary functions in a simple �D case

Theorem �	 Let the solution u	x� t
 to 	���
 be a suitably smooth function� Also let Assumption ���
and Assumption ��� hold� Then� the error of the discrete problem 	���
 satis�es�

kek��h � D	h� n


MX
i��

�
Ci	�i ! h�
 ! Ii

�
h�i !

���
h

	�
�	���


with constants Ci and Ii independent of the discretization parameters �i and h� and D	h� n
 given by
	���
�

Proof� In view of the representation of the local truncation error 	���
� let us de�ne

�	x
 �

MX
i��

�i	x
Ci	�i ! h�
 !

MX
i��

�i	x
Ii

�
�i ! h!

���
h�

	
�

where
Ci � max

�x��t����
i
n���

i

jgi	x�� t
j and Ii � max
�x��t�����

i

jgi	x�� t
j�

By induction over �� it is easy to observe that

�
� "�t�

�
�	x�
� e	x�� t

�	�
� 


��Lh ��	x�
� e	x�� t
�	�
� 


� � �� in (�
��

and
�
� "�ti

�
�	x�
� e	x�� t

��j
i 

�
�Lh

�
�	x�
� e	x�� t

��j
i 

�
� �� in (�

i �

for i � �� � � � �M  Here "�ti denotes the backward di�erence in time with respect to the time�step �i
In addition�

	�	x�
� e	x�� t


���
��

� �� for all t � ��

Hence� by Theorem ��� we get

e	x�� t
��mi

i 
 � �	x�
� in (�
i for i � �� � � � �M�

Repeating the same argument for �	x�
 ! e	x�� t
 yields���e	x�� t��mi

i 

��� � �	x�
� in (�

i for i � �� � � � �M�

Combining the last inequality with the result of Lemma �� proves 	���
 �
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Remark �
 The structure of the error estimate in 	���
 shows that the scheme properly takes into
account the local characteristics of the solution� thus providing a better error control over the time�space
region Q� A constant interpolation in time along the interfaces of the re�ned regions can be applied too�
but this will lead to error estimates much worse than 	���
� It is also possible to derive estimates for
the error in the L�	�
�norm using the fact that in S�

h	�
 the norm k � k��h dominates k � k��h�

Remark �	 According to 	���
� in the case of one� or two�dimensional problems for �� � h our
scheme is of optimal or almost optimal order� In the case of three dimensional problems� one can
improve the error estimate 	���
 using a discrete full elliptic regularity assumption on Lh �cf� ��� ��
��

Remark �� The technique used in the proof of Theorem ��� allows the analysis of the temporal part to
be separated from the analysis of the stationary part� thus expanding the scope of our method to a variety
of di�erent problems� We shall use this fact in the next section to investigate schemes with re�nement
in time and space�

Remark ��� Our approach generalizes to more complex parabolic problems with variable but suitably
smooth coecients and elliptic part given by

Lu � r � 	Aru
 ! r	x� t
 � ru� c	x� t
u�

with

A � diag	a�	x� t
 � � � an	x� t

� � � a�� � ai	x� t
 � a�

r	x� t
 � 	r�	x� t
 � � � rn	x� t


T � c	x� t
 � ��

We refer to ���
 where a detailed consideration of such problems can be found�

Remark ��� It is clear from the proof of Theorem ��� that the locations of the re�ned regions �i need
not be �xed for all t in the interval ��� T �� In fact� at every time level t�� the regions where local time
stepping is performed or the degree of re�nement may change� Thus� adaptive grid re�nement based
on a posteriori error estimation can be easily incorporated in our method to help prevent highly varying
local phenomena from crossing the interfaces of the re�ned regions which is a potential source of larger
approximation error�

����� Composite grids with re�nement in time and space

In this section we extend our analysis to schemes with local re�nement in time and space Since all of
the ideas developed in Section ��� carry over with a minor modi�cation we shall only sketch the main
arguments

In terms of the notations used in the previous sections� the re�nement in space is to be introduced
in the subdomains �i� i � �� for the solution of 	���
 This constitutes space�time subregions with
locally re�ned grids in time and space In many possible applications 	cf ����
� such schemes are more
interesting because the space and time local re�nement techniques result in very e�cient numerical
approximations within a given error tolerance Generally speaking� the utilization of local re�nement in
space along with local re�nement in time is a much more di�cult problem The di�culties here greatly
depend on the dimension of Rn and the treatment of the interface nodes For example� in R

� � the local
re�nement in space does not involve any di�culties Moreover� the arguments used in the previous
section can be applied directly here� resulting in an estimate similar to 	���


In higher spatial dimensions� local re�nement in space can be introduced similarly to the approach
in Section ��� The two�dimensional example in Fig �� shows that in order to de�ne our scheme at
the interface points� we use linear interpolation in space and time As noted above� this interpolation
produces schemes that comply with the maximum principle Thus� the values at the T�slave nodes
are obtained by linear interpolation in time between the corresponding nodes in ( The values at the
S�slave nodes are obtained by linear interpolation in space between the corresponding spatial positions
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� T�slave nodes � � S�slave nodes
� grid nodes � � ST�slave nodes

Figure ��� A fragment of a grid re�ned in space and time

in ( using the spatial analog of 	���
 Further� the values at ST�slave nodes are obtained by linear
interpolation in time between the corresponding S�slave nodes

It has been proven by many authors 	cf ���� ��� ��� ���
 that the corresponding spatial grid operator
�Lh is H�

� 	�
�coercive As we already observed in Remark ��� the analysis of the spatial and temporal
parts of the composite grid operator can be separated� which allows us to combine these coercivity results
with the estimates for the local truncation error Hence� using again a Taylor series expansion yields

T���he	x�� t�	�
� 
 � �

����� e	x�� t
�
�
 ! g�	x�� t

�	�
� 
	�� ! h��
�	���a


in (�
��

T�i�he	x�� t��ji 
 � �
����i e	x�� t

��j��
i 
 ! gi	x�� t

��j
i 
	�i ! h�i 
�	���b


in (�
in�(�

i � � � i �M�

T�i�he	x�� t��ji 
 � �
����i e	x�� t

��j��
i 
 ! gi	x�� t

��j
i 


�
�i ! h!

��� ! h��
h��

	
�	���c


on �(�
i � � i �M�

e	x�� t
 � �� on ��� t � ��	���d


where hi � max
j������ �n

h
�i�
j is the largest space discretization parameter associated with the i�th re�ned

subdomain �i
De�ning auxiliary functions by 	���
 and 	���
� it is easy to see that 	because of the coercivity of

�Lh
 the estimates of Lemma �� hold Hence� constructing the function

�	x
 �

MX
i��

�i	x
Ci	�i ! h�i 
 !

MX
i��

�i	x
Ii

�
�i ! h� !

��� ! c	n
h��
h��

	
�
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where c	�
 � �� c	�
 � c	�
 � �� yields the following theorem�

Theorem �� Let the solution u	x� t
 to 	���
 be a suitably smooth function� Also let Assumption ���
hold� Then� 	���
 de�ned on the time and space re�ned grid is stable� and the following estimates for
the error hold�

kek��h � D	h� n


MX
i��

�
Ci	�i ! h�i 
 ! Ii

�
h��i !

��� ! c	n
h��
h�

	�
�	���


with constants Ci and Ii independent of the discretization parameters �i and hi� and D	h� n
 given by
	���
�

Remark ��� The e�ect of the spatial interpolation for n � �� � is clearly visible in 	���
� Thus�
keeping the interfaces at a reasonable distance from the regions with strong local behavior will help make
the interfaces invisible for the discretization in terms of the overall error� It is also worth mentioning
that one may consider space�time regions with local re�nement where the boundaries of the subregions
re�ned in space do not necessarily coincide with the boundaries of the subregions re�ned in time� Our
analysis covers such cases as well�

Remark ��� It is possible to apply the local re�nement ideas developed above to mixed �nite element
discretizations� The guiding observation here is that mixed approximations with the lowest order Raviart�
Thomas spaces on rectangular meshes in Rn can be reduced to cell�centered �nite di�erence approximation
with a 	�n!�
�point stencil which provide the same accuracy� This is achieved using special quadrature
rules for integration ��	� �	
� The analysis of locally re�ned cell�centered �nite di�erence schemes is a
straightforward extension of our method� The re�ned scheme however is not guaranteed to be conservative
along the interfaces between the re�ned and unre�ned regions�

����� Numerical investigation of discretizations with local re�nement

There are two main goals we want to achieve with the presentation of numerical experiments involving
discretizations with local re�nement The �rst goal in testing the properties of the proposed schemes is
to understand their behavior in terms of stability and accuracy We focus our attention primarily on the
e�ects of local time stepping in order to investigate the in�uence of the interfaces and the intermediate
time steps in the re�ned regions on the stability and the convergence properties The second goal is
to experiment with discretizations that are not covered by the theory but which are very attractive in
terms of accuracy We shall consider locally re�ned schemes based on the Crank�Nicholson time�stepping
procedure 	cf ����


Investigation of the backward Euler discretizations

As the structure of the error in 	���
 and 	���
 suggests� the most delicate places� which determine
to a great extent the accuracy of the scheme� are the interfaces of the re�ned regions From this point
of view� one can easily conclude that if the solution does not change much near the interfaces� the
contribution of the interfacial terms to the total error of the scheme should be negligible On the other
hand� if the solution changes substantially near the interfaces� the interfacial error will govern the total
approximation error This is the basis for setting up the experiments described below�

First� we experimentally assess the properties of the constant and linear interpolations in time for
�D problems The di�erential problem solved is 	���
 and the coe�cients and the triangulation comply
with Assumptions ����� In this case we use local re�nement in space as well� which does not introduce
any additional interfacial error)there is no interpolation in space The model problem we started with
is the heat equation with constant coe�cients The following function is used as an exact solution�

u	x� t
 � exp	��t��
 exp	���x� ! ��x� ��
�	���


�Portions of ���� reprinted with permission from the SIAM Journal on Numerical Analysis� Copyright ���� by SIAM	
Philadelphia	 Pennsylvania� All rights reserved�
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Table ��� Backward Euler with �� � h��

Constant Linear

h��
� Max
norm Reduction Max
norm Reduction

�� ����e
� ����e
�

�� �����e
� ���� �����e
� ����

�� �����e
� ��� �����e
� ����

�� ����e
� ���� �����e
� ����

Table ��� Backward Euler with �� � h
���
�

Constant Linear

h��
� Max
norm Reduction Max
norm Reduction

� �����e
� �����e
�

� ����e
� ���� ����e
� ���

�� �����e
� ���� ����e
� ���

���� �����e
� ���� �����e
� ����

which represents a bump with maximum around x � ���� In the interval ��� ����� this function is close
to zero� changing negligibly in time On the contrary� in the interval ����� ��� it changes substantially in
time It is therefore useful for simulating real problems with local behavior

The �rst series of experiments of the re�ned region is 	���� �
 The re�nement in time uses the factors
of �� �� etc In this case� the scheme behaves as a �nite di�erence scheme on a regular grid with error
O	�� ! h��
� where �� and h� are the discretization parameters in the re�ned region

The next� more interesting set of experiments is when the re�ned region is 	����� �
� where the solution
changes substantially in time In practice� one does not use local re�nement with interfaces crossing the
very place where the local phenomena is observed However� this is a way to test the properties of the
scheme in the so�called �worst case  In other words� this will resemble the case when the local process
approaches the boundaries of the re�ned region� which could happen in many applications Moreover�
as 	���
 and 	���
 suggest� the behavior of the scheme in this case is governed by the interfacial terms
of the error� which is a good test to distinguish the properties of the di�erent interpolation in time used
at the interface In the following� h� and �� denote the discretization parameters of the coarse region
In Tables ��� ��� and �� the results from the experiments with di�erent relations between �� and h�
are presented In all experiments� the ratio ����� is held equal to �

The results of the experiments are shown on the basis of the comparison of two interpolations in
time)piecewise constant and piecewise linear These results show the fact that the treatment of the

Table ��� Backward Euler with �� � h�

Constant Linear

h��
� Max
norm Reduction Max
norm Reduction

� �����e
� �����e
�

��� �����e
� ���� �����e
� ����

�� �����e
� ���� �����e
� ����

��� ����e
� ���� �����e
� ����

���� �����e
� ��� ����e
� ����
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interface is of crucial importance for the convergence of the scheme They also indicate the advantages
of linear interpolation In fact� keeping �� � h�� results in a second�order accurate scheme when linear
interpolation is used 	see Table ��
 This ratio between �� and h� is very close to the CFL condition and
for this reason is not satisfactory for implicit time stepping For this reason we have experimented with

�� � h
���
� � which is much less restricitve than the CFL condition The experimental results are shown in

Table �� According to the theoretical estimates 	���
 and 	���
� reducing h� four times should result
in an error reduction of a factor of two when constant interpolation is used and a corresponding factor of
eight when linear interpolation is used Thus� a scheme with a linear interpolation in time has the same

accuracy as a regular backward Euler scheme even if �� � h
���
�  To avoid confusion we should emphasize

that these tests show the behavior of the scheme in the worst case In principle� the locally re�ned
discretizations capture the local behavior of the solution very acurately and are much more e�cient
than regular schemes The results from our �nal experiment when �� � h� are shown in Table �� In
this case we should obesrve O	h�
 error for the scheme with linear interpolation� ie the same as the
error of a regular scheme We have to point out that in the case of h� � �� shown in Table ��� the
scheme with constant interpolation in time performs better than expected� because the theory predicts
O	�
 error in such a case In fact� we have made experiments with other exact solutions� for instance
sin	��x
 sin	��t
� where the asymptotic behavior is consistent with the theory Experimental results
with ratio ����� equal to �� ��� �� show the same asymptotic behavior with smaller maximum norms of
the error

We might point out that all error estimates are in maximum norms� which are known to be much
more demanding than many other norms� eg L�	�
 However� for truly local solutions� the schemes
developed in Section ��� and Section ��� prove to be very e�cient

Numerical experiments with Crank�Nicholson type discretizations

Our goal now is to understand the behavior of discretizations with local re�nement in time when the
Crank�Nicholson time stepping is used 	cf ����
 From an implementation point of view� such schemes
are minor modi�cations of backward Euler schemes However� for classical schemes� Crank�Nicholson
time stepping results in second order accuracy of the time discretization� which is a very attractive
feature We have combined such discretizations with the local time�stepping approach described above
Obviously� the resulting scheme does not comply with the requirements of the maximum principle and
therefore the approach to the analysis from Section ��� cannot be used here

We have tested the properties of the various Crank�Nicholson schemes for �D problems The di�eren�
tial problem solved is 	���
 and the coe�cients and the triangulation comply with Assumptions �����
We have performed experimentsy with two exact solutions� the function in 	���
 and the function given
by

u	x� t
 � sin	��x
 sin	��t
�	���


Clearly� 	���
 is a global function in space and time� ie does not exhibit local behavior in ��� ��� t
In view of the higher accuracy of the Crank�Nicholson schemes� we have experimented with two

types of interpolation in time along the interfaces� namely linear and quadratic To test the stability
of the resulting schemes� we have performed tests with up to ���� coarse time steps with various ratios
between the coarse and �ne time steps The schemes showed unconditional stability in all test cases

More interesting are the experiments designed to test the accuracy of the new schemes obtained We
try to determine experimentally the lowest degree �� such that if �� is equal to h�� the accuracy of the
resulting scheme is still O	h��
 in the worst case

We begin with a series of experiments based on the exact solution given by 	���
 There is one
re�ned region located in the interval ����� �� The results reported in Tables ��� ��� and �� show
errors measured in three di�erent norms� the maximum norm in space and time� computed by taking
the maximum of the error at the coarse time levels in space and taking the maximum of these in time
	denoted as L�	L�	�

�norm
� the standard discrete L�	L�	�

�norm� ie discrete L�	�
�norm in

yPortions reprinted from ���� with kind permission of Elsevier Science � NL	 Sara Burgerhartstraat ��	 ���� KV
Amsterdam	 The Netherlands�
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Table ��� Crank�Nicholson with linear interpolation and �� � h
���
�

h��
� L��L����� Reduction L��L����� Reduction L��H����� Reduction

� ������e
� ������e
 ������e
�

� ������e
 ����� ������e
� ����� ������e
� �����

�� ������e
� ����� ������e
� ����� ������e
� �����

���� ������e
� ����� �����e
�� ����� ������e
� �����

Table ��� Crank�Nicholson with quadratic interpolation and �� � h�

h��
� L��L����� Reduction L��L����� Reduction L��H����� Reduction

��� ������e
 ������e
� ������e


��� ������e
 ���� �����e
� ��� ������e
� ����

��� ������e
� ���� ������e
� ��� �����e
� ����

��� ����e
� ���� �����e
� ��� ������e
� ����

space at the coarse time levels and the maximum of these in time� and �nally the discrete L�	H�	�


computed according to ����

The experimental results for a scheme with linear interpolation in time along the re�ned interface

and �� � h
���
� are shown in Table �� The ratio ����� is equal to � No re�nement in space is utilized

As can be seen in Table ��� the asymptotic accuracy of the scheme is O	h��
 in both L�	L�	�

�

and L�	H�	�

�norms and O	h
���
� 
 in the L�	L�	�

�norm This suggests that the asymtotic error

behavior of this scheme is governed by O	��� !h�� !����h�
 with � � � The indication of the possibility

of superconvergence properties is very interesting as well Obviously� keeping �� � h
���
� results in overall

accuracy O	h��

The next experiment is with a Crank�Nicholson scheme with quadratic interpolation along the in�

terface and �� � h� The results are shown in Table �� Again� an O	h��
 behavior of the error is
observed in the L�	L�	�

� and L�	H�	�

�norms and the presence of superconvergence is indicated
in the L�	L�	�

�norm The results from this experiment suggest that the asymptotic error behavior
is governed by O	�� ! h�� ! ���h�
 with � � �

The behavior of a scheme with linear interpolation in time and �� � h� is di�erent The results
from such an experiment are shown in Table �� Apparently� the degree � in the term ���h� in the
hypothesis for the error bound in the case of linear interpolation in time along the interface cannot be
greater than �

The next series of experiments is designed to reveal the importance of the location of the interface on
the overall accuracy of the discretization We present four di�erent cases involving schemes with linear
and quadratic interpolation in time along the interface The exact solution was the function in 	���

The interface locations are chosen to be ��� and ���� The changes of the exact solution with respect to
the time variable around x � ��� are negligible On the other hand� this function changes signi�cantly
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in time in the region around x � ���� The e�ects of these di�erences are seen clearly in Tables ������

The experimental results when the interface is located at x � ��� are shown in Tables �� and ��
Obviously� when the interface is located in an area of negligible changes in time of the solution� both
the linear and quadratic perform equally well resulting in error behavior O	h��


The behavior of the schemes changes drastically when the interface is located at x � ���� The
corresponding results are shown in Tables �� and ��� The quadratic interpolation in time helps
preserve the overall accuracy to O	h��
 whereas the linear interpolation is insu�cient for this and results
in error O	h�
 Even though the quadratic interpolation in higher dimensions would require much more
memory to store the data needed for calculating the interpolant� the resulting scheme is much more
accurate

We pointed out above that maximum principle arguments cannot be used for the analysis of the
Crank�Nicholson schemes with local re�nement In fact� no estimates of the error of these schemes in
the natural norms mentioned above is known to the author of this thesis Based on the exhausting exper�
imentation with the Crank�Nicholson scheme we conclude this section with two conjectures concerning
the stability and the error of such schemes

Conjecture �� Crank�Nicholson schemes with local re�nement in time and space are unconditionally
stable when linear or quadratic interpolation in time along the interfaces are used�

Conjecture �� If the solution of the corresponding di�erential problem is suitably smooth� the error e

Table ��� Crank�Nicholson with linear interpolation and �� � h�
Interface at x � ����

h��
� L��L����� Reduction L��L����� Reduction L��H����� Reduction

��� �����e
� ����e
� ������e
�

��� ������e
� ���� �����e
� ���� ������e
� ����

��� �����e
� ���� ������e
� ���� ����e
� ����

��� ������e
� ��� ������e
� ���� �����e
� ����



���� SPECIAL DISCRETIZATION TECHNIQUES FOR PARABOLIC PROBLEMS ��
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of the schemes with linear interpolation in time along the interfaces can be bounded by

kek � C

�
��� ! h�� !

