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ABSTRACT

Mathematical models of many physical processes are desribed with elliptic boundary value

problems� An interesting and still not well understood is the class of nonsymmetric problems�

Important examples are steady
state convection dominated �ows and Navier�Stakes �ows

with small viscosity� Our goal in this dissertation is to construct and study stable numerical

approximations of some nonsymmetric boundary value problems that preserve the important

characteristics of the continuous problem such as local mass conservation and monotonicity�

The standard �nite element and �nite di
erence methods for convection
dominated prob


lems are stable only for su�ciently small mesh sizes� On Voronoi and curcumscribed cell


centered �nite volume meshes we develop three upwind �nite di
erence schemes� upwind�

modi�ed upwind and Il�in�s� All of the considered schemes are locally mass conservative�

unconditionally stable� and satisfy the discrete maximum principle� We show that the up


wind scheme has �rst order of accuracy� All