���
h�

	
�

Correspondingly� if quadratic interpolation in time is applied then the error e can by bounded by

kek � C

�
��� ! h�� !

���
h�

	
�

The constant C above is independent of the discretization parameters and k�k is some appropriate norm�
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Chapter �

Iterative methods for second�order

problems

The development of e�cient iterative methods for solving systems of linear equations arising from ��
nite element discretizations of second�order partial di�erential equations has been a very active area of
mathematical research over the last few decades Even though the advantages of iterative algorithms
were seen by Gauss almost two centuries ago� their dominance over the classical direct methods was
established only recently Today� the success of the �nite element method depends to a large extent on
the existence of fast iterative techniques for solving the corresponding discrete problems

In Chapter � we considered two major types of �nite element discretizations� namely Galerkin and
mixed� which lead to quite di�erent discrete systems Typically� Galerkin discretizations result in sym�
metric and positive de�nite but ill�conditioned systems The main emphasis in this case is naturally
given to development of e�cient preconditioners On the other hand� mixed discretizations lead to in�
de�nite systems which are much more di�cult for iterative solution Both new iterative methods and
e�cient preconditioners for such systems are needed in order to achieve the desired e�ectiveness

This chapter is central for the dissertation Here new� very e�cient iterative algorithms and pre�
conditioners for the iterative solution of linear systems arising from the discretizations considered in
Chapter � are developed and analyzed The chapter is organized as follows First� we shall consider
some basic facts from the theory of iterative methods Next� in Section �� we construct and analyze
new nonoverlapping domain decomposition preconditioners We show that the new methods exhibit
very good condition numbers and provide robust and e�cient preconditioners for Galerkin and mixed
discretizations of elliptic and parabolic equations as well as discretizations with local re�nement In
Section �� we consider the class of inexact Uzawa algorithms for solving saddle point problems In
Section ��� we provide new analysis of inexact variants of the Uzawa algorithm that are much more
e�ective than the classical Uzawa algorithm Most of the theory developed in this chapter is a result of
a joint research with Bramble and Pasciak ���� ���

��� Preconditioned iterative methods

Let us consider the problem of �nding the solution to the system of equations

Ax � f�	��


where A is a linear� symmetric and positive de�nite 	SPD
 operator on a �nite dimensional real space
S with inner product 	�� �
 and dimension N � with f given and x unknown We shall consider this
problem in the context of the operators A induced by bilinear forms de�ned on �nite element spaces 	cf
Chapter �� 	���
 and 	���

� ie there exists a symmetric and positive de�nite bilinear form A	�� �
 on
S � S such that

	A
� �
 � A	
� �
� for all 
� � � S�

��
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It is well known from linear algebra considerations that such operators A have real and positive
eigenvalues f�igNi�� and a corresponding complete orthonormal set of eigenvectors f
igNi�� Thus� every
element v � S has a unique representation in the basis f
igNi�� given by

v �

NX
i��

	v� 
i

i�

Let B be another linear SPD operator on S Given initial guess x� � S� we de�ne the basic iterative
method for solving 	��
 by

xi	� � xi �B	Axi � f
�	��


This iteration is linear because both A and B are linear operators It is an easy observation that the
solution x to 	��
 is a �xed point for 	��


In order to motivate the discussion and introduce appropriate terminology we begin with the simple
case of B � �I� where � is an appropriately chosen real number As we shall see below� the choice of �
is crucial for the convergence of this method It is instructive to look at the error ei � x�xi It satis�es
the equation

ei � ei�� � �Aei�� � 	I� �A
ie��	��


Obviously� ei � S and hence�

	I� �A
ie� �

NX
j��

	e�� 
j
	�� ��j 

i
j �

Using the fact that f
igNi�� is an orthonormal basis for S� we obtain

k	I� �A
ie�k� �
NX
j��

	e�� 
j

�	�� ��j


�i

� max

j���A�

j�� ��j j�ike�k�
	��


where k � k� � 	�� �
 and �	A
 is the spectrum of A From 	��
 we obtain

k	I� �A
k � max

j���A�

j�� ��j j�

Clearly� for convergence we must have �� � � � �N with the best choice being � � ��	�� ! �N 


De�nition �� The condition number K	A
 of the SPD linear operator A is given by

K	A
 �
�N
��

�

Obviously K	A
 � � Moreover� for the best choice of � we have

� � max

j���A�

j�� ��j j � K	A
� �

K	A
 ! �
�

This relationship between the spectral radius � of 	I��A
 and K	A
 plays an essential role in designing
e�cient iterative methods for solving systems of equations arising from Galerkin discretizations of elliptic
and parabolic equations It is well known 	cf ����
 that the bilinear formA	�� �
 de�ning the �nite element
solution uh � S�

h	�
 by 	���
 satis�es

ch�	
� 

� � A	
� 

 � C	
� 

�� for all 
 � S�
h	�
�	��
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where 	�� �
� is the standard L�	�
 inner product In view of 	���
� 	��
 implies K	A
 � O	h��
� where
A is the operator induced by A	�� �
 Because of 	���
� it is evident that �nite element discretizations
eventually lead to very ill�conditioned operatorsA which in turn means very slowly convergent iteration
The latter comes from the fact that in general the approximation error uh�u is guaranteed to be small
when h is small This discussion motivates a more general iteration than the one with B � �I Now let
B � S 
	 S be a linear operator de�ned by

	B
i� 
j
 � B	
i� 
j
� for all 
i� 
j � S�
h	�
�	��


where B	�� �
 is some symmetric and positive de�nite bilinear form on S � S Let us de�ne a new inner
product in S by

�u� v� � 	Au� v
� for all u� v � S�

Then the operator B��A is symmetric and positive de�nite with respect to ��� �� Moreover� it has
positive eigenvalues �� � �� � � � � �N and a corresponding complete set of orthonormal vectors f�igNi��
Considering now the iteration

xi	� � xi � �B��	Axi � f
�	��


in a very similar fashion as before� with the appropriate choice of � � we obtain the spectral radius � of
	I�B��A
 given by

� �
K	B��A
� �

K	B��A
 ! �
�

Clearly� if B � A then � � � and the iteration 	��
 converges in one step This� however� is not a good
choice for B since in our context A is very large� and inverting it directly is prohibitively expensive
Ideally� we would like to have B �close to A� but the evaluation of B�� should be proportional to the
evaluation of the action of A In the context of our considerations we give the following de�nition

De�nition �� The symmetric and positive de�nite bilinear form B	�� �
 is a good preconditioner for
A	�� �
 if it satis�es the following two basic requirements� First� the solution W of

B	W�

 � 	g� 

 for all 
 � S�	��


with g � S given� should be much easier to compute than the solution of

A	W�

 � 	g� 

� for all 
 � S�

Second� the two forms should be equivalent in the sense that

��B	V� V 
 � A	V� V 
 � ��B	V� V 
 for all V � S�	��


for some positive constants �� and �� with ����� not too large�

Notice that this de�nition implies that K	B��A
 is small and the action of B�� is easy to compute
Another important iterative method for solving the linear system of equations 	��
 is the precondi�

tioned conjugate gradient 	PCG
 This is a nonlinear algorithm which may be described brie�y as follows
The i�th PCG iterate is determined by means of projections onto the Krylov subspace Vi generated by
the operator B��A and the starting guess x� 	cf 	���

 We refer the reader to ���� where an excellent
presentation of this method can be found Here we shall only point out some important facts about
PCG If no round�o� errors are present in the calculations� PCG obtains the solution to 	��
 in N
steps This� however� is not the important property of the method that makes it useful What is really
important is that if x� � � then the error satis�es

A	B��A	x� xi
� 	x � xi

 � ���iA	x� x
�
where

� �
K	B��A
��� � �

K	B��A
��� ! �
�
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Thus� when N is very large� the error may be acceptably small for some i � kj � N  Even though PCG
is by its nature a direct method for solving 	��
� its real power is as an iterative algorithm Moreover�
the convergence rate of PCG is better than the rate of the linear iteration 	��
 since

K	B��A
��� � �

K	B��A
��� ! �
� K	B��A
� �

K	B��A
 ! �
�

We note that PCG is a parameter�free algorithm in contrast to the linear iteration 	��


It is clear now that the construction of good preconditioners is an important element of the develop�
ment of e�cient iterative techniques for solving linear SPD systems arising from Galerkin discretizations
of second�order problems

��� Domain decomposition preconditioners

Developing preconditioners by way of domain decomposition has become a classical technique in numer�
ical analysis The �rst domain decomposition algorithm applied to the solution of partial di�erential
equations was suggested by Schwarz ���� Recently� such algorithms have become increasingly popular
because they take full advantage of modern parallel computing technology

There are two basic approaches to the development of domain decomposition preconditioners The
�rst is the so�called nonoverlapping approach and is characterized by the need to solve subproblems
on disjoint subdomains Early work was applicable to domains partitioned into subdomains without
internal crosspoints ����� ���� ���� To handle the case of crosspoints� Bramble� Pasciak and Schatz
introduced in ���� algorithms involving a coarse grid problem and provided analytic techniques for
estimating the conditioning of the domain decomposition boundary preconditioner� a central issue in
the subject Various extensions of these ideas were provided in ���� including a Neumann�Dirichlet
checkerboard�like preconditioner Subsequently� these techniques were extended to problems in three
dimensions in ���� and ���� A critical ingredient in the three�dimensional algorithms was a coarse grid
problem involving the solution averages developed in ���� Related work is contained in ����� ����� ����

The papers ����� ����� ����� ����� and ���� developed domain decomposition preconditioners for the
original discrete system The alternative approach� to reduce to an iteration involving only the unknowns
on the boundary� was taken in ���� ����� ���� and ���� The di�erence in the two techniques is important
in that for the �rst� it is at least feasible to consider replacing the subproblem solves by preconditioning
sweeps

The second approach for developing domain decomposition preconditioners involves the solution
of subproblems on overlapping subdomains For such methods it is always possible to replace the
subproblem solution with a preconditioning evaluation ���� However� in parallel implementations� the
amount of inter�processor communication is proportional to the amount of overlap These methods lose
some e�ciency as the overlap becomes smaller ���� Theoretically� they are much worse in the case
when there are jumps in coe�cients 	cf Remark �� below
 In contrast� the convergence estimates for
correctly designed nonoverlapping domain decomposition algorithms are the same as those for smooth
coe�cients as long as the jumps align with subdomain boundaries

Thus� it is natural to investigate the e�ect of inexact solves on nonoverlapping domain decomposition
algorithms Early computational results showing that inexact nonoverlapping algorithms can perform
well were reported in ���� References to other experimental work can be found in ���� Analysis and
numerical experiments with inexact algorithms of Neumann�Dirichlet and Dirichlet types under the
additional assumption of high accuracy of the inexact solves were given in ���� and ���� Their analysis
suggests that the inexact preconditioners do not� in general� preserve the asymptotic condition number
behavior of the corresponding exact method� even when the forms providing the inexact interior solves
are uniformly equivalent to the original

In this section� we construct and analyze new inexact nonoverlapping domain decomposition precon�
ditioners which are variations of the exact algorithm considered in ���� The algorithms are developed
based only on the assumption that the interior solves are provided by uniform preconditioning forms
The inexact methods exhibit the same asymptotic condition number growth as the one in ���� and are
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much more e�cient computationally The new preconditioners are alternatives to and in many appli�
cations less restrictive than the preconditioners in ���� and ���� The convergence estimates developed
here are independent of jumps of the operator coe�cients across subdomain boundaries

����� Preliminaries

In this section we construct a decomposition of the domain � in which the model elliptic problem 	��
 is
posed Correspondingly� we de�ne appropriate �nite element spaces and introduce appropriate notation

We consider the Galerkin �nite element discretization de�ned in Section ��� To de�ne a decom�
position of �� by convention� any union of elements �hj in a given triangulation will be called a mesh
subdomain For the purposes of the domain decomposition theory� � is assumed partitioned into nd mesh
subdomains f�kgndk�� The notation �k will be used for the set of all points of a subdomain including
the boundary ��k

We now de�ne �nite element spaces Let S�
h	�
 be the space of continuous piecewise linear functions

from Section ��� Correspondingly� S�
h	�k
 will be the space of functions whose support is contained

in �k and hence vanish on ��k Sh	�k
 will consist of restrictions to �k of functions in S�
h	�
 Let

* denote
S
k ��k and let Sh	*
 and Sh	��k
 be the spaces of functions that are restrictions to * and

��k of functions in S�
h	�
 We consider piecewise linear functions for convenience since the results and

algorithms to be developed extend to higher�order elements without di�culty
The following additional notation will be used Let the L�	��k
�inner product be denoted by

hu� vi��k �

Z
��k

uv ds

and the corresponding norm by

jvj��k � hv� vi�����k
�

On Sh	��k
� the discrete inner product and norm are de�ned by

hu� vi��k�h � hn��
X

xi���k

u	xi
v	xi


and

jvj��k�h � hv� vi�����k�h
�

We remind the reader that xi is used to denote the grid points in the discretization of �
Finally� Dk	�� �
 denotes the Dirichlet inner product on �k de�ned by

Dk	v� w
 �
nX
i��

Z
�

�iv�iw dx� for all v� w � H�	�k
�	���


The development of a method for e�cient iterative solution of 	���
 is the subject of our consid�
erations in this section In particular� using the decomposition of � described above� we shall de�ne a
bilinear form B	�� �
 on S�

h	�
� S�
h	�
 which is a good preconditioner for A	�� �


The classical nonoverlapping domain decomposition preconditioners are easily understood from the
matrix point of view In this case� one orders the unknowns so that the sti�ness matrix corresponding
to A	�� �
 can be written in a block form as �

A�� A��

A�� A��

	
�

Here A�� corresponds to the nodes on * and A�� to the remaining nodes With this ordering� the form
corresponding to a typical domain decomposition preconditioner 	eg� ��������������� ����
 has a sti�ness
matrix of the form

%A �

�
A�� A��

A�� Z

	
�
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where Z � B�� !A��A
��
�� A�� and B�� is the domain decomposition boundary preconditioning matrix

Inverting %A is a three step block Gaussian elimination procedure
The classical inexact method is de�ned by replacing A�� with B�� where B�� is another symmetric

and positive de�nite matrix This de�nes a new preconditioning operator B given by

B �

�
B�� A��

A��
�Z

	
�

Here �Z is given by �Z � B�� !A��B
��
�� A��

Generally� the inexact algorithm may not converge as well as the exact version Even if one takes
B�� to be the Schur complement� A�� �A��B

��
�� A��� the inexact preconditioner may perform poorly

unless the di�erence between the two matrices B�� and A�� is su�ciently small in an appropriate sense
	see Theorem ��


����� A nonoverlapping inexact domain decomposition preconditioner and

its analysis

We now construct an inexact nonoverlapping domain decomposition preconditioner and prove an esti�
mate for the condition number of the preconditioned system We also show that our preconditioner is
of additive Schwarz type with appropriately de�ned subspace decomposition

The preconditioner

To de�ne our domain decomposition preconditioner� we will need boundary extension operators For
each k� let us de�ne linear extension operators Ek � Sh	��k
	 Sh	�k
 by

Ek�	xi
 �
�
�	xi
 for xi � ��k�

� for xi � �k n ��k�

We remind the reader that the functions in the �nite element spaces de�ned above are fully determined
by their values at the grid nodes and thus it is su�cient to de�ne the extensions Ek at the nodal points
xi Also� Ek can be viewed as a linear operator S�

h	�
	 S�
h	�
 with a trivial modi�cation of the above

de�nition� namely

Ek�	xi
 �
�
�	xi
 for xi � ��k�

� for xi � � n ��k�

We shall use Ek in both contexts since it will be easy to determine which is the right one from the
functions Ek is applied to

Similarly� let E � S�
h	�
 
	 S�

h	�
 be de�ned by

E�	xi
 �
�
�	xi
 for xi � *�

� for xi � � n*�	���


For each k� let Bk	�� �
 be a bilinear form on S�
h	�k
�S�

h	�k
 which is uniformly equivalent to Ak	�� �

By this we mean that for each k there are constants ck and Ck with Ck�ck bounded independently of h
and d such that

ckBk	V� V 
 � Ak	V� V 
 � CkBk	V� V 
� for all V � S�
h	�k
�	���


The preconditioning form is given by

B	U� V 
 �

ndX
k��

Bk	U � "Uk � Ek	U � "Uk
� V � "Vk � Ek	V � "Vk



! h��
ndX
k��

�akhU � "Uk� V � "Vki��k �h�
	���
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Here� "Uk denotes the discrete mean value of U on ��k� ie�

"Uk � hU� �i��k�h
h�� �i��k�h

�

In 	���
� �ak� k � �� � � � � nd are parameters For example� if �ak is taken to be the smallest eigenvalue of
fai�jg at some point x � �k then

C��k �akDk	v� v
 � Ak	v� v
 � Ck�akDk	v� v
� for all v � Sh	�k
�	���


where Ck depends only on the local variation of the coe�cients faijg on the subdomain �k Consequently�
we will assume that 	���
 holds with Ck�ck bounded independently of d� h� and k

Analysis of the preconditioning form B	�� �

Let us introduce some standard assumptions about the domain �� the subdomain splitting and the
associated �nite element spaces which are needed for the analysis We remind the reader that unless
explicitly indicated� we shall use c and C to denote generic positive constants independent of discretiza�
tion parameters such as h� d� and subdomain index k The actual values of these constants will not
necessarily be the same in any two instances

Assumption �� The collection f�kg is quasi�uniform of size d�

Assumption �� For every subdomain �k� the inequality

juj���k � Cf�� kuk��k ! Dk	u� u
g�	���


holds for any  in 	�� d��

Assumption �� A Poincar�e inequality of the form

kvk��k � Cd�Dk	v� v
	���


holds for functions v with zero mean value on �k�

Remark �� Assumption ��� and Assumption ��� are satis�ed for the vast majority of problems that
occur in practice� For example� if all �k are uniformly star�shaped with respect to a point then 	���

holds� By de�nition� a domain �k has the star�shape property if there is a point %xk � �k and a constant
ck � � such that 	x � %xk
 � n	x
 � ckd for all x � ��k� The uniform property here means that ck � c
for some constant c not depending on d� k or h� Here n	x
 denotes the outward unit normal vector to
��k at point x� In addition� 	���
 holds for subdomains with uniformly Lipschitz continuous boundaries
which is the case of polyhedral star�shaped domains in R

n �

Because of the mesh quasi�uniformity� the norm equivalence

c jvj���k � jvj���k�h � C jvj���k	���


holds for function v � Sh	��k

The following lemma will be used in the derivation of our results

Lemma �� If v � Sh	�k
 and vanishes at all interior nodes of �k then

Dk	v� v
 � Ch�� jvj���k�h �	���


This lemma is obvious from the local properties of the functions in �nite element spaces and we shall
omit its proof

The following theorem establishes bounds for the asymptotic behavior of the preconditioner B	�� �
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Theorem �� Let A	�� �
 and B	�� �
 be given by 	��
 and 	���
� respectively� Then there exist positive
constants c and C not depending on d or h such that

cA	V� V 
 � B	V� V 
 � C
d

h
A	V� V 
�	���


for all V � S�
h	�
�

Proof� Because of the uniform equivalence of Ak	�� �
 and Bk	�� �
 according to 	���
� it su�ces to prove
the theorem for a preconditioner BBk	�� �
 de�ned by

B	U� V 
 �

ndX
k��

Ak	U � "Uk � Ek	U � "Uk
� V � "Vk � Ek	V � "Vk



! h��
ndX
k��

�akhU � "Uk� V � "Vki��k �h�
	���


We �rst prove the left inequality in 	���
 A straightforward calculation that uses the arithmetic�
geometric mean inequality shows that for any constant � we have

�

�
Ak	V� V 
 �

�

�
Ak	V � �� V � �


� Ak	V � �� Ek	V � �
� V � �� Ek	V � �



!Ak	Ek	V � �
� Ek	V � �

�

	���


The left inequality in 	���
 is a simple consequence of Lemma ���� 	���
� 	���
� and the de�nition
of Ek

In order to prove the right inequality� we apply the arithmetic�geometric mean inequality to the terms
in the �rst sum in the de�nition of B	�� �
 and get

B	V� V 
 � �A	V� V 
 ! �

ndX
k��

Ak	Ek	V � "Vk
� Ek	V � "Vk



! h��
ndX
k��

�akhV � "Vk� V � "Vki��k�h�
	���


By 	���
 and Lemma ���� we obtain

B	V� V 
 � �A	V� V 
 ! Ch��
ndX
k��

�akhV � "Vk� V � "Vki��k�h�	���


Let ""V k be the mean value of V on �k Using the de�nition of "Vk and the Cauchy�Schwarz inequality
yields

hV � "Vk� V � "Vki��k�h � hV � "Vk� V � ""V ki��k �h
� ��V � "Vk

��
��k�h

���V � ""V k

���
��k�h

�

Thus�
hV � "Vk� V � "Vki��k�h � hV � ""V k� V � ""V ki��k�h�

We combine the above inequality with 	���
 and obtain

��V � "Vk
���
��k�h

� C
���V � ""V k

����
��k

�
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Applying 	���
 with  � d and 	���
 to the right hand side of the last inequality gives

��V � "Vk
���
��k�h

� CdAk	V� V 
�	���


Using this estimate in 	���
 proves the right inequality in 	���
 �

Remark �� The preconditioning form B	�� �
 de�ned above is not uniformly equivalent to A	�� �
� Nev�
ertheless� its preconditioning e�ect is very close to that of a uniform preconditioner for many practical
problems� particularly in three spatial dimensions� The number of subdomains often equals the number
of processors in a parallel implementation and it is now feasible to keep d on the order of h���� Applying
a conjugate gradient method preconditioned by B	�� �
 for solving 	���
 would result in a conditioning
proportional to h����� In R� � if � is the unit cube� h � ���� corresponds to a very large computational
problem whereas ����� � ���� Also� it is well known that classical overlapping domain decomposition
algorithms with small overlap exhibit the same condition number growth but in contrast to our method
the overlapping preconditioners are adversely sensitive to large jumps in the operator coecients �see
Remark ��� below��

Remark �� The constants c and C in Theorem ��� depend on the local �with respect to the subdomains�
behavior of the operator and the preconditioner� Clearly� one of the most in�uential factors on the local
properties of A	�� �
 and B	�� �
 is the coecient matrix fai�jgj�k � In fact� the constants Ck in 	���

depend on the local lower and upper bounds for the eigenvalues of fai�jgj�k and in general so do the
constants ck and Ck in 	���
� Therefore� in applications to problems with large jumps in the coecients�
it is desirable� if possible� to align the subdomain boundaries with the locations of the jumps� In this case
the preconditioner 	���
 will be independent of these jumps�

Remark �� The utilization of the averages "Uk plays the role of a coarse problem especially designed
to take into account cases with interior subdomains and also applications with large jumps in the op�
erator coecients� provided that the locations of the jumps are aligned with the subdomain boundaries�
To illustrate that the role of the averages in overcoming diculties coming from large jumps of the co�
ecients is essential� we consider a conventional additive Schwarz preconditioner with minimal overlap
���
� The asymptotic condition number bound provided in ���
 is the same as that of our theorem in the
case of smooth coecients� However� because of the deterioration in the approximation and bounded�
ness properties of the weighted L� projection into the coarse subspace ���
� the condition number of the
preconditioned system for the minimal overlap algorithm when n � � can only be bounded by 	d�h
��

Our preconditioner is very economical computationally In fact� it allows the use of e�cient sub�
domain preconditioners such as one multigrid V�cycle 	cf ����
 The use of the simple extension E
also results in enhanced e�ciency We shall discuss the computational aspects of this algorithm in
Section ���

An additive Schwarz reformulation of the domain decomposition algorithm

A very important observation for the subsequent analysis is that the preconditioner B	�� �
 can be viewed
as an additive subspace correction method 	cf ���� and ����
 with judiciously chosen subspaces Let the
linear operator �E � S�

h	�
 
	 S�
h	�
 be de�ned by

�EV � EV !

ndX
k��

	 "Vk � Ek "Vk
�

Furthermore� de�ne
%S�
h	�
 �



v � S�

h	�
 j v � � on*
�

and
S�	�
 � f �Ev j v � S�

h	�
g�
Thus %S�

h	�
 and S�	�
 provide a direct sum decomposition of S�
h	�
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The additive Schwarz preconditioner applied to g � S�
h	�
 based on the above two spaces results in

a function Y � Y� ! Y� where Y� � %S�
h	�
 satis�es

B�	Y�� �
 � 	g� �
� for all � � %S�
h	�
	���


and Y� � S�	�
 satis�es

B�	Y�� �
 � 	g� �
� for all � � S�	�
�	���


Here B�	�� �
 and B�	�� �
 are symmetric and positive de�nite bilinear forms
We shall see that the preconditioner in 	���
 is equivalent to the additive Schwarz method above

when

B�	
� �
 �
ndX
k��

Bk	
� �
	���


and

B�	
� �
 � h��
ndX
k��

�akh
� "
k� �� "�ki��k�h�	���


Let W be the solution of 	��
 Then

B	W�

 � Bk	W �k�� 

 � 	g� 

�� for all 
 � S�
h	�k
�	���


where W �k�k �W � "Wk � Ek	W � "Wk
 The function Y� satisfying 	���
 is given by

Y� � W � �EW on �k�

The form given by 	���
 depends only on the boundary values of 
 and � Also� the function Y� solving
	���
 equals the solution W on * From the de�nition of �E �

Y� � �EW � EW !

ndX
k��

	 "Wk � Ek "Wk
�

Thus� the solutionW of 	��
 is the result of the additive Schwarz algorithm with subspace decomposition
given by %S�

h	�
 and S�	�
� with forms de�ned by 	���
 and 	���
 More details concerning this
reasoning can be found in Section ���

����� Application to parabolic problems

Our preconditioning approach can be extended to more general bilinear forms of the type

A	v� w
 � �

nX
i�j��

Z
�

aij�iv�jw dx! 	bv� w
��

Here � is a small parameter and b is a bounded nonnegative function on � Such forms arise from implicit
time�stepping numerical approximations of parabolic problems 	cf Section ��
 In such settings � is
related to the time step and is usually small We shall consider the case when ch� � � � Cd�

We de�ne a preconditioner B	�� �
 by

B	v� w
 �
ndX
k��

Bk	v � Ekv� w � Ekw
 ! �

h

ndX
k��

hw� vi��k �h�	���


where Bk	�� �
 are the subdomain preconditioning forms satisfying 	���
 with Ck�ck bounded indepen�
dently of h and d Note that the above form no longer includes the average values on the subdomain
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boundaries and thus does not require the solution of an average value problem 	cf Section ���
� which
is essentially a special coarse grid problem

It is easy to see that

A	v� v
 � ��A	v � Ev� v � Ev
 !A	Ev� Ev
�

� C

�
ndX
k��

Bk	v � Ekv� v � Ekv
 ! 	h!
�

h



ndX
k��

hv� vi��k�h
�

� CB	v� v
�

	���


Moreover� applying 	���
 gives

�

h
hv� vi��k �h � C

�

h

�
�


	v� v
�k ! Dk	v� v


	
�

Choosing  � max	����� d
 in the last inequality yields

�

h
hv� vi��k �h � C

����

h
Ak	v� v
�	���


Using 	���
 for each k as in the proof of Theorem ��� we obtain

B	v� v
 � C
����

h
A	v� v
�	���


Combining 	���
 and 	���
 shows that

cA	v� v
 � B	v� v
 � C
����

h
A	v� v
 for all v � S�

h	�
�	���


The resulting condition number depends on � in a natural way Smaller time steps correspond to
better conditioning Obviously� the preconditioner would be uniform if � � h� but such time stepping
is too restrictive for the vast majority of applications On the other hand� � � h corresponds to a very
reasonable time stepping scheme whose condition number is governed by h���� Again� although not
uniform� such rate of growth is often acceptable in practice for reasons already mentioned

����� Applications to parabolic problems with local re�nement

In this section we address the problem for iterative solution of linear systems coming from discretizations
with local re�nement We already discussed the importance of using composite grids in Section �� We
now turn to the question of how to solve the resulting system� namely 	���
 involving the composite�grid
operator T ����	�

There are several di�culties associated with T ����	� First of all� it is nonsymmetric but has a
positive de�nite symmetric part 	cf ����
 Problem 	���
 is solvable but is much more di�cult than the
standard backward Euler�Galerkin system 	���
 The matrix of T ����	� has a complicated structure
which results in very involved implementations

There are several algorithms proposed in the literature for solving composite�grid problems The
basic algorithms in this �eld originated from the pioneering work of Bramble� Pasciak� and Schatz in the
theory of domain decomposition methods 	cf ���� ��� ��� ���
 One of the �rst algorithms for elliptic
problems on locally�re�ned grids was suggested by Bramble� Ewing� Pasciak� and Schatz ���� Related
approaches are also available in the work of McCormick ����� McCormick and Thomas ����� and Ewing�
Lazarov� and Vassilevski ���� Recently� the approach of ���� was extended to parabolic problems on
locally�re�ned grids in time and space by Ewing� Lazarov� Pasciak� and Vassilevski ���� Due to the
available good understanding of how to iteratively solve 	���
� we shall limit our considerations here
to observe that the domain decomposition preconditioners de�ned in 	���
 and 	���
 can be used to
e�ciently precondition Algorithm �� in ����
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Let us split the unknowns in U ����	� from 	���
 into two categories Let U� be the part of the
solution for t � t�	�

� that vanishes on all spatial coarse�grid nodes in the interior of the re�ned regions
Obviously� if no re�nement in space is utilized then U� vanishes in the interior of the re�ned regions
In other words� U� is the coarse�grid part of U ����	� that vanishes in the interior of the regions where
re�nement is introduced Also let U� be the remaining part� ie

U ����	� � U� ! U��

To simplify the notation we shall use T instead of T ����	� in the remaining part of this section Then
the matrix that corresponds to 	���
 can be written�T�� T��

T�� T��
	�

U�

U�

	
�

�
F�
F�

	
�	���


where F� and F� are the corresponding splitting of the right hand side of 	���

Performing block Gaussian elimination in 	���
 gives�T�� � T��T ���� T�� �

T�� T��
	�

U�

U�

	
�

�
F� � T��T ���� F�

F�

	
�

Following Algorithm �� in ����� we see that the �rst step is to compute T��T ���� F� which amounts
to performing local time stepping in each region �i where re�nement in time is introduced with zero
boundary conditions and time step �i� from time level t�i to tmi

i 	essentially in the time slab between
two consecutive coarse time levels
 The second step of this algorithm corresponds to performing a
preconditioned iteration with the system T���T��T ���� T�� for solving for U� The third and �nal step is
back�solving for U� once U� is known

It is pointed in ���� that in order to precondition the second step of the above algorithm it is enough
to solve a system which results from a backward Euler discretization of the entire domain � with time�
step ��� ie a system of the type 	���
 with the coarsest time step Clearly� the utilization of the
preconditioner 	���
 will provide an e�ective way of solving the latter system

����� Application to mixed discretizations

In this section we consider in some detail the application of the domain decomposition preconditioner
	���
 to mixed �nite elements with Lagrange multipliers for problem 	���
 	cf Section ���
 We show
that these preconditioners are e�cient for such problems as well It will become clear that standard
nonconforming elements and even �nite di�erences can be treated similarly The technique for extending
our results to such problems is based on an application of a method developed in ���� and for this reason
we shall only sketch the idea

Mixed methods with Lagrange multipliers for second�order elliptic problems are de�ned in Sec�
tion ��� As is observed there� the elimination of the original variables of the mixed method results
in a symmetric and positive de�nite bilinear form� corresponding to the multiplier system To de�ne a
domain decomposition preconditioner we use the triangulation of � introduced in Section ��� and the
nonconforming �nite element space &�

h corresponding to Lagrange multipliers de�ned with respect to
the triangulation 	cf Section ���
 � is decomposed into subdomains as described in Section ���� and
corresponding subspaces of &�

h with respect to this splitting are introduced in a very similar way The
main di�erence here is that the nodal values for the multipliers are not speci�ed on the element vertices
For instance� for the lowest order Raviart�Thomas�Nedelec spaces the multiplier degrees of freedom are
given in the middle of the sides of the triangles or at the centers of the tetrahedra faces

The discrete problem related to 	���
 by Theorem �� can be written as follows
Find U � &�

h such that

G	U�

 � 	f� 

� for all 
 � &�
h�	���


where G	�� �
 is the corresponding bilinear form on &�
h � &�

h The properties of this form are well
understood In particular� it is known 	cf ����
 that there exist positive constants c and C independent
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� N nodes

� C nodes
Figure ��� Construction of a conforming space

of the mesh size h such that

cG	V� V 
 �
X
�

%a� j� j����n
X

xi�xj��

	V 	xi
� V 	xj


� � CG	V� V 
�	���


for every V � &�
h Here xi denotes the location of the i�th degree of freedom of V � n � � or �� %a� is

a constant over each triangle � that depends on the operator coe�cients faijg but is independent of h�
and j� j is the measure of � 

Let us de�ne a preconditioner for G	�� �
 as in 	���
 We argue as in the proof of Theorem �� in order
to establish a similar result Because of 	���
� it is easy to check that if a function V � &�

h vanishes at
all interior nodes of �k then

Gk	V� V 
 � Ch��jV j��k�h�	���


Here Gk	�� �
 is the restriction of G	�� �
 to �k Clearly� the left inequality in 	���
 follows immediately
from the arithmetic�geometric mean inequality and 	���


In order to get the right inequality� it su�ces to show that

h��
ndX
k��

�akhU � "Uk� U � "Uki��k �h � C
d

h
G	U�U
�	���


To this e�ect we apply a standard argument of equivalence between conforming and nonconforming
spaces ���� First� we note that a conforming space that is isomorphic to &�

h	�
 is constructed The
idea behind this construction is shown in Fig �� Each tetrahedron is split into twelve tetrahedra as
indicated in Fig �� The nodes referred to as N nodes are the original nodes from the nonconforming
discretization whereas C nodes are the ones added to de�ne the conforming space For the example
in Fig ��� C � nodes are the vertices and the mass center of the tetrahedron Since the original
triangulation is quasi�uniform� the new triangulation is quasi�uniform too If Vk is the restriction of
V � &�

h� given in terms of its nodal values� to the k�th subdomain� we de�ne a function %Vk in the
corresponding conforming space as follows�

%Vk	xi
 �

�����������������
����������������

Vk	xi
� if xi is a N node�

the average of the values of Vk at all adjacent N nodes�

if xi is a C node in the interior of �k�

the average of all adjacent N nodes on ��k�

if xi � ��k n ���

the interpolant of Vk in the nonconforming space�

if xi is a mass center of a tetrahedron�

the average of all adjacent N nodes on ���

if xi � ��
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Let %Vk be the conforming functions that correspond to Vk as a result of this construction Then 	cf
����
�

cGk	Vk� Vk
 � Dk	 %Vk � %Vk
 � CGk	Vk � Vk
�	���


The constants of equivalence c and C are controlled because the nonconforming triangulation is quasi�
uniform In addition� the nonconforming nodes are a subset of all nodes that are used to de�ne the
conforming space Hence� with some abuse of notation�

hVk � Vki��k�h � Ch %Vk� %Vki��k�h� for each k and V � &�
h�	���


Thus� 	���
 can be deduced easily by combining 	���
� 	���
� and 	���
 Therefore� the equivalent of
	���
 holds for this preconditioner too Preconditioners for classical nonconforming problems as well as
�nite di�erence schemes can be constructed and analyzed in a similar manner

We conclude this section by observing that the implementation of the preconditioner is based on the
nonconforming discretization only and follows Algorithm ��

����� Computational aspects of the preconditioning problem

In this section we provide an algorithm for inverting the preconditioning form B	�� �
 It consists of two
main steps� a solution of the approximate subdomain problems and an inversion of the boundary form
As we shall see� these steps are independent and can be carried out in parallel

We outline an algorithm for inverting B	�� �
 For 
 in S�
h	�k
� "
k � � and thus Ek
 � � for every k

Consequently�
hW � "Wk� 
� "
ki��k�h � � for all k�

Thus� 	��
 and 	���
 imply

B	W�

 � Bk	W �k�� 

 � 	g� 

�� for all 
 � S�
h	�k
�	���


Clearly� the computation of W �k� � S�
h	�
 reduces to the solution of subdomain problems which can be

performed in parallel
The second major step for inverting B	�� �
 involves the inversion of a boundary form as we shall now

describe For � � S�
h	�
 set 
 � E� Notice that 
 � Ek� on �k� 	E�
k � "�k� and E�k� � Ek� For

this choice of 
� 	��
 becomes

B	W�

 �

ndX
k��

Bk	W � "Wk � Ek	W � "Wk
� Ek "�k � "�k


! h��
ndX
k��

�akhW � "Wk� �i��k�h � 	g� E�
��
	���


Here we have also used the fact the W � "Wk has zero mean value on ��k and therefore is orthogonal to
the constants with respect to the boundary inner product

Since Ek "�k � "�k vanishes on ��k�

ndX
k��

Bk	W � "Wk � Ek	W � "Wk
� Ek "�k � "�k
 �

ndX
k��

	g� Ek "�k � "�k
�k

and hence

h��
ndX
k��

�akhW � "Wk� �i��k�h � 	g� E�
� �
ndX
k��

	g� Ek "�k � "�k
�k �	���


Notice that because of the explicit extensions used in the de�nition of B	�� �
� the setup of the right hand
side in 	���
 involves minimal computational cost Clearly� this step is independent of the previous
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one and thus the procedure for inverting B	�� �
 decouples into two independent tasks Once W on the
interior boundaries is known then the assembly of the solution in � is easy The implementation of
the solution procedure for 	���
 includes two main steps First� one determines the averages "Wk and
then the values of W on the interior boundary We note that the latter step is trivial once the averages
are known because of the diagonal matrix that corresponds to the discrete L� inner product on the
subdomain boundaries The algorithm for solving the problem for the averages was developed originally
in ���� and shall not be included here

The above discussion can be summarized in the following algorithm

Algorithm �� Solve the preconditioning problem 	��
 by

�� Compute the solution W �k� of 	���
 for each k�

�� Compute the trace of W on * from 	���
�

�� Set the �nal solution to 	��
 by

W � EW !

ndX
k��

	W �k� ! "Wk � Ek "Wk
�

����	 Alternative inexact additive preconditioners

We now consider a classical technique for developing nonoverlapping domain decomposition precondi�
tioners The behavior of such methods has been investigated in the case when the boundary form is
uniformly equivalent to the corresponding Schur complement subsystem ����� ���� Here� we show that
this method also reduces to an additive Schwarz preconditioner In addition� we show that the inexact
solve technique combined with the boundary form discussed earlier provides an e�ective preconditioner
Indeed� our results are much better than what would be expected from the analysis of ����� ����

The inexact algorithm as a two level additive Schwarz procedure

We now show that the inexact preconditioners correspond to additive Schwarz methods The �rst
subspace in this decomposition is %S�

h	�
 Let B�	�� �
 be the form on %S�
h	�
� %S�

h	�
 with sti�ness matrix
B�� The second subspace is given by

%Sh	*
 �

�
E
! 
� j
 � S�

h	�
�

B�	
�� �
 � �A	E
� �
� for all� � %S�
h	�


�
�

	���


Clearly� the functions in %Sh	*
 are completely determined by their traces on * Let B�	�� �
 be the form
on %Sh	*
 � %Sh	*
 with sti�ness matrix B�� B�	u� v
 depends only on the boundary nodal values of u
and v and thus naturally extends to S�

h	�
� S�
h	�


Clearly� %S�
h	�
 and

%Sh	*
 provide a direct sum decomposition of S�
h	�
 This decomposition is tied

strongly to the bilinear form B�	�� �
 In particular� if B�	�� �
 � A	�� �
 on %S�
h	�
� %S�

h	�
 then the space
%Sh	*
 consists of discrete harmonic functions and the decomposition is A	�� �
�orthogonal In general�
the decomposition is not A	�� �
�orthogonal

Conditioning estimates for the inexact algorithms

The preconditioner de�ned by 	���
 can be restated as an operator B � S�
h	�
 
	 S�

h	�
 In fact� it
is a straightforward exercise to check that it corresponds to the preconditioning operator de�ned in the
following algorithm

Algorithm �� Given g � S�
h	�
 we de�ne B��g � U where U is computed as follows�
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�� Compute U� � %S�
h	�
 by solving

B�	U�� 

 � 	g� 

 for all 
 � %S�
h	�
�	���


�� Compute the trace U� on * by solving

B�	U�� E�
 � 	g� E�
�A	U�� E�
 for all � � %Sh	*
�

�� Compute U�� by solving

B�	U��� 

 � �A	EU�� 

 for all 
 � %S�
h	�
�

�� Set U � U� ! EU� ! U���

Although the above algorithm appears as a multiplicative procedure� we shall now demonstrate that
it is equivalent to an additive Schwarz method It is easy to see that the problem solved in Step � of
Algorithm �� is independent of U� Indeed� for any � � %Sh	*
� we decompose � � E�! �� as in 	���

and observe

�A	E�� U�
 � B	��� U�
 � 	g� ��
�

Thus� Steps � and � of the above algorithm reduce to �nding U� � %Sh	*
 such that

B�	U�� �
 � 	g� �
 for all � � %Sh	*
�	���


Hence� B��g � U � U� !U� where U� and U� satisfy 	���
 and 	���
 respectively� ie� Algorithm ��
is an implementation of an additive Schwarz procedure

Notice that Algorithm �� avoids the need of knowing explicitly a basis for the space %Sh	*
 which could
be either a computationally expensive problem or a signi�cant complication of the overall algorithm
Obviously this procedure provides inexact variants of the methods given in ����� ����� ����� and ����

It follows that the preconditioning form B	�� �
 corresponding to the operator de�ned in Algorithm ��
is given by

B	V� V 
 � B�	V�� V�
 ! B�	V�� V�
�	���


Here V � V� ! V� with V� � %S�
h	�
 and V� � %Sh	*


In the remainder of this section we analyze the above preconditioner by providing bounds for 	���

We take

B�	u� v
 �
ndX
k��

Bk	u� v


where Bk	�� �
 is de�ned as in Section ��� 	with Ck�ck in 	���
 bounded independently of h� k� and d

The �rst theorem in this section was given by B#orgers ���� and Haase at al ���� and provides a

result when B�� is uniformly equivalent to the Schur complement A�� �A��A
��
�� A�� This is the same

as assuming that the quadratic form B�	�� �
 is equivalent to the boundary form with diagonal

inf
�� �S�

h
���

A	u! �� u! �
� for all u � %Sh	*
�	���


Theorem �� Let A	�� �
 be given by 	��
 and B	�� �
 by 	���
� Assume that the quadratic form B�	�� �

is uniformly equivalent to the quadratic from induced by 	���
� In addition� let � be the smallest positive
constant such that

jA	
� 

 �B	
� 

j � �A	
� 

 for all 
 � %S�
h	�
�	���


Then

c

�
��

h

	��
A	U�U
 � B	U�U
 � C

��

h
A	U�U


holds for all U � S�
h	�
 with constants c and C independent of d and h�
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Remark �� Condition 	���
 requires that B�	�� �
 should be a good approximation to A	�� �
 for the
preconditioner 	���
 to be ecient� The result of the theorem shows that if 	���
 holds with � on the
order of h��� then the preconditioner B	�� �
 is uniform� However� the development of a form B�	�� �

satisfying 	���
 usually involves signi�cant additional computational work since � must tend to zero as
h becomes small� Alternatively keeping � �xed independent of h may result in a rather ill�conditioned
method when h is small� However� there are examples of reasonably accurate preconditioners B�	�� �
�
e�g� multigrid V� or W�cycles� which appear to perform well when h is not very small �cf� ���
� due to
the fact that the corresponding ��s are comparable to h����

The main result of this section is given in the next theorem It is for the case when

B�	u� v
 � h��
ndX
k��

�akhu� "uk� v � "vki��k�h� for all u� v � %Sh	*
�	���


Theorem �� Let A	�� �
 be given by 	��
� B	�� �
 be given by 	���
� and B�	�� �
 de�ned by 	���
�
Then

cA	U�U
 � B	U�U
 � C
d

h
A	U�U
	���


holds for all U � S�
h	�
 with constants c and C independent of d and h�

Remark �� The result of Theorem ��� shows that introducing inexact solves in the interior of the
subdomains does not deteriorate the overall preconditioning e�ect of the corresponding exact method
analyzed in ���
� As we have pointed out in Remark ���� the adverse e�ect of h approaching zero on
the condition number can be compensated for easily by adjusting the parameter d� This balance is an
alternative to 	���
 and could be a better choice when h is small relative to �� In fact� the utilization of
the bilinear form 	���
 leads to computationally ecient algorithms� unconstrained by accuracy condi�
tions like 	���
� The di�erences in the preconditioning e�ect of the inexact �Algorithm ���� and exact
�cf� ���
� methods are negligible� However� the savings of computational time are signi�cant in favor of
Algorithm ����

We conclude this section with the proof of Theorem ��

Proof� �of Theorem ��� Because of 	���
� the technique for establishing 	���
 is similar to the one
used in the proof of Theorem ��

Let U� � EU� !U�� as in 	���
 and write U � U� ! U� The �rst inequality in 	���
 follows from
the arithmetic�geometric mean inequality and the assumptions 	���
 on fBk	�� �
gndk�� Indeed� we have

A	U�U
 � A	U� ! U�� U� ! U�


� C 	B�	U�� U�
 ! B�	U��� U��
 !A	EU�� EU�

 �
	���


If follows from the de�nition of U�� that

B�	U��� U��
 � CA	EU�� EU�
�	���


Using 	���
 together with 	���
 and 	���
 in 	���
 yields

A	U�U
 � CB	U�U
�

To prove the right hand inequality in 	���
� we again use the decomposition of U  Thus�

B�	U�� U�
 � CA	U � U�� U � U�
 � C	A	U�U
 !A	EU�� EU�



� C 	A	U�U
 ! B�	U�� U�

 �
	���


Hence� we need to estimate B�	U�� U�
 from above by A	U�U
 Applying the reasoning used to show
	���
 in 	���
 gives the desired bound �
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Table ��� Condition numbers with the inexact preconditioner 	���


h d � ��� d � ��

���� ���� ����

���� ����� �����

���� ������ �����

����
 Numerical investigation of the nonoverlapping domain decomposition

algorithms

In this section we present numerical experiments involving the nonoverlapping domain decomposition
preconditioners developed in Section ��� and Section ��� We report results obtained from exper�
iments with Algorithm �� and Algorithm �� with boundary form given by 	���
 We tested two
main aspects of these preconditioners� namely the computational e�ciency of the method in terms of
the condition numbers obtained� and the independence of the jumps in the operator coe�cients faijg
Comparisons between the inexact algorithms and the corresponding exact methods are included as well

The numerical results presented in this section are applied to

L � �r � ar�	���


where a is a piecewise constant function in � and constant on each subdomain In all experiments � is
the unit cube in three spatial dimensions The subdomains are obtained by subdividing � into regions
by slicing it parallel to the coordinate axes Here we shall consider only cases where the unit cube is
split into m� equal sub�cubes� which implies d � ��m In the examples below� S�

h	�
 is the space of
piecewise linear functions with respect to a uniform mesh of size h Also� the action of one multigrid
V�cycle is used as an inexact solver in the interior of the subdomains In general� a sequence of coarser
spaces is needed for the de�nition of a multigrid algorithm In the simpli�ed setting of our examples�
these spaces are de�ned with respect to coarser discretizations of �k� obtained by doubling the mesh
size The result of such a procedure is a sequence of nested meshes and spaces The multigrid algorithm
is variational and based on a trilinear �nite element approximation A nested sequence of approximation
subspaces is de�ned by successively doubling the mesh size For computational e�ciency� the �ne grid
form is de�ned by numerical quadrature utilizing a quadrature which gives rise to a seven point operator
The operators on the coarser grids are twenty seven point and determined variationally from the �ne
gird operator The analysis of variational multigrid procedures based on a �ne grid operator de�ned
by numerical quadrature can be found in ���� Pointwise forward and backward Gauss�Seidel sweeps
are used as pre� and post�smoothing iterations respectively On the coarsest level we apply �ve pairs
of forward and backward Gauss�Seidel sweeps Obviously� if we have only one degree of freedom on
the coarsest level� then this is equivalent to an exact solve on that level This results in a symmetric
and positive de�nite operator whose action provides an inexact interior solve It is well known that the
corresponding Bk	�� �
 satis�es 	���
 with uniform constants ck and Ck for each k Also� the evaluation
of the action of this operator is proportional to the number of grid points on the mesh used for the
discretization of �k

The �rst experiment we report is intended to con�rm numerically the d�h�like behavior of the con�
dition number K� established in Theorem ��� We consider the model problem 	��
 with L � �'
The results are presented in Table �� Notice that according to our theory if d�h is �xed� the resulting
condition number K should also be a constant Such a behavior is clearly visible in the experimental
results in Table ��

The second experiment we report illustrates that the preconditioner de�ned in 	���
 is independent
of large jumps in the operator coe�cients The data in Table �� represent experimental results where �
is split into ����� subdomains The coe�cient a in 	���
 is de�ned as follows� a��� � a��� � ���� a is
a constant in the interval ����� ����� for the remaining subdomains Here aijk is the operator coe�cient
in the subdomain with integer coordinates i� j� k The largest jump in the operator coe�cient between
two neighboring subdomains in this case is ��� For comparison� we have included the corresponding
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Table ��� Condition numbers with the inexact preconditioner 	���
�
d � ���

h jumping a a � �

���� ����� �����

���� ����� �����

���� ���� �����

Table ��� Comparison of the inexact and the exact methods� d � ���

h Kexact K
Algorithm ��� K
Algorithm ���

�� ��� ��� ���

���� ����� ���� �����

���� ����� ����� �����

���� ��� ������ ����

condition numbers for the case when a � � in � Clearly� the results in Table �� are in good agreement
with Remark ��

The �nal numerical example which we present here is a comparison of the performance of the inexact
preconditioners 	���
 and 	���
 with B�	�� �
 given by 	���
� and the exact method analyzed in ����
The piecewise constant coe�cient a in this case is de�ned according to the data for � in Example � in
���� We note that the condition numbers for the exact method reported in Table �� are better than the
ones reported in Table �� in ���� due to the di�erent scaling of the boundary form 	cf Remark ��� ����

The data in Table ��� ���� are obtained when the boundary form is scaled by d�� whereas the results
in Table �� are obtained when the boundary form is scaled by h�� Clearly� the exact preconditioner
and the inexact method implemented by Algorithm �� exhibit almost the same condition numbers�
which is in good agreement with Remark �� Although the condition numbers reported for these two
methods are better that those for Algorithm ��� one application of the inexact preconditioner 	���

requires substantially less computer time thus resulting in a computationally more e�cient algorithm
For example� for mesh sizes between ���� and ����� the inexact preconditioner was more than �� times
faster to evaluate than the exact method which utilized the FFT method for the interior subdomain
solves The comparison was made on a SUN Sparc ��+��� workstation Thus� for the grid with h � �����
we would have more than � times reduction of the computing time if a preconditioned conjugate gradient
with the inexact preconditioner were applied for the reduction of the initial error by a factor of ���� in
contrast to the same method with the exact preconditioner A similar comparison between Algorithm ��
and Algorithm �� suggests that Algorithm �� is about �� percent more e�cient

��� Iterative methods for saddle point problems

The second major part of this chapter is devoted to the theory of iterative methods for saddle point
problems� Let H� and H� be �nite dimensional Hilbert spaces with inner products which we shall
denote by 	�� �
 There is no ambiguity even though we use the same notation for the inner products
on both of these spaces since the particular inner product will be identi�ed by the type of functions
appearing We consider the abstract saddle point problem��

A BT

B �

	�
X
Y

	
�

�
F
G

	
�	���


�Portions of ���� reprinted with permission from the SIAM Journal on Numerical Analysis� Copyright by SIAM	
Philadelphia	 Pennsylvania� All rights reserved�
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where F � H� and G � H� are given and X � H� and Y � H� are the unknowns Here A� H� 
	 H�

is assumed to be a linear� symmetric� and positive de�nite operator In addition� the linear map BT �
H� 
	 H� is the adjoint of B� H� 
	 H� It is well known 	cf ���
 that this block matrix is inde�nite
and has both positive and negative eigenvalues In general� it is not even invertible unless additional
conditions on the spaces H� and H� are imposed 	cf 	���
 and 	���

 Because of this the iterative
solution of 	���
 is a very delicate problem and special methods should be developed

Applying block elimination to 	���
 yields

BA��BTY � BA��F �G�	���


Clearly� BA��BT is symmetric and nonnegative� and setting W � BTY we obtain

	BA��BTY� Y 
 � 	A����W�A����W 
 � 	Z�Z
�

where Z � A����W  Thus�

	Z�Z
 � sup
V �H�

	Z� V 
�

	V� V 

� sup

U�H�

	Z�U
�

	U�U

�

where U � A���V  Hence�

	BA��BTY� Y 
 � sup
U�H�

	Y�BU
�

	AU�U

�	���


Consequently� a necessary and su�cient condition for the unique solvability of 	���
 is that the Ladyzhenskaya�
Babu,ska�Brezzi condition holds� ie

sup
U�H�

	V�BU
�

	AU�U

� c�kV k� for all V � H� �	���


for some positive number c� Here k � k denotes the norm in the space H� 	or H�
 corresponding to the
inner product 	�� �


One could iteratively solve 	���
 for Y by conjugate gradient 	or preconditioned conjugate gradient

iteration ���� Then X is obtained by X � A��	F�BTY 
 The Uzawa method ��� 	Algorithm �� below

is a particular implementation of a linear iterative method for solving 	���
 One common problem with
the methods just described is that they require the evaluation of the action of the operator A�� in each
step of the iteration For many applications� this operation is expensive and is also implemented as an
iteration The inexact Uzawa methods 	Algortihm ��
 replace the exact inverse in the Uzawa algorithm
by an �incomplete or �approximate evaluation of A�� These algorithms are de�ned in Sections ���
and ��� They were also studied in ����

There are other general iterative techniques for solving saddle point problems of the form of 	���
�
eg� ���� ����� ����� ���� In ����� a preconditioner forA is introduced and the system 	���
 is reformulated
as a well conditioned symmetric and positive de�nite algebraic system which may be solved e�ciently
by applying the conjugate gradient algorithm In ����� the authors consider the convergence properties
when the minimal residual algorithm is applied to a more direct preconditioned reformulation of 	���

Both of the above�mentioned techniques incorporate preconditioning and avoid the inversion ofA Other
interesting methods for solving 	���
 that also do not require the action of A�� can be found in ��� and
����

There is also a variety of application�speci�c techniques that depend strongly on the particular
approximation spaces� geometry of the domain� etc In the case of the mixed approximation of second�
order problems� those include domain decomposition techniques ����� a reduction technique involving
the use of additional Lagrange multipliers ����� as well as an inde�nite preconditioner ����

The inexact Uzawa algorithms are of interest because they are simple and have minimal computer
memory requirements This could be important in large scale scienti�c applications implemented for
today�s computing architectures In addition� an Uzawa algorithm implemented as a double iteration
can be transformed trivially into an inexact Uzawa algorithm It is not surprising that the inexact Uzawa
methods are widely used in the engineering community
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Here we present new estimates for the inexact Uzawa algorithm both in the linear and nonlinear
case In the former case� the evaluation of A�� is replaced by the inverse of a linear preconditioner
Theorem �� shows that the resulting algorithm always converges and gives bounds on the rate of
convergence provided that the preconditioner is properly scaled The inexact Uzawa algorithm in the
nonlinear case replaces the evaluation ofA�� by some approximate nonlinear process To avoid confusion
we note that a nonlinear algorithm in this paper means a nonlinear iteration for solving the linear
problem 	���
 Theorem �� shows that the resulting algorithm converges provided that the nonlinear
approximation to A�� is suitably accurate More restrictive results for variants of the inexact Uzawa
algorithms have already appeared in the literature 	cf ���� ���


����� The abstract inexact Uzawa algorithm

The inexact Uzawa method when linear preconditioners are used is motivated by �rst considering the
Uzawa iteration ���� which can be de�ned as follows

Algorithm �� �Uzawa� For X� � H� and Y� � H� given� the sequence f	Xi� Yi
g is de�ned� for
i � �� �� � � � � by

Xi	� � Xi !A��
�
F � 	AXi !BTYi


�
�

Yi	� � Yi ! �	BXi	� �G
�
	���


with � a given real number�

Let EY
i � Y � Yi be the iteration error generated by the above method It is easy to show that

EY
i	� � 	I� �BA��BT 
EY

i �

Let c� denote the largest eigenvalue of BA��BT  Then� Yi converges to Y if � is chosen such that

� � max	�� c��� c�� � �
 � ��

In this case� Xi and Yi converge respectively to X and Y with a rate of convergence per step bounded
by �

One problem with the above method is that it may converge slowly ifBA��BT is not well conditioned
Thus� it is natural to introduce a preconditionerQB � H� 
	 H� We assume thatQB is linear� symmetric
and positive de�nite and de�ne the preconditioned Uzawa algorithm as follows

Algorithm �� �Preconditioned Uzawa� For X� � H� and Y� � H� given� the sequence f	Xi� Yi
g
is de�ned� for i � �� �� � � � � by

Xi	� � Xi !A��
�
F � 	AXi !BTYi


�
�

Yi	� � Yi !Q��
B 	BXi	� �G
�

	���


For convenience of notation� we have absorbed the parameter � into the preconditioner QB  Accord�
ingly� we assume that QB is scaled so that

	BA��BTW�W 
 � 	QBW�W 
 for all W � H��	���


Note that since QB is positive de�nite� it follows that

	�� �
	QBW�W 
 � 	BA��BTW�W 
 for all W � H��	���


holds for some � in the interval ��� �
 In practice� e�ective preconditioners satisfy 	���
 with � bounded
away from one

If EY
i � Y � Yi where Yi is generated by 	���
 then

EY
i	� � 	I�Q��

B BA��BT 
EY
i �
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Clearly� Q��
B BA��BT is symmetric with respect to the inner product

� V�W �� 	QBV�W 
 for all V�W � H��

Let k�kQB
denote the corresponding norm

kWkQB
�� W�W ���� �

Then by 	���
 and 	���
� ��EY
i

���
QB

� �i
��EY

�

���
QB

�

Here and in the rest of the thesis� for a symmetric and positive de�nite linear operator L on Hj � j � �� ��
k � kL will denote the norm 	L�� �
���

One problem with the above algorithms is that they require the computation of the action of the
operator A�� at each step of the iteration For many of the applications� this is an expensive operation
which is also done iteratively This leads to a two level iteration� an inner iteration for computing the
action of A�� coupled with the outer Uzawa iteration 	���
 or 	���
 The inexact Uzawa method
replaces the action of A�� by a preconditioner A preconditioner QA is a linear operator QA � H� 
	 H�

which is symmetric and positive de�nite In practice� good preconditioners are relatively cheap to invert
	cf De�nition ��
 The inexact Uzawa algorithm is then given as follows 	this algorithm was also studied
in ����


Algorithm �� �Inexact Uzawa� For X� � H� and Y� � H� given� the sequence f	Xi� Yi
g is de�ned�
for i � �� �� � � � � by

Xi	� � Xi !Q��
A

�
F � �AXi !BTYi

��
�

Yi	� � Yi !Q��
B 	BXi	� �G
�

	���


One step of the inexact Uzawa algorithm involves an evaluation of each of the operators� A� B� BT �
Q��
A and Q��

B 

����� Analysis of the inexact Uzawa algorithm

Let us now investigate the stability and convergence rate of the inexact Uzawa algorithm de�ned above
The main theorem will show that the inexact Uzawa algorithm will always converge provided that the
preconditioners are properly scaled By this we mean that 	���
 holds and that

	AW�W 
 � 	QAW�W 
	���


for all W � H� with W �� � The strict inequality above will be replaced by

	AW�W 
 � 	QAW�W 
 for all W � H��	���


in a subsequent corollary
Bounds for the rates of iterative convergence will be provided in terms of two natural parameters The

�rst parameter has already been de�ned and is the convergence factor � 	see 	���

 for the preconditioned
Uzawa algorithm The second parameter is the rate � at which the preconditioned iteration

Ui	� � Ui !Q��
A 	W �AUi


converges to the solution of

AU � W�

If Ei � U � Ui then

Ei	� � 	I�Q��
A A
Ei�
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Clearly Q��
A A is a symmetric operator with respect to the inner product 	QA�� �
 and hence the conver�

gence rate � is the largest eigenvalue of I�Q��
A A Alternatively� � is the smallest number for which the

inequality

	�� �
	QAW�W 
 � 	AW�W 
 for all W � H�	���


is satis�ed It will sometimes be convenient to rewrite 	���
 as

		QA �A
W�W 
 � �	QAW�W 
 for all W � H��	���


The �rst convergence estimate will be provided in terms of a norm on H� �H� which we shall now
de�ne Consider the bilinear form on H� �H� given by��

U
V

	
�

�
R
S

	�
� 		QA �A
U�R
 ! 	QBV� S
�	���


By 	���
� ��� �� generates a norm on H� �H� which we shall denote by

�jT j� � �T� T �
���

� for all T � H� �H��

We can now state the main result of this section

Theorem �� Assume that ������ and ������ hold and that � and � satisfy ������ and ������� respec�
tively� Let fX�Y g be the solution pair for ����	�� fXi� Yig be de�ned by the inexact Uzawa algorithm
and set

ei �

�
X �Xi

Y � Yi

	
�

Then� for i � �� �� � � � �

�jeij� � �i�je�j��	���


where

� �
�	�� �
 !

p
��	�� �
� ! ��

�
�	���


Remark �
 It is elementary to see that

� � �� �

�
	�� �
	�� �
�

Thus the inexact Uzawa method converges if ������ and ������ hold� As expected� the convergence rate
deteriorates as either � or � approach one� In addition� if � tends to zero �thus� QA tends to A and the
norm �j�j� tends to k�kQB

� then � �de�ned by ���	��� tends to �� the convergence rate of the preconditioned
Uzawa algorithm� In the limit� one recovers the convergence results of Algorithm ����

Proof��Theorem ��� We �rst derive a relationship between the errors ei	� and ei The components of
the corresponding errors are denoted by EX

i � X �Xi and EY
i � Y � Yi From 	���
 and 	���
 we

see that the errors satisfy the recurrence

EX
i	� �

�
I�Q��

A A
�
EX
i �Q��

A BTEY
i �

EY
i	� � EY

i !Q��
B BEX

i	��
	���
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Replacing EX
i	� in the second equation with its expression from the �rst gives


�EX

i	�

EY
i	�

�
A �


� 	I�Q��

A A
 �Q��
A BT

Q��
B B

�
I�Q��

A A
�

	I�Q��
B BQ��

A BT 


�
A

�EX

i

EY
i

�
A

�M

�EX

i

EY
i

�
A �

	���


This can be rewritten as

ei	� �Mei�	���


The proof of the theorem will be complete if we can show that the operator norm

�jMj� � sup
x�H��H�

�jMxj�
�jxj�

is bounded by � given by 	���

The operator M can be written in the form

M �


��I �

� I

�
A

� �	I�Q��

A A
 Q��
A BT

Q��
B B

�
I�Q��

A A
�

	I�Q��
B BQ��

A BT 


�
A

� EM��

It is straightforward to check that both E and M� are symmetric in the ��� ���inner product Let M�

denote the adjoint of M with respect to ��� �� Then we have

M� � 	EM�

� �M�E

and

M�M �M�E�M� �M�
��

Consequently�

�jMj�� � sup
x�H��H�

�Mx�Mx�

�x� x�
� sup

x�H��H�

�M�Mx� x�

�x� x�

� sup
x�H��H�

�M�
�x� x�

�x� x�
� sup


i���M��

j�ij��

Therefore� to estimate the norm of M� it su�ces to bound the spectrum �	M�
 of M� Since M� is
symmetric with respect to the ��� �� inner product� its eigenvalues are real We shall bound the positive
and negative eigenvalues of M� separately

We �rst provide a bound for the positive eigenvalues of M� The operator I �Q��
A A is symmetric

with respect to the inner product 		QA � A
�� �
 Moreover� it follows from 	���
 that it is positive
de�nite and its positive square root is well de�ned Let

D �


������	I�Q��

A A
��� �

� I

�
A �



���� ITERATIVE METHODS FOR SADDLE POINT PROBLEMS ��

It follows from 	���
 that D is invertible and from 	���
 that

�jDxj� � �jxj� for all x � H� �H��	���


Let N � D��M�D�� Then

N �


� ��I ����L

����L� 	I� L�L


�
A	���


where L � 	I�Q��
A A
����Q��

A BT and L� � Q��
B B	I�Q��

A A
���
The largest eigenvalue �m of M� satis�es

�m � sup
x�H��H�

�M�x� x�

�x� x�
� sup

x�H��H�

�NDx�Dx�
�x� x�

� sup
x�H��H�

�NDx�Dx� �Dx�Dx�
�Dx�Dx� �x� x� � sup

y�H��H�

�Ny� y�

�y� y�
�

We used 	���
 for the last inequality above Since both D and M� are symmetric with respect to ��� ���
it follows that N is also Consequently� �m is bounded by the largest eigenvalue of N 

Let � be a nonnegative eigenvalue of N with corresponding eigenvector f��� ��g� ie�

���� ! ����L�� � ����

����L��� ! 	I� L�L
�� � ����
	���


Eliminating �� in the above equations gives

��L�L�� � 	�! �
	� � �
��

and hence

�� � L�L��� �� �� 	�! �
	�� �
 � ��� �� � �	���


By 	���
 and 	���
� it follows that

� L�L��� �� � � 	BQ��
A BT��� ��
 � 	�� �
	BA��BT��� ��


� 	�� �
	�� �
 � ��� �� � �
	���


Since � � � and � is nonnegative� we see from the �rst equation in 	���
 that if �� � � then �� � �
Consequently� �� is not equal to zero Thus� from 	���
 and 	���
� we get

�� � �	�� �
� � � � �

from which it follows that � � � where � is given by 	���
 This provides the desired bound for the
positive eigenvalues of M�

We next estimate the negative eigenvalues of M� Let � be a negative eigenvalue of M� with
corresponding eigenvector 	��� ��
� ie�

� �I�Q��
A A

�
�� !Q��

A BT�� � ����

Q��
B B

�
I�Q��

A A
�
�� !

�
I�Q��

B BQ��
A BT

�
�� � ����

	���


The �rst equation in 	���
 together with 	���
 imply that if �� � � then �� � � Consequently� any
eigenvector must have a nonzero component ��
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Multiplying the �rst equation of 	���
 by Q��
B B from the left and adding it to the second one yields

	�� �
�� � �Q��
B B���	���


Substituting 	���
 into the �rst equation of 	���
 and taking an inner product with QA�� gives

�		�� �
		� ! �
QA �A
��� ��
 ! �	Q��
B B���B��
 � ��

which we rewrite as

�	Q��
B B���B��
 � 		�� ��
	QA��� ��
� 	�� �
	A��� ��
�	���


For any V � H��

	Q��
B BV�BV 
 � sup

W�H�

	V�BTW 
�

	QBW�W 

� sup

W�H�

	A���V�A����BTW 
�

	QBW�W 


� sup
W�H�

	AV� V 
	BA��BTW�W 


	QBW�W 

� 	AV� V 
�

	���


For the last inequality above we used 	���
 Applying 	���
 to the left hand side of 	���
 and 	���

on the right hand side of 	���
 gives

�	A��� ��
 � 	� � ��
	QA��� ��
 ! �	A��� ��


or

� � 	� � ��
	QA��� ��
�

This implies that � � �p� since �� is nonzero It is elementary to check that
p
� � � where � is de�ned

by 	���
 This completes the proof of the theorem �
The proof of Theorem �� depended on 	���
 so that the inner product ��� �� induced a norm The

next result shows that the inexact Uzawa method converges even when only 	���
 is assumed It also
provides an estimate for the error EX

i � X �Xi in a more natural norm

Corollary �� Assume that ������ and ����	� hold and that � and � satisfy ������ and ������� respec�
tively� Let fX�Y g be the solution pair for ����	�� let fXi� Yig be de�ned by the inexact Uzawa algorithm�
and set EX

i � X �Xi and EY
i � Y � Yi� Then

	QBE
Y
i � E

Y
i 


��� � �i�je�j�	���


where � is given by ���	��� In addition�

	AEX
i � E

X
i 
��� � �i���je�j��	���


The above inequalities hold for i � �� �� � � � �

Proof� Taking the 	�� �
�inner product of the �rst equation of 	���
 with QAE
X
i	�� applying the Schwarz

inequality� and 	���
 gives

	QAE
X
i	�� E

X
i	�
 � 		QA �A
EX

i � E
X
i	�
� 	BTEY

i � E
X
i	�


� 		QA �A
EX
i � E

X
i 
���		QA �A
EX

i	�� E
X
i	�


���

! 	BA��BTEY
i � E

Y
i 


���	AEX
i	�� E

X
i	�


���

� 			QA �A
EX
i � E

X
i 
 !

��EY
i

���
QB


���	QAE
X
i	�� E

X
i	�


����
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Here we have used the elementary inequality 	ab! cd
� � 	a� ! c�
	b� ! d�
� for any real numbers a� b�
c� and d Thus� applying 	���
 gives

	AEX
i	�� E

X
i	�
 � 	QAE

X
i	�� E

X
i	�
 � �jeij���	���


Let QA� � I!QA for � �  � �� � Then 	���
 holds for QA� and by 	���
�

	�� �
	QA�W�W 
 � 	AW�W 
 for all W � H�	���


for � � � !  Fix 	X�� Y�
 � H� � H� and consider the sequence of iterates fX�i� X�ig generated
by the inexact Uzawa algorithm which replaces QA in the �rst equation of 	���
 by QA� Applying
Theorem �� gives that the error

e�i �

�
X �X�i

Y �X�i

	
satis�es

�je�ij� � �i�je��j�	���


where �j � j� � ��� ����� � ��
U
V

	
�

�
R
S

	�


� 		QA� �A
U�R
 ! 	QBV� S
�

and

� �
�	�� �
 !

p
��	�� �
� ! ��
�

�

Clearly� ��EX
�i

��
QB

� �je�ij��	���


Inequality 	���
 results from combining 	���
 and 	���
 and taking the limit as  tends to zero
In a similar manner we prove 	���
 Taking the limit in 	���
 as  tends to zero gives

�jei��j� � �i���je�j��	���


Combining 	���
 and 	���
 gives 	���
 and completes the proof of the corollary �

Remark �	 More restrictive convergence results �in these norms� were obtained by Queck ���
� He
proved a convergence result which required stronger conditions with respect to the scaling of QA and QB�
In particular� there are cases which fail to satisfy the hypothesis of the theory of ���
� yet convergence
is guaranteed by the corollary above� In addition� there are many cases when the convergence estimates
given above are substantially better than those of ���
�

����� Analysis of the nonlinear inexact Uzawa algorithm

As was pointed out in Section ���� the Uzawa algorithm is often implemented as a two level iterative
process� an inner iteration for computing A�� coupled with the outer Uzawa iteration 	���
 or 	���

In this section we investigate the stability and convergence rate of an abstract inexact Uzawa algorithm
where the computation of the action of A�� is replaced with that of an approximation to A�� which
results from applying a nonlinear iterative process for invertingA Two examples of such approximations
come from de�ning the approximate inverse by a preconditioned conjugate gradient 	PCG
 iteration
or the operator which results from the application of a multigrid cycling algorithm with a nonlinear
smoother ����

The nonlinear approximate inverse is described as a map - � H� 
	 H� For � � H�� -	�
 is an
�approximation to the solution � of

A� � ��	���
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We shall assume that our approximation satis�es

k-	�
�A���kA � �k�kA�� for all � � H�	���


for some � � � As will be seen below� 	���
 is a reasonable assumption which is satis�ed by the
approximate inverse associated with PCG It also can be shown 	see ���� ���
 that 	���
 holds under
reasonable assumptions for approximate inverses de�ned by one sweep of a multigrid algorithm with
conjugate gradient smoothing

Perhaps the most natural example of a nonlinear approximate inverse is de�ned in terms of the PCG
���� ��� ��� Let QA be a symmetric and positive de�nite operator on H� and consider applying n
steps of the conjugate gradient algorithm preconditioned by QA to solve the problem 	���
 with a zero
starting iterate We de�ne -	�
 � �n where �n is the resulting approximation to � PCG provides the
best approximation 	with respect to the norm corresponding to the 	A�� �
�inner product
 to the solution
� in the n�th Krylov subspace Vn given by

Vn � span


��Q��

A A�� � � � � 	Q��
A A
n���

�
�	���


It is well known 	cf ����
 that this implies

k�n �A���kA � �k�kA�� for all � � H� �	���


where

� � �n � �

cosh	n cosh�� �

�

Here � � 	K	Q��
A A
 ! �
�	K	Q��

A A
� �
 and K	Q��
A A
 is the condition number of Q��

A A Note that
�n is a decreasing function of n and �� is less than one Thus� 	���
 holds in the PCG example In fact�

�n � �

�
K	Q��

A A
��� � �

K	Q��
A A
��� ! �

	n
�

Since �n tends to zero as n tends to in�nity� it is possible to make �n as small as we want by taking a
suitably large number PCG iterations

The variant of the inexact Uzawa algorithm we investigate in this section is de�ned as follows

Algorithm �� �Nonlinear Uzawa� For X� � H� and Y� � H� given� the sequence f	Xi� Yi
g is
de�ned� for i � �� �� � � � � by

Xi	� � Xi !-
�
F � �AXi !BTYi

��
�

Yi	� � Yi !Q��
B 	BXi	� �G
�

	���


Clearly� 	���
 reduces to the preconditioned Uzawa algorithm 	���
 if -	f
 � A��f for all f � H��
and 	���
 reduces to the inexact Uzawa algorithm if - is a linear operator Q��

A 
We provide bounds for the rate of convergence for the above algorithm in terms of two parameters�

the convergence factor � for the preconditioned Uzawa algorithm de�ned in 	���
 and the parameter �
of 	���
 The next result is a su�cient condition on � for convergence of the nonlinear Uzawa algorithm
and provides bounds for the resulting rate of convergence

Theorem �� Assume that ������ and ������ hold and that � satis�es ������� Let fX�Y g be the solution
pair for ����	� and fXi� Yig be de�ned by the nonlinear Uzawa algorithm ������� Then Xi and Yi converge
to X and Y � respectively� if

� �
�� �

�� �
�	���
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In this case the following inequalities hold�

�

� ! �
	AEX

i � E
X
i 
 ! 	QBE

Y
i � E

Y
i 


� ��i
�

�

� ! �
	AEX

� � E
X
� 
 ! 	QBE

Y
� � E

Y
� 


		���


and

	AEX
i � E

X
i 
 � 	� ! �
	� ! ��
��i��

�
�

� ! �
	AEX

� � EX
� 
 ! 	QBE

Y
� � E

Y
� 


	
	���


where

� �
�� ! � !

p
	�� ! �
� ! ��	�� �


�
�	����


Remark �� The result of Theorem ��� is somewhat weaker than the results obtained in Section �����
for the linear case due to the threshold condition ����	� on �� In the case of PCG� it is possible to
take suciently many iterations n so that ����	� holds for any �xed � and K	Q��

A A
� In applications
involving partial di�erential equations� � and K	Q��

A A
 may depend on the discretization parameter
h� If� however� K	Q��

A A
 can be bounded and � can be bounded away from � independently of h then
by Theorem ���� a �xed number �independent of h� of iterations of PCG are sucient to guarantee
convergence of the nonlinear Uzawa algorithm�

Remark ��� An analysis of ������ is given in ���
 and ���
 in the case of applications to Stokes
problems� The sucient condition for convergence derived there is that the iterate Xi	� satis�es

kF �BTYi �AXi	�k � �kBXi �GkQ��
A

�	����


where � is independent of the mesh size� The above norms are not natural for procedures such as PCG
and multigrid with nonlinear smoothing� PCG does not give rise to monotone error behavior in the norm
k�k even though convergence is guaranteed by the canonical bound �������

kF �BTYi �AXi	�kA�� � �kF �BTYi �AXikA��

and equivalence of norms in �nite dimensional spaces� Such norm equivalences depend on the mesh
parameter h� A second problem with the requirement ������� is that the norm to the right�hand side
converges to zero as Xi converges to the solution X� This means that even though � is �xed independent
of h� considerably more iterations of PCG may be required to satisfy ������� as the approximate solution
converges� In contrast� our result implies that a �xed number of iterations �independent of h� of PCG
will guarantee convergence� provided that the preconditioners QA and QB are uniform�

Proof��Theorem ��� We start by deriving norm inequalities involving the errors EX
i and EY

i  As in
	���
�

EX
i	� � EX

i �-
�
AEX

i !BTEY
i

�
�

EY
i	� � EY

i !Q��
B BEX

i	��
	����


The �rst equation above can be rewritten

EX
i	� � 	A�� �-


�
AEX

i !BTEY
i

��A��BTEY
i �	����
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It follows from the triangle inequality� 	���
 and 	���
 that��EX
i	�

��
A

� �
���EX

i

��
A
! 	BA��BTEY

i � E
Y
i 
���

�
!	BA��BTEY

i � E
Y
i 
���

� �
��EX

i

��
A
! 	� ! �


��EY
i

��
QB

�

	����


Using 	����
 in the second equation of 	����
� we obtain

EY
i	� �

�
I�Q��

B BA��BT
�
EY
i !Q��

B B
�
A�� �-

� �
AEX

i !BTEY
i

�
�

Since Q��
B BA��BT is a symmetric operator in the � �� � ��inner product� it follows from 	���
 that���I�Q��

B BA��BT
�
EY
i

��
QB

� �
��EY

i

��
QB

�

Thus� by the triangle inequality� 	���
� 	���
 and 	���
���EY
i	�

��
QB

� �
��EY

i

��
QB

!
��Q��

B B
�
A�� �-

� �
AEX

i !BTEY
i

���
QB

� �
��EY

i

��
QB

!
��	A�� �-


�
AEX

i !BTEY
i

���
A

� �
��EY

i

��
QB

! �
���EX

i

��
A
! 	BA��BTEY

i � E
Y
i 
���

�

� 	� ! �

��EY

i

��
QB

! �
��EX

i

��
A
�

	����


Let us adopt the notation �
x�
y�

	
�
�
x�
y�

	

for vectors of nonnegative numbers x�� x�� y�� y� if x� � x� � y� � y� Repeated application of 	����

and 	����
 gives

� ��EX
i

��
A��EY

i

��
QB

	
�M i

� ��EX
�

��
A��EY

�

��
QB

	
	����


where M is given by

M �

�
� � ! �
� � ! �

	
�

We consider two�dimensional Euclidean space with the inner product��
x�
y�

	
�

�
x�
y�

	�
� �

� ! �
x�x� ! y�y��

A trivial computation shows that M is symmetric with respect to the b�� �c�inner product It follows
from 	����
 that

�

� ! �
	AEX

i � E
X
i 
 ! 	QBE

Y
i � E

Y
i 
 �

�� ��EX
i

��
A��EY

i

��
QB

	
�

� ��EX
i

��
A��EY

i

��
QB

	�

�
�
M i

� ��EX
�

��
A��EY

�

��
QB

	
�M i

� ��EX
�

��
A��EY

�

��
QB

	�

� ��i
�

�

� ! �
	AEX

� � EX
� 
 ! 	QBE

Y
� � E

Y
� 
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where � is the norm of the matrix M with respect to the b�� �c�inner product Since M is symmetric in
this inner product� its norm is bounded by its spectral radius The eigenvalues of M are the roots of

�� � 	�� ! �
�� �	�� �
 � ��

It is elementary to see that the spectral radius of M is equal to its positive eigenvalue which is given by
	����


Examining the expression for � given by 	����
 we see that � is an increasing function of � for any
�xed � � ��� �� Moreover� � � � for

� �
�� �

�� �
�

This completes the proof of the 	���

To prove 	���
 we apply the arithmetic�geometric mean inequality to 	����
 and get for any positive

�� ��EX
i

���
A
� 	� ! �
��

��EX
i��

���
A
! 	� ! ���
	� ! �
�

��EY
i��

���
QB

�

Inequality 	���
 follows taking � � �!��� and applying 	���
 This completes the proof of the theorem
�

����� Applications to mixed �nite element discretizations of elliptic

problems

Clearly� the inexact Uzawa algorithms can be used for solving the inde�nite system 	���
 arising from
mixed �nite element discretizations of the di�erential problem 	���
 In fact� this method was perhaps
the �rst known approach to solving such problems 	cf ����
 For such applications� it is relatively easy
to construct preconditioners QA while the development of a suitable operator QB is more di�cult

It was pointed out in Section ��� that the Raviart�Thomas spaces satisfy 	���
 with uniform
constant c�� independent of the discretization parameter h It is also evident from 	���
 that the
operator A corresponds to a mass matrix in the space Vh	�
 and is either well conditioned or easily
preconditioned by a diagonal matrix In fact� if the tensor A in 	���
 has smooth coe�cients� then QA

can be chosen to be �I� where � is an appropriately chosen real number In this case the preconditioner
QA reduces to simple scaling according to 	���
 If A has coe�cients with jumps in �� then appropriately
de�ned diagonal matrix QA provides a very good preconditioner

On the other hand� the operator BA��BT is not uniformly well conditioned In fact� it exhibits a
condition number growth like O	h��
 and should be preconditioned in order to get an e�cient algorithm
of type 	���
 or 	���
 It is well known that BA��BT behaves like a discretization of a second�
order operator In practice� it can be preconditioned by cell�centered techniques ����� multigrid ����� or
incomplete Choleski factorization of BBT ���� ���

����� Numerical investigation of inexact Uzawa algorithms

Our goal here is to experiment with Algorithm �� in order to assess its e�ciency In Section ���
we observed that an e�ective preconditioner for the Schur complement of the mixed system is needed
for the e�cient performance of the inexact algorithm in the case of second�order elliptic problems On
the other hand the same type of preconditioner is needed to apply the nonoverlapping preconditioners
developed in this chapter to the solution of the same problem as shown in Section ��� The approach
from Section ��� allows the use of the preconditioned conjugate gradient for the iterative solution of the
problem� which is a much faster method than the linear process provided by Algorithm �� Because of
this� we shall concentrate on much more di�cult applications where Algorithm �� provides an e�ective
way of solving the corresponding problems In particular� we shall consider applications to the steady
state Stokes equation� which is a di�cult problem The inexact Uzawa algorithm appears to be one of
the most e�cient methods for solving it 	cf ���� ��� ��� ��� ���
 Moreover� developing a method for
this problem may potentially lead to a new technique for solving the Navier�Stokes equation� which is
a rather challenging mathematical problem



�� CHAPTER �� ITERATIVE METHODS

The Stokes problem

Here we consider an application of the theory developed in the previous sections to solving inde�nite
systems of linear equations arising from �nite element approximations of the Stokes equations For
simplicity we restrict our discussion to the following model problem�

Find u and p such that

�'u�rp � g in ��	����a


r � u � f in ��	����b


u � � on ���	����c
 Z
�

p	x
 dx � ��	����d


where � is the unit cube in R� � ' is the componentwise Laplace operator� u is a vector valued function
representing the velocity� and the pressure p is a scalar function

Let L�
�	�
 be the set of functions in L

�	�
 with zero mean value on � and H�	�
 denote the Sobolev
space of order one on � The space H�

� 	�
 consists of those functions in � whose traces vanish on ��
Also� 	H�

� 	�


� will denote the product space consisting of vector valued functions with each vector

component in H�
� 	�


In order to derive the weak formulation of 	����
 we multiply the �rst two equations of 	����
 by
functions in 	H�

� 	�


� and L�

�	�
 respectively and integrate over � to get

D	u�v
 ! 	p�r � v
 � 	g�v
� for all v � 	H�
� 	�



��	����a


	r � u� q
 � 	f� q
 � for all q � L�
�	�
�	����b


Here 	�� �
 is the L�	�
 inner product and D	�� �
 denotes the vector Dirichlet form for vector functions
on � de�ned by

D	v�w
 �

�X
i��

Z
�

rvi � rwi dx�

We next identify approximation subspaces of 	H�
� 	�



� and L�
�	�
 The discussion here is very closely

related to the examples given in ���� and ���� where additional comments and other applications can be
found We partition � into �n � �n square shaped elements� where n is a positive integer and de�ne
h � ���n Let xi � ih and yj � jh for i� j � �� � � � � �n Each of the square elements is further
partitioned into two triangles by connecting the lower right corner to the upper left corner Let Sh be
the space of functions that vanish on �� and are continuous and piecewise linear with respect to the
triangulation thus de�ned We set H� � Sh � Sh � 	H�

� 	�


� The choice of H� is motivated by the

observation ���� that the space �H� of functions that are piecewise constant with respect to the square
elements together with H� as de�ned above form an unstable pair of approximation spaces This means
that the functions from H�� �H� do not satisfy 	���
 with a constant c� independent of the discretization
parameter h To overcome this problem� one may consider a smaller space de�ned as follows Let �kl
for k� l � �� � � � � �n be the function that is � on the square element �xk��� xk���yl��� yl� and vanishes
elsewhere De�ne �ij � �H� for i� j � �� � � � � n by

�ij � ��i����j�� � ��i��j�� � ��i����j ! ��i��j

	see Figure ��
 The space H� is then de�ned by

H� �
n
W � �H� � 	W��ij 
 � � for i� j � �� � � � � n

o
�

The pair H��H� now satis�es 	���
 with a constant c� independent of h ���� Moreover� the exclusion
of the functions �i�j does not change the order of approximation for the space since H� still contains the
piecewise constant functions of size �h
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� ��

�� �

Figure ��� The square mesh used for �H�� the support 	shaded
 and
values for a typical �ij

The approximation to the solution of 	����
 is de�ned as the unique pair 	X�Y 
 � H��H� satisfying

D	X�V 
 ! 	Y�r � V 
 � 	g� V 
� for all V � H��	����a


	r �X�W 
 � 	f�W 
� for all W � H��	����b


Obviously� 	����
 is a system of linear equations whose unique solvability is guaranteed by 	���

The system 	����
 can be reformulated in terms of operators as follows Let

A � H� 
	 H�� 	AU� V 
 � D	U� V 
� for all U� V � H��

B � H� 
	 H�� 	BU�W 
 � 	r � U�W 
� for all U � H�� W � H��

BT � H� 
	 H�� 	BTW�V 
 � 	W�r � V 
� for all V � H�� W � H��

It follows that the solution 	X�Y 
 of 	����
 satis�es 	���
 with F equal to the L�	�
 projection of
f into H� and G equal to the 	L�	�

� projection of g into H�

It is straightforward to check that 	���
 holds for A� B� and BT as above Moreover� it follows from
	���
 that 	���
 holds with � independent of the mesh size h

Remark ��� It appears from the de�nition of the above operators that one has to invert Gram matrices
in order to evaluate the action of A� BT and B on vectors from the corresponding spaces� In practice� the
H� Gram matrix inversion is avoided by suitable de�nition of the preconditioner QA� For the purpose of
computation� the evaluation of Q��

A f for f � H� is de�ned as a process which acts on the inner product
data 	f� �i
 where f�ig is the basis for H�� Moreover� from the de�nition of the Uzawa�like algorithms
in the previous sections� it is clear that every occurrence of A or BT is followed by an evaluation of Q��

A �
Thus the inversion of the Gram matrix is avoided since the data for the computation of Q��

A � �	BTQ��i

and 	AV� �i
�� can be computed by applying simple sparse matrices� In the case of this special choice of
H�� it is possible to compute the operator B in an economical way �see Remark � of ���
� and we can
take QB to be the identity� For more general spaces H�� the inversion of Gram matrices can be avoided
by introducing a preconditioner QB whose inverse is implemented acting on inner product data as in the
H� case above�

We still need to provide preconditioners for A However� A consists of two copies of the operator which
results from a standard �nite element discretization of Dirichlet�s problem There has been an intensive
e�ort focused on the development and analysis of preconditioners for such problems For the examples in
Section ���� we will use a preconditioning operator which results from a V�cycle variational multigrid
algorithm Such a preconditioner is known to be scaled so that both 	���
 hold and 	���
 holds with
� bounded away from � independently of the mesh parameter h
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Table ��� Comparison of UMGand UEXalgorithms

h UMG UEX

� iterations time �secs� � iterations time �secs�

��� �� ���� �� ���

��� �� ���� �� ����

���� �� ���� �� �����

��� �� ��� �� ������

����� �� ����� �� ����

Numerical examples

In this section we present the results from numerical experiments with Algorithm �� applied to the
solution of 	����
 with � � 	�� �
�� g � � and f � � Clearly� its exact solution is zero for both pressure
and velocity

We compare the performance of Algorithm �� with that of the exact method provided by Algo�
rithm �� We also compare Algorithm �� with the algorithm introduced in ���� which uses a SPD
reformulation of 	����
 and takes advantage of the acceleration provided by the conjugate gradient
algorithm To organize the comparisons we always start the iterations with an arbitrary but �xed ini�
tial iterate The performance of all of the iterative methods considered is a function of the error and
thus� iterating for a problem with a zero solution and a nonzero starting guess is equivalent to solving a
related problem with a nonzero solution and a zero initial guess We use the discretization described in
Section ���

We report results when e�cient preconditioners are used as well as results obtained when very
weak preconditioners are utilized The reason for experimenting with the latter case is that in many
engineering applications good preconditioners are not readily available and thus we have to assess the
performance of the inexact methods in such cases

The algorithms involved in the tests we present are given below�

UEX � The exact Algorithm �� with � � � The inverse of A is computed by a PCG method with a
uniform preconditioner provided by one multigrid V�cycle�

UID � The algorithm 	���
 with QA � "�maxI and QB � I Here "�max is an upper bound for the
largest eigenvalue of A�

USTD � The algorithm 	���
 with QB � I and - de�ned by one step of the steepest descent method
	SDM
 applied to approximate the action of A���

BPID � The preconditioned conjugate gradient algorithm for saddle point problems given in ���� with
QA � "�minI� where "�min is a lower bound for the smallest eigenvalue of A and QB � I Notice
that the scaling required by Theorem � of ���� is in the opposite direction of 	���
�

UMG � The algorithm 	���
 with QB � I and Q��
A being the action of multigrid�

BPMG � The algorithm from ���� with the A block preconditioned by ��Q��
A and QB � I

The �rst test is intended to compare the performance of the exact UEX and the inexact UMG
algorithms The experimental results shown in Table �� represent the time 	in seconds
 taken by these
two algorithms to reduce the initial error down to ���� The test ran on a Sun Sparc �� workstation
The advantage of the inexact method UMG is clearly seen It is more than �ve times more e�cient
than the exact algorithm UEX
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Table ��� Errors in UID� USTD and BPID by 	����


h ��� iterations

UID USTDy BPID

��� �������� �������� z��������

��� ��� �������� ���������

���� ��� ��� ��������

��� ��� ��� ��������

y one SDM step per inexact Uzawa iteration�
z for ��� BPID iterations�

Table ��� Errors in UID and USTD by 	����


h ���� iterations

UID USTDy

��� � ���������

��� �������� ���������

���� �������� ��������

��� ��� ��������

y one SDM step per inexact Uzawa

iteration�

In Table �� we give results for three algorithms using QA equal to an appropriate multiple of the
identity The reported error values represent the relative error norm after i iterations computed by

Errori �

�
D	EX

i � E
X
i 
 !

��EY
i

���
D	EX

� � EX
� 
 !

��EY
�

���
����

�	����


Clearly� this is not the norm which appears in the theory and one cannot expect the errors to behave in
a monotone way This explains the increase in the reported error for UID when h � ���� and h � ����
That the USTD method appears convergent for h � �� is surprising since 	���
 is not satis�ed for
these applications The BPID method converges considerably faster in these examples since the saddle
point method of ���� is known to give a rate of convergence which exhibits square root acceleration
in cases when poor preconditioners are employed As expected� all methods deteriorate due to lack of
preconditioning as the mesh size is decreased

In order to establish experimentally the convergence ofUID andUSTD� we ran these two algorithms
for ���� iterations The results are shown in Table �� Even though improved convergence is observed
in all cases when compared to Table ��� the UID algorithm still appears unstable for h � ���� We
ran UID for ����� iterations and observed an error of ����� Although convergent� the inexact Uzawa
method with such a poor preconditioner converges too slowly to be of practical use

The above results may at �rst appear to contradict the validity of the theory of the inexact Uzawa
algorithms The reason that the methods appear divergent at a relatively low numbers of iterations is
that the theorems guarantee monotonicity of the errors in norms which are di�erent from those used in
	����
 Our next experiment was designed to illustrate the monotone convergence of UID and BPID
predicted by Theorem �� and Theorem � in ���� Accordingly� we measured the errors in the norms
appearing in the theorems In the case of UID� we use

Errori �

�
"�max

��EX
i

��� �D	EX
i � E

X
i 
 !

��EY
i

���
"�max

��EX
�

��� �D	EX
� � EX

� 
 !
��EY

�

���
����

�	����
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Table ��� Errors in UID and BPID by 	����
 and 	����


h ��� iterations

UID BPID

��� ��������� z���������

��� ���� ���������

���� ���� ��������

��� ���� ��������

z for ��� BPID iterations�

Table ��� Errors in UMG and BPMG by 	����


h �� iterations

UMGy BPMGy

��� ������� ���������

��� �������	 ������


���� ������� ��������

��� �������� �������


y one multigrid V�cycle per

iteration�

In the case of BPID� we use

Errori �

�
D	EX

i � E
X
i 
� "�min

��EX
i

��� ! ��EY
i

���
D	EX

� � E
X
� 
� "�min

��EX
�

��� ! ��EY
�

���
����

�	����


The convergence results in these norms are reported in Table �� Note that all of the reported
errors are less than one We made additional runs at lower numbers of iterations All runs re�ected the
monotone error behavior in these norms as guaranteed by the theory

The last experiment given in this section is intended to illustrate the performance of the algorithms
when e�ective preconditioners are used� namely UMG and BPID In this case� we de�ne Q��

A to be
the operator which corresponds to one V�cycle sweep of variational multigrid with point Gauss�Seidel
smoothing The order of points in the Gauss�Seidel iteration was reversed in pre� and post�smoothing
Note that QA automatically satis�es 	���
 and satis�es 	���
 with � independent of h Table ��
contains the error reductions for this example The e�ect of applying a better preconditioner QA is
clearly seen when we compare the results from UID 	Tables �� and ��
 with those from UMG Notice
that the UMG data in Table �� show little� if any� deterioration as the mesh size becomes small

In all of the reported results� the reformulation method of ���� shows faster convergence Never�
theless� the inexact Uzawa methods are of interest since they are robust� simple to implement� cheaper
computationally� have minimal memory requirements� and avoid the necessity of computing inner prod�
ucts In addition� the inexact Uzawa algorithms are more e�cient when other discretization methods
for 	����
 are applied 	cf ����
 These properties make the inexact Uzawa methods attractive in certain
applications



Chapter �

Multiphase �uid �ow in porous

media

This chapter is devoted to the application of the theory developed in Chapters � and � to the important
real�life problem of modeling �uid �ow in porous media Flow of underground water has been studied by
hydrologists and soil scientists in connection with applications to both civil and agricultural engineering
The reservoir modeling of multiphase and multicomponent �ows has been used in the petroleum industry
for production and recovery of hydrocarbons In addition� various problems of �ows in porous media are
related to the design and evaluation of remediation technologies and water quality control

During the last few decades geologists and petroleum engineers have become increasingly involved in
modeling and computer simulation of �ows in underground reservoirs These e�orts have led to the devel�
opment of a wide range of mathematical models for saturated single�phase �ow� saturated+unsaturated
two�phase �ow� and multiphase �ow In general� these are systems of nonlinear partial di�erential equa�
tions of convection�di�usion�reaction type The formulation of the di�erential model is usually based on
the mass conservation principle enhanced with appropriate constitutive relations

In some practical situations� the system of equations can be simpli�ed substantially For example�
incompressible �uid �ow in a fully saturated reservoir is adequately described by a single elliptic equation
for the pressure This model has been successfully used in underground hydrology in the past century
However� driven by the need for design of advanced technologies for production and recovery of oil and
gas� the petroleum industry has developed and implemented complex multiphase multicomponent �ow
models 	cf ���


Environmental protection applications represent a class of practical problems closely related to the
oil applications in terms of the physics involved Both areas require a good description of the geological
structure of the reservoir for reliable results� similar �uids may be involved in the simulation� in both
cases various length and time scales are present at which the processes occur However� there are
some speci�c features of groundwater modeling that make such problems rather di�cult For example�
di�erent pressure regimes may occur here as opposed to those of a typical oil recovery application Also�
the variety of simulated species is larger� and the needed accuracy is often very high 	especially for
the concentration of the pollutants
 Thus� sophisticated mathematical models and accurate numerical
techniques should be combined for obtaining reliable results

In this chapter we consider a variety of groundwater �ow models that have been used in computer
simulation for study and design of remediation and clean�up technologies Even though most of the
models considered here extend without substantial di�culties to three�phase underground �ows� we
shall restrict ourselves to the equations of saturated and unsaturated �ows of air and water phases
We shall also discuss the important question of the choice of the approximation method for the corre�
sponding mathematical problem In numerical simulation of �uid reservoirs 	aquifer or oil
 there are
two important practical requirements� the method should conserve mass locally and should produce
accurate velocities 	�uxes
 even for highly heterogeneous media with large variations of physical prop�
erties This is the reason why the �nite volume method with harmonic averaging of the coe�cients has
been very popular and successful in computer simulation of �ows in porous media However� when the

��
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problem requires accurate description of the various geological formations in the reservoir� more general
techniques based on the �nite element approximation are needed The mixed �nite element method
considered in Chapter � has all these properties Since its introduction by Raviart and Thomas ����
and its implementation by Ewing and Wheeler ���� for �ow problems� it has become a standard way of
deriving high�order conservative approximations It should be noted that the lowest�order mixed method
implemented on rectangles 	or parallelepipeds
 with certain numerical integration produces cell�centered
�nite di�erences with harmonic averaging 	cf Remark ���
 The locally re�ned discretizations from
Chapter � can be combined with these discretizations in order to improve the e�ciency and the accuracy
of the resulting numerical approximation The iterative techniques from Chapter � can be employed for
the e�cient solution of the corresponding discrete problems This allows us to apply the new methods to
the solution of sophisticated groundwater �ow models in order to improve the quality of the simulation
results

The chapter is structured as follows In Section �� we introduce the fundamental concepts used in the
derivation of groundwater �ow models Next� in Section �� four particular �ow models are considered
with special emphasis given to the fractional �ow model In Section �� we consider the important issues
of boundary conditions setup for the fractional �ow model as well as the incorporation of wells into the
model Finally� in Section �� we discuss the development of a sophisticated �ow simulator and present
results from an interesting simulation

��� Fundamentals of �uid �ow in porous media

In this section we introduce the physical principles on which the models of �uid �ow in porous media
are based In an attempt to keep the volume of this dissertation within reasonable limits we shall use
terminology from �uid dynamics and geology without precise de�nition The reader is referred to the
classical book of Bear ��� for a comprehensive consideration of many concepts concerning �uid �ow in
porous media

Typically� there are various �ow conditions that occur underground Below the water table the only
�uid �owing is water and� correspondingly� saturated �ow conditions are observed Above the water
table is the zone of unsaturated �ow conditions characterized by the presence of water and air phases
Thus� a coupled water and air di�erential �ow model is needed for dealing with interesting phenomena
occurring in the unsaturated zone� such as soil venting 	cf ���
� soil gas exchange with the atmosphere�
rainfall�runo� estimation� and hazardous waste disposal

There are several assumptions made for the derivation of the models to be described We begin with
the outline of the most fundamental ones 	cf ���


� There are three phases in the system� solid� liquid and gas phases The solid phase is assumed
to be immobile and consolidated The gas and liquid phases are assumed to be fully mobile� but
immiscible

� Single time and length scales are assumed The processes are considered on the time scale
of a single in�ltration event and so evaporation and consolidation are assumed negligible

� The media is isothermal Thus� heat e�ects are assumed negligible

� The �ow of the two �uids is independent of the presence of chemicals dissolved in
either phase Thus� the �ow equations can be considered separately from the contaminant
transport equations which are beyond the scope of this thesis

As we mentioned already� the saturated zone can be modeled by a single�phase equation On the
other hand the unsaturated zone requires a multiphase system by de�nition� due to the presence of air
and water �uid phases A macroscopic description of the latter system uses solid and �uid properties
de�ned over the porous media continuum� and is based on conservation laws for each phase To close the
system of equations obtained� media� and material�dependent constitutive relations are added Typical
examples of constitutive relations used in the unsaturated zone are the capillary pressure�saturation
relation and the relative permeability�saturation relation As a result the governing equations for the
single�phase saturated or the two�phase unsaturated �ow are obtained
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����� The conservation of mass principle

The mass balance equation for each �uid phase can be written as 	cf ���


�	���S�


�t
!r � 	��u�
 � F��	��


where S� is the saturation� �� is the density� � is the porosity� u� is the volumetric �ux of phase �� and
F� is the source term The index � refers to the air 	a
 and water 	w
 phase� respectively

The mass balance given in 	��
 states that the change of mass in a control volume 	described by the
�rst term in the left�hand side
 and the divergence of the mass �ux in that volume 	described by the
second term
 are compensated by the mass supplied+removed by the sources+sinks on the right�hand
side

An alternative form of 	��
 can be obtained by de�ning a volumetric �uid content of phase � by

�� � �S��

Thus� the mass balance law becomes

�	����


�t
!r � 	��u�
 � F��	��


Obviously� neither 	��
 nor its alternative formulation 	��
 are solvable by itself Additional equations
of �uid motion must be supplied for that purpose 	cf ��� ���


����� Darcy�s law

The momentum balance is the fundamental principle used in �uid dynamics to close the system of
equations that describes the �uid �ow in porous media 	cf ��� ���
 In the case of Newtonian �uids this
principle reduces to the well known Navier�Stokes equation 	cf ����
 Such models represent adequate
treatment of the underlying physics However� they bring in enormous di�culties due not only to
the complicated mathematical nature of the corresponding di�erential equations but also because they
require solving the equations at the microscopic pore level Therefore� it is impossible to use such models
to handle reservoirs of realistic sizes for two basic reasons First� it is not possible to obtain description of
the media properties of such reservoirs at the microscopic level Second� since a numerical approximation
is the only way to solve the corresponding equation� no computer of the present time 	or likely in the
near future
 can handle the corresponding discrete model Therefore� to reach beyond the scope of small
laboratory experiments� an alternative set of equations that model the �ow at the macroscopic level
should be used

Darcy�s law provides the needed alternative It replaces the momentum equation for each �uid phase
by an empirical relation that links the individual phase pressures to the corresponding �uxes�

u� � �Kkr�
��

	rp� � ��g
� � � a� w�	��


where K is the absolute permeability tensor of the medium� kr� is the relative permeability of phase ��
�� is the dynamic �uid viscosity of �� p� is the corresponding �uid pressure� and g is the acceleration
vector due to gravity

Although Darcy�s law was discovered as an empirical relation� there are several examples of analytical
derivation of 	��
 from the momentum balance equations under certain additional assumptions on the
�uid �ow available in the literature 	cf ��� ��
 These assumptions can be summarized as follows� the
rock is chemically inert� the �uid is Newtonian� shear stresses and �uid inertia are negligible� and the
momentum exchange with the rock is in the form of Stokes drag Darcy�s law provides a quite accurate
characterization of the �ux u� in terms of the phase pressure when laminar �ows in a medium with
relatively low permeability are considered 	cf ���
 These are the typical �ow conditions which occur
underground at low Reynolds numbers
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Within the groundwater literature� the pressure normally is scaled by the gravity potential function
This allows the de�nition of a pressure head h� 	or the pressure in an equivalent water column height

given by

h� �
p�
��wg

�

where ��w is the density of water at standard temperature and pressure� and g is the magnitude of the
acceleration due to gravity

Often the nonlinear conductivity tensor K� is used in hydrology It is de�ned by

K� �
��wgKkr�

��
� K�skr��

where K�s represents the conductivity when the porous medium is saturated with �uid � Then 	��

can be written as

u� � �K�

�
rh� � ��

��w
iz

	
�	��


where iz is the unit vector oriented in the direction of the gravity force in an orthogonal cartesian
coordinate system

����� Constitutive relations

A set of constitutive relations is needed to close the system of equations 	��
 and 	��
 Most frequently
these represent attempts to �t experimental data by an empirical relation Such relations can be for�
mulated in a variety of ways depending the choice of independent variables Perhaps the most natural
choice of independent variables are the separate phase pressures and saturations 	cf ���
 In this section
we consider three constitutive relations� capillary pressure�saturation� relative permeability�saturation�
and density�pressure

A capillary pressure�saturation relation

It is well known that �uid saturation is a function of the di�erence of the two phase pressures in the
system The pressure di�erence is called capillary pressure and is de�ned by

pc � pa � pw�

Correspondingly�
hc � ha � hw�

These relations involve e�ects of hysteresis 	cf ���
 which are important phenomena that in�uence �uid
behavior in the unsaturated zone and should be taken into account However� in this section we shall
only indicate some basic features of the capillary pressure�saturation relation� and for this reason we
shall consider a simple but useful characterization that ignores hysteresis e�ects Experimental data
corresponding to a water�air system is shown in Fig �� One of the most commonly used �tting
function forms is that of van Genuchten ���� It is given by

�	hc
 �
�ws � �wr

j� ! 	�hc
nj����n ! �wr�	��


Here �ws� �wr� �� and n are �tting parameters We note that the air �uid content can be obtained easily
from the water content through the assumption that the �uids �ll the volume� ie

�w ! �a � ��

or equivalently
Sw ! Sa � ��
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The relative permeability�saturation relation

Another constitutive relation is the relative permeability as a function of the saturation This function
is usually empirically determined The common approach is to use �tting parameters from the capillary
pressure�saturation relation Examples of such function forms 	cf ���
 are given by

krw	�w
 � ����e

�
�� 	�� ���me 
m

��
�

where m � �� ��n and

�e �
�w � �wr
�ws � �wr

�

Correspondingly�
kra	�w
 � 	�� �e


���	�� ���me 
�m�

The graphs of krw	�w
 and kra	�w
 are illustrated in Fig ��

The density�pressure relation

The last constitutive relation we need to specify is the one between the �uid density and the correspond�
ing pressure Because of the particular �uids considered� these constitutive equations can be simpli�ed
without a�ecting the adequateness of the resulting model The water is nearly incompressible� in partic�
ular when compared to the air Moreover� we already assumed that the media is isothermal and so none
of the phase densities will be a�ected by temperature changes As a result we can consider a system of
two �uids in which only the air phase is compressible with density changing linearly with respect to the
air pressure� ie

�a � ��a

�
� !

ha
h�a

	
�

where ��a is the density of air at pressure h�a

��� Mathematical models of �uid �ow in porous

media

In this section we introduce four �ow models that re�ect di�erent levels of sophistication with respect
to the modeled physical phenomena Correspondingly� we shall discuss techniques for discretization and
numerical solution for each of them Consistent with the considerations in the previous chapters� we
shall assume that the physical domain � where the �uid �ow is modeled has a polyhedral shape

����� A saturated �ow model

The simplest and the most popular model is that of a fully saturated� incompressible porous media
In this case the water 	or the liquid
 phase occupies the whole pore space and the �ow is due to the
nonuniform pressure distribution The mathematical formulation of a steady state �ow is based on the
mass balance equation 	��
 and Darcy�s law 	��
�

r � 	�wuw
 � Fw� in��	��a


uw � � K

�w
	rpw � �wg
� in��	��b


with an appropriate standard boundary conditions on the boundary �� Examples of those are Dirichlet�
Neumann� and Robin for pw and uw on �� The assumption about the incompressibility of water reduces
	��
 to a linear elliptic equation of the form 	���
 Alternatively� one can eliminate the �ux uw to obtain
the elliptic problem 	��
 As we pointed out in Chapter �� the mathematical properties of these simple
models are well understood Clearly� both Galerkin and mixed discretization can be applied here and
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the iterative techniques considered in Chapter � are guaranteed to work very e�ciently Temporal e�ects

can be accommodated easily in 	��
 by introducing a term �
�pw
�t

which leads to a model very similar

to 	���
 The function � here is used to model certain heat compressibility or storativity e�ects The
discretization and iterative solutions of the time�dependent problem are also considered in detail in the
previous chapters

����� A twopressure equation formulation

The mass balance statement 	��
 for each �uid phase together with Darcy�s law 	��
 and the constitutive
relations from Section ��� de�ne a coupled system of equations that models two�phase �ow in porous
media It is written as

�	���S�


�t
!r � 	��u�
 � F�� in��	��a


u� � �Kkr�
��

	rp� � ��g
� in��	��b


where � � a� w A corresponding set of independent boundary conditions for each phase equation
together with the constitutive relations complete this model

One principle di�culty in solving 	��
 is in the linearization procedure used for solving these non�
linear equations In general� there are two widely used techniques� Picard and Newton�Raphson Even
though a de�nite assessment of the advantages of these two approaches is not available� it appears that
the Picard method is very robust and reliable but perhaps somewhat slow

Another di�culty lies in the coupling between the air and water equations A standard approach
used in the petroleum industry is to decouple them by solving implicitly for one of them and explicitly
for the other 	IMPES
 The IMPES schemes work well when the coupling between phases is very weak
They produce poor results when the coupling is strong In addition� they result in very ine�cient time�
stepping procedures and should be avoided A much better approach is to use a fully implicit scheme in
both phases combined with a Picard iteration for resolving the nonlinearities of the coupling 	cf ���


The equations can be discretized using mixed methods to produce mass conservative approxima�
tions On the other hand� the corresponding �uxes can be eliminated and backward Euler�Galerkin
discretizations can be applied Binning 	cf ���
 has observed that in the latter case� the mass lumping
technique for treating the time derivative term is essential for preventing oscillations in the numerical
results Even though the derivation of this model is based on the mass conservation principle� applying
Galerkin discretization is not guaranteed to produce a locally conservative scheme in contrast to the
mixed method Also� if the �uxes have to be computed to provide coupling with a transport equation�
the mixed method is far superior than the Galerkin technique� especially on nonorthogonal grids At
each time level� the linearized discrete problem for each phase equation can be solved e�ciently using
the methods developed in Chapter �

The formulation of the two�phase �ow model 	��
� however� exhibits certain de�ciencies that must
be taken into account when assessing the robustness of the model in various applications Equations
	��
 are applied in both the saturated and the unsaturated zones Examining the relative permeability
curves in Fig ��� it is easy to see that the air equation has a very small elliptic term near the water
table and degenerates in the saturated zone Because of this� the model de�ned in 	��
 behaves badly
as a mathematical model� and no reliable �ow simulators can be built using it

����� Richards equation

A very useful model for the unsaturated+saturated zones which is closely related to the two�pressure
model 	��
 can be obtained by eliminating the air equation This is based on the assumption that the
air phase remains at atmospheric pressure Such an assumption is reasonable in many cases because the
mobility of air is much larger than that of water We should note that such an assumption does not
imply that the air phase is stagnant but just the opposite� ie the air has a very high mobility Often�
the resulting model is referred to as an implicit two�phase model
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Assuming that the air pressure is a known constant� 	��
 can be rewritten as

�w
��w

�
��w
�t

! Ss
�w
�

�hw
�t

�
�r �Kw

�
rhw � �w

��w
riz

	
�

�

��w
Fw� in��	��


Here Ss is the speci�c storativity of water If a coupling with contaminant transport equation is consid�

ered� a term
�w
��w

��w
�c

�c

�t
describing the rate of change of density of water with respect to the concen�

tration c of the contaminant should be added to the left�hand side of 	��
 A typical way of linearizing

the coupling with a transport equation is to treat the term
�w
��w

��w
�c

�c

�t
as a forcing term by providing

a constitutive relation �w � �w	c

We can easily rewrite the Richards equation 	��
 in a mixed form using the alternative form of the

Darcy�s law 	��
 to de�ne a �ux of water uw
It should be noted that 	��
� or its mixed form� are typical parabolic equations that model the �ow

in the saturated and unsaturated zones It can be discretized and solved after linearization very similarly
to the approach described in the previous section

����� A fractional �ow model

There are important practical cases when the Richards equation 	��
 is insu�cient to adequately de�
scribe the �ow process Examples are vapor extraction systems or soil venting in which there is a
substantial dynamic interaction between the two phases and the contaminant can be transported both
in the air and water phases 	cf ��� ��� ���
 Another example where the air phase has to be solved
explicitly is the presence of injection wells which pump �uid into the porous media at high pressure
In such situations the coupled nonlinear system for the air�water complex must be considered On the
other hand� we already pointed out in Section ��� that a model better than 	��
 has to be devised for
reliable simulation

Here� we present a fractional �ow formulation of the two�phase �uid �ow model 	��
 This approach
results in a mathematical problem which is well behaved when solved numerically The fractional �ow
formulation involves a global pressure p and total velocity u This provides a two�phase water 	w
 and
air 	a
 �ow model which is described by the following equations 	cf ����
�

C	p� Sw

�p

�t
!r � u � f	p� Sw
� in��	��a


u � �K�	rp�G

� in��	��b


and

�	��wSw


�t
!r � �w	fwu�K�afw��g �D	Sw
 � rSw
 � Fw� in ��	��c


The variables participating in this model are de�ned as follows Equation 	��a
 represents a mass
balance statement for the total �uid mass whereas 	��b
 is a generalized Darcy�s law The global
pressure p and total velocity u are de�ned by 	cf ����
�

p �
�

�
	pw ! pa
 !

�

�

Z Sw

Sc

�a � �w
�

dpc
d�

d��	���


and

u � uw ! ua�	���


The coe�cient C	p� Sw
 in 	��a
 is given by

C	p� Sw
 �
�Sw
�a

d�a
dt

�	���
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The right hand side term f	p� Sw
 of 	��a
 is de�ned by

f	p� Sw
 �
�

�a
	Fa � ua � r�a � �Sa

��a
�t




!
�

�w
	Fw � uw � r�w � �Sw

��w
�t


�

	���


where � � �w ! �a is the total mobility� and �� �
kr�
��

� � � w� a� is the mobility for water and air�

where kr� is the relative permeability The capillary pressure pc is given by pc � pa � pw The gravity
forces G
 and capillary di�usion term D	S
 are expressed as

G
 �
�w�w ! �a�a

�
g and D	S
 � �K�afw

dpc
dS

�

The phase velocities for water and air� which are needed in transport calculations� are given by�

uw � fwu!K�afwrpc �K�afw��g�	���a


ua � fau�K�wfarpc !K�wfa��g�	���b


where f� � ����� � � w� a� and �� � �a � �w To complete the model� we assume the constitutive
relations between capillary pressure and saturation� between relative permeabilities and saturation� and
between �uid density and pressure discussed in Section ��� Notice that the phase velocity for air is
given by 	���b
 even if the Richards approximation is used

The boundary conditions are an important element of the above model Standard types of boundary
conditions� namely Dirichlet� Neumann� and Robin� may be de�ned for the pressure�saturation formula�
tion of the �ow model 	��
 Let the boundary �� be partitioned into nonoverlapping parts ��i� i � �� �
Then boundary conditions for 	��a
�	��b
 may be given by a combination of the following expressions�

p � p��	x� t
� x � ����	���a


u � � ! b	x� t� Sw
p � G��	x� t� Sw
� x � ����	���b


where � is the outward normal vector to the corresponding boundary part and p��	x� t
� b	x� t� Sw
�
and G��	x� t� Sw
 are given functions Obviously the boundary conditions 	���
 constitute a well posed
problem from a mathematical point of view However� in applications such types of boundary conditions
may not be available This comes from the fact that the physical boundary conditions are speci�ed with
respect to the separate phase equations 	��
 Thus� boundary conditions for the fractional �ow model
must be derived using the separate phase boundary conditions Several di�culties are encountered here
and because of this we shall discuss this issue in more detail in Section ���

A corresponding set of boundary conditions for the saturation equation 	��c
 must be speci�ed
From a physical point of view� a Dirichlet condition for the saturation imposed on the boundary ��
makes very good sense Of course� boundary conditions of the form 	���
 make perfect mathematical
sense here� but their physical meaning is not necessarily well de�ned

Since the term K� does not vanish in the saturated and unsaturated zones� the model 	��
 is better
behaved mathematically Moreover� existence and uniqueness of solutions to 	��
 has been established
for the incompressible case 	cf ����
 The compressible case� however� remains still an open problem To
discretize 	��
 we recall that three main factors play an important role in selecting our discretization
strategy� 	a
 the mass conservation expressed by the di�erential equations� 	b
 the geometry of the
domain� 	c
 nonlinearities in the model and their linearization There are nonlinearities on multiple levels
in the coupled �ow model 	��
� within each of the equations and between the pressure and saturation
equations One way of solving this system is to �rst linearize each equation by lagging in time the setup
of the coe�cients in order to get an initial guess After that a Picard or Newton�Raphson iteration can
be applied in order to resolve the nonlinearities Such an approach has been used successfully in ��� in
the case of unsaturated �ows Other approaches to linearization are discussed in ���� ���
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The mathematical nature of the saturation 	��c
 and pressure 	��a
�	��b
 equations are di�erent
and speci�c methods for their approximation should be considered Typically� the saturation equations
are convection dominated and thus special care should be taken in their discretization Also� the di�usion
terms there are small but important and cannot be neglected On the other hand� the pressure equation
has a strong elliptic part and this fact should in�uence the choice of the discretization method

Based on these observations� two types of �nite element approximations can be used� the standard
conforming Galerkin method and the mixed method Advantages of the former are its simplicity� its
smaller number of unknowns� and the availability of e�cient methods for solving the resulting system of
linear equations 	cf Chapters � and �
 These features are particularly important for three�dimensional
problems Combined with upstream weighting 	cf ����
� Godunov type approximations� or Riemann
solvers 	cf ����
� such discretizations can be used for the saturation equations 	for a combination with
the mixed method see ����
 The characteristic methods 	cf ����
 are very important here because they
symmetrize the discrete systems and thus allow e�cient iterative solution Such results are reported in
��� An enhanced performance results from the use of logically rectangular grids

Among the disadvantages of the conforming discretizations are the lack of local mass conservation
of the numerical model and some di�culties in computing the phase velocities needed in the transport
and saturation equations Clearly� accurate velocities are needed in the saturation equation 	��c

The straightforward numerical di�erentiation is far from justi�able in problems formulated in highly
heterogeneous medium with complex geometry On the other hand� the mixed �nite element method
o�ers an attractive alternative� as we already observed in Chapter � Besides that� e�cient iterative
methods for solving the corresponding discrete systems are developed in Chapter � Because of all this�
a mixed discretization of the pressure equations 	��a
�	��b
 can be applied

��� Fractional �ow models with special features

We touched on some of the di�culties related to the boundary conditions of the fractional �ow model
in Section ��� In this section we shall consider in some detail the issues about setting up realistic
boundary conditions for this model and ways to incorporate wells into it

����� Boundary conditions

The di�culties coming from the boundary conditions for the fractional �ow model arise from the fact that
the separate phase equations 	��
 come with an independent set of boundary conditions In addition�
the independent variables in 	��
 are the total pressure p and the total �ux u� neither of which is a
physical quantity but rather an abstract mathematical variable Consequently� in most applications
measuring values for these variables is virtually impossible Thus� the most practical way for setting up
boundary conditions for this model is to derive them from the separate phase boundary conditions

Let us denote by ��i��� i � �� �� the nonoverlapping regions on which Dirichlet and Robin boundary
conditions are assigned for phase � correspondingly Here we assume that the pure Neumann conditions
are a special case of Robin conditions Clearly� there are four possibilities such that di�erent types of
conditions are assigned for the phases over a particular region Some of these combinations represent
important cases used to model interesting physical phenomena An example is ponding of water on the
surface of the ground 	cf ����
 With a heavy rain or �ooding� if the in�ltration of water in the soil occurs
at a limited rate� a layer of water builds upon the surface of the ground This is shown in Fig �� 	a
 To
model this situation� one observes that because of the water layer� no air can escape from the ground and
so ua � � � � On the other hand� since the thickness of the water layer d is known� the water pressure
at the surface of the ground can be computed by pw � �wgd Thus� we get a combination of di�erent
types of boundary conditions for the phases Similarly� when the water layer becomes thin enough due
to dry weather conditions� the air trapped underground� which is at a higher pressure� breaks through
the water �lm 	see Fig �� 	b

 At this particular instance the air pressure on the surface is equal to
atmospheric� ie pa � patmos Also� the water �lm is very thin� so we can set the water �ux in�ltrating
the ground to the in�ltration rate for the speci�c soil type Therefore� the condition uw � � � G� with
G given� can be used here Again� we obtain a combination of di�erent boundary conditions for the
phases
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Attempts to derive boundary conditions for the total variables for all possible combinations of con�
ditions lead to strongly coupled and nonlinear types of boundary conditions that involve the total �ux�
total pressure� the saturation of water and its gradient on the boundary �� In addition� we already
mentioned that only Dirichlet conditions for the saturation equation have well de�ned physical meaning

In order to overcome these di�culties we have devised an alternative approach The key observation
here is that if Dirichlet boundary conditions are speci�ed for both phases on a given subregion of ���
then we can formulate Dirichlet boundary conditions for the total pressure p and for the saturation of
water Sw Indeed� given pa and pw� we get pc � pa�pw Given pc� we compute hc and in turn Sw� since
the relation hc � hc	Sw
 is one�to�one in the interval ��� �� 	cf Fig ��
 Then� the total pressure p in
	���
 is computable Therefore� we obtain Dirichlet data for p and Sw

This reasoning is used to devise an iterative scheme for imposing all possible combinations of boundary
conditions Suppose that we want to model the ponding condition� ie ua � � and pw are given Let
p�a be an initial guess for the air pressure Using the above scheme� we setup p� and S�

w Using these
Dirichlet conditions� the model is solved to get u� and p� Next� we compute u�a � � by 	���b
 From
here� a correction %p�a � � � 	ua � u�a
 and the next iterate p�a � p�a ! �%p�a are computed� where � is
an appropriately chosen iteration parameter The convergence properties of such an iterative scheme
for imposing boundary conditions are very good in the case of mixed discretizations of model elliptic
or parabolic problems 	cf ����
 It turns out that the iteration matrix for this iteration is symmetric
and positive de�nite and thus� the preconditioned conjugate gradient can be used to accelerate the
convergence The corresponding result for the fractional �ow model 	��
 has not yet been established
analytically but preliminary experiments suggest that the above procedure is reliable Moreover� it is
based on the right physical background and results in physical Dirichlet conditions for the saturation
equation In fact� using this iterative scheme for the boundary conditions makes the equation 	��c

invisible for the setup of the model in terms of the boundary data and simpli�es considerably the
implementation of the model

����� Wells

Another important aspect of the fractional �ow model is the adoption of adequate well models The
wells often play an essential role in determining the groundwater �ow and for this reason their nature
as generators of certain types of �ow behavior must be understood very well A widespread consensus
is that the most common type of extraction+injection well used in �eld applications is one consisting
of a screened subsurface region from which �uid is being extracted or injected at a known pump rate
Since the inside of the screened region does not contain porous media� the �ow there is determined by
the Navier�Stokes equations A good formulation of the �ow model requires coupling Navier�Stokes �ow
to the Darcy �ow outside However� such a coupling is a very challenging mathematical problem and
for this reason various simpler models have been proposed Perhaps the simplest way of simulating a
partially 	or fully
 penetrating well is to treat the well surface *well as an additional boundary where
the prescribed pumping rate is distributed in some fashion One problem� though� is that in general the
correct �ux distribution is not known If the �ux is assumed to be distributed uniformly� then one can
consider this to be a �constant �ux well model Alternatively� the �ux can be distributed linearly with
respect to the depth z Another popular assumption is that the hydraulic pressure head along the well
is constant but unknown This is often referred to as a �constant head well model Mathematically�
these models can be given byZ

�well

u � � � q	t
� and p� �gz � Const	t
�	���


where t � �� z is the vertical spatial direction pointing downward� � is the outward normal vector to the
well surface� g is the acceleration constant due to gravity� q	t
 is the pumping rate� and Const	t
 is the
unknown pressure value that may change in time The constant head model results in variable extraction
rates on the well surface We note that the use of the global pressure and �ux are fully justi�able in this
case since the �ux through the well is actually the total �ux In addition� near or inside the well bore�
the pressures of both phases are practically the same
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In practice� such well models can be implemented within a mixed �nite element discretization by
choosing a column of grid cells to constitute the well This� however� may result in �wells of enormous
diameter if the grid is not �ne enough Another di�culty is that the wells generate important �ow
behavior which must be resolved very accurately Thus� the techniques for local re�nement� which we
considered in Section ��� are crucial for the implementation of accurate well models Typically� the grid
and the time�step are re�ned around each well location to provide high accuracy and e�ciency of the
numerical approximation

There are other well models that are based on analytical solutions of simple one dimensional steady
state �ow problems 	cf ����
 However� the assumptions needed to justify such models do not hold even
in simple multidimensional simulations Because of this� we shall not consider such approaches

��� A multiphase �ow simulator

In this section we discuss brie�y the development of a large scale numerical simulator of multiphase
�uid �ow in porous media The author of this dissertation was one of the main code developers of the
Partnership in Computational Sciences 	PICS
 where he worked on the �ow module 	cf ����
 PICS
is an initiative sponsored by the US Department of Energy The goal of this project is to develop a
state�of�the�art computer simulator of groundwater �ow and contaminant transport 	GCT


GCT simulates the �ow and reactive transport of subsurface �uids through a heterogeneous porous
medium of irregular geometry This simulator is designed to run on a massively parallel� distributed
memory computers as well as on conventional serial machines The �ow module is a major part of the
PICS code development e�ort The �ow module evolved from a model based on the Richards equation
	��
 to a model that solves the two�phase equations 	��
 A Galerkin discretization is used for the
earlier versions of GCT A mixed discretization is used for the pressure equations of the two�phase
model whereas the saturation equation is discretized by an upstream weighted Galerkin method A
detailed description of this code can be found in ����

The approach taken in de�ning the triangulation of the computational domain is based on �rst
introducing an underlying logically rectangular grid Such grids o�er perhaps the most economical
way to maintain a simple data structure and to build �nite element approximations with a minimal
number of unknowns It essentially simpli�es many coding issues and yet allows complex geometries
to be handled In fact� the computational grid can be as complex as any reasonable union of logically
rectangular structures including toroidal or L�shaped domains

The logically rectangular grid is used for the Galerkin �nite element method To de�ne the mixed
method� each grid cell is further split into �ve tetrahedra When the lowest order Raviart�Thomas
spaces are used� one pressure and four velocity unknowns are attached to every tetrahedron in the grid
It is clear that the numerical solution of such models requires extensive memory and CPU resources
Only supercomputers appear to be capable of solving these numerical model in reasonable time The
distributed memory architectures such as Intel�s Paragon are quite convenient in view of the domain
decomposition approaches to the solution of the discrete problems

A domain decomposition approach is used in order to utilize these machines The original computa�
tional domain is decomposed into a set of logically rectangular structures each of which is attached to a
single processor Then a corresponding parallel algorithm for solving the problem is applied

The system for remote procedure calls� developed at the Brookhaven National Laboratory 	cf ����
�
has been used for the parallelization of the �ow code This system allows the development of parallel
codes in a style that is very close to the common serial style of writing numerical codes� and for this
reason considerably reduces the complexity of the software for distributed architectures In addition�
the resulting software is less dependent on the vendor supplied primitives for parallel processing� which
is important for portability Another interesting feature of this system is that it combines the exchange
of data with a speci�cation of a method for processing it on the remote processor This leads to a more
enhanced software environment for developing parallel programs

We conclude this chapter with computational results from a simulation of a groundwater �ow and
contaminant transport problem The geological data for the simulation was provided by Michael Celia
	Princeton
 The purpose of this simulation is to study the contamination process of a large site polluted
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by a very dense contaminant penetrating into the aquifer The chemical waste is dumped into an open
�eld storage pit on the surface of the aquifer The horizontal dimensions of the site are ���� by ���� feet
The maximum depth is approximately �� feet The simulated site has a relatively homogeneous soil type
	clay
 Its bottom is an impermeable bedrock with complicated geometry as is indicated in Fig �� The
bedrock elevations are provided through �eld measurements There is an underground water �ow that
determines to a great extent the contaminant movement In the simulation it is setup by appropriate
boundary conditions The pressure distribution near the surface is shown in Fig �� It indicates �ow
which is diagonally oriented with respect to the domain The contaminant can be dissolved in water at
normal 	for the rain
 temperature Thus� the rain water dissolves the pollutant and results in a very
dense liquid which moves through the unsaturated zone to the saturated zone of an almost homogeneous
porous medium There are no wells in this simulation and the processes occur close to the surface of the
ground Therefore� the unsaturated+saturated �ow is adequately described by the Richards equation
	��
 The site is discretized by a large grid with ���������� grid nodes

There are only natural forces involved in the simulation� groundwater �ow� gravity� di�usion Because
of this� the processes develop very slowly in time The simulation spans a period of �� years discretized
by an implicit time�stepping with each time step equal to � days Also� the contaminant is very dense

which makes the term �w
��w
�c

�c

�t
in Richards equation 	��
 act as a strong forcing term in addition to

the existing gravity forces The interaction between these natural forces is very important in determining
the spreading of the contamination The e�ects of the interaction between the groundwater �ow and
the di�usion on the shape and main direction of movement of contaminant iso�surfaces are clearly seen
in Fig �� and Fig �� The water �ow is the predominant factor here� which is re�ected by the shape
of the ��� iso�surface

Since the contaminant is dense� in the presence of gravity and relatively small di�usion and advection�
it moves predominantly downwards This is very similar to a situation when honey is poured into a glass
of cold water The honey moves straight down until it reaches the bottom and then spreads around in
the bottom area Such a behavior is observed in Fig ��� where a vertical slice along the Y�axis is shown
The slice is located exactly at the end of the source area High concentrations are observed near the top
and the bottom In the middle� relatively low concentration levels are observed due to the �pushing 
e�ect of the groundwater �ow The pro�le of the contaminant spreading near the bottom is very clearly
seen in Fig �� The geometry of the impermeable bedrock plays an interesting role in determining the
direction of contaminant movement The balance between the gravity� the di�usion� and the advection
combined with the geometry of the bottom shows that contaminant movement in a direction opposite
to the main �ow direction is possible Such e�ects are indicated in Fig �� near the bottom where a
contaminant movement in the direction towards the corner of the domain can be seen We observe high
concentrations there even though the advection �pushes the pollutant in the opposite direction The
simulation is essential in understanding why the contaminant �owed upstream but �down the bedrock
slope Similar results are observed in Fig �� and Fig �� where slices along the X�axis near both
ends of the source region are shown The movement of contaminant near the bottom follows closely the
geometry of the bedrock This is seen particularly well in Fig ��

The computational results fully agree with the underlying physical principles and are in a good
agreement with experimental results obtained by measuring concentrations in real sites with similar
conditions
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Figure ��� Capillary pressure and relative permeability as functions of
saturation for the experimental data of Touma and Vauclin
����
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Figure ��� Ponding

Figure ��� ��D simulation� Initial condition of iso�surface ���
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Figure ��� ��D simulation� Pressure distribution near the surface

Figure ��� ��D simulation� Iso�surface ��� after � years
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Figure ��� ��D simulation� Iso�surface ��� after �� years

Figure ��� ��D simulation� Vertical slice along the Y axis
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Figure ��� ��D simulation� Vertical slice along the X axis 	small X


Figure ��� ��D simulation� Vertical slice along the X axis 	large X
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Chapter �

Conclusions

The theory developed in this dissertation combined with the considered applications represent an ad�
vanced methodology for discretization and e�cient solution of di�cult real�life problems Progress is
made in several directions� both theoretical and computational

In addition to the existing standard �nite element discretizations� the new discretization techniques
from Section �� which utilize re�nement in time and space are very useful in groundwater �ow applica�
tions for they allow the interesting local �ow behavior to be resolved very accurately The analysis of the
backward Euler schemes is sharp and the theoretical results are supported by numerical experiments
These results are better than similar results available in the literature which exhibit either stability
or accuracy de�ciencies The numerical experiments reported in Section ��� suggest that this local
time�stepping technique can be extended successfully to Crank�Nicholson type schemes A di�erent
approach to the analysis of such schemes needs to be developed Even though the author is aware of
recent progress in this direction from a private communication with Joseph Pasciak� the question of ob�
taining error estimates in the natural norms for parabolic problems is still open Another challenge that
has to be addressed in the near future is the e�cient implementation of the re�nement algorithms� in
particular on distributed parallel computers The implicit time stepping combined with local re�nement
in time and space typically results in enormous computational problems� which can be solved e�ciently
only if adequate data structure and algorithms for manipulating it are constructed The development
of such computational technology would allow adaptivity of the re�nement and would result in far more
e�ective numerical approximations In view of the targeted three dimensional �ow applications� this is
very important

In Chapter � we saw that a large class of �nite element discretizations lead to� or can be reduced to�
symmetric and positive de�nite problems We also observed that the development of e�cient precondi�
tioners applied to the iterative solution of such problems is the key for e�ciency The nonoverlapping
domain decomposition preconditioners developed in Section �� are very e�ective and versatile These
algorithms require minimal computational resources and exhibit attractive preconditioning e�ects� in�
dependent of jumps of the operator coe�cients across the subdomain boundaries Even though these
preconditioners are not uniform� they are e�cient and very practical for implementation For these rea�
sons they are quite useful for problems that typically arise in reservoir simulations To further improve
the theoretical bounds for the asymptotic rate of growth of the condition number� the possibility of
incorporating Chebychev iteration for calculating better boundary extensions should be explored

The inexact Uzawa algorithms considered in Section �� are simple but e�cient methods for solving
saddle point problems The abstract approaches to the analysis taken in Section ��� and Section ���
result in a general theory that can be applied to a variety of saddle point problems The new result
established for the linear inexact algorithm 	cf Theorem ��
 relies on minimal assumptions and is
very strong The su�cient condition for convergence of the nonlinear algorithm 	cf Theorem ��
 relies
on the assumption that the approximation to A�� is accurate enough Both results are a signi�cant
improvement of the existing theory available in the literature 	cf Remark �� and Remark ���
 The
computational results reported in Section ��� suggest that the requirement for accuracy in the nonlinear
algorithm is not a necessary condition and that a further improvement of the result of Theorem �� is

��
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possible The generality of the theory developed in Section �� is not limited to the saddle point problems
considered in this dissertation In fact� a preliminary research shows that it is possible to extend the
technique for analyzing the inexact Uzawa algorithms for the abstract problem 	���
 to the analysis of
such algorithms applied to more complex saddle point systems where the operator A is nonsymmetric
and inde�nite Such problems arise� for example� from linearizations and discretizations of Navier�Stokes
equations

We have demonstrated that the new discretization and iterative algorithms developed in this disser�
tation can be applied successfully to the solution of groundwater �ow problems The Richards equation
	cf Section ���
 provides a very good implicit two�phase �ow model for a wide class of environmental
problems The fractional �ow model avoids the di�culties associated with the separate pressure two�
phase model and results in a well behaved mathematical problem which is more suitable for numerical
solution The mixed �nite element discretization is favorable for such applications because of the local
mass conservation and accurate velocities this method provides The Lagrange multiplier reformulation
of the mixed system 	cf Section ���
 and the nonoverlapping domain decomposition preconditioners
are essential for improving the e�ciency of the iterative solution Alternatively� the inexact Uzawa
algorithms can be used for solving the mixed saddle point system

In many reservoir or remediation process simulations� wells play an important role in forcing the �ow
of �uids underground In such cases it is essential to calculate the �ow near wells very accurately The
local re�nement techniques developed in this dissertation are specially designed for that purpose The
boundary conditions are another important element of any �ow model Many interesting phenomena
can be modeled by de�ning appropriate boundary conditions for the model The iterative method
for imposing boundary conditions on the fractional �ow model� considered in Section ���� has many
advantages It is based on the physical boundary conditions of the separate phases and allows a variety
of di�erent cases to be handled in a uniform way This method is guaranteed to work well in the case
of model problems� even though such analysis is not included in the dissertation Additional theoretical
investigation of this approach is needed in the case of the fractional �ow model

A sophisticated �ow simulator is built and the results from the computer simulation reported in
Chapter � are very good In order to further develop this simulator� research in several directions should
be continued A comprehensive study of the nonlinearities in the fractional �ow model is needed in order
to better understand the mathematical properties of these equations and improve the iterative methods
for resolving them This will make the computer simulation more e�cient and robust The coupling
of the iteration for resolving the nonlinearities coming from the operator coe�cients with the iteration
for the boundary conditions should be investigated in detail More advanced well models are needed as
well as methods for discretization and iterative solution of the corresponding systems of equations The
possibilities of coupling the Navier�Stokes �ow in the well bore with the Darcy �ow outside should be
investigated both theoretically and computationally Finally� an extension of the two�phase fractional
�ow model to a three�phase total pressure �ow model needs to be developed This would allow the
modeling of even more complicated practical problems
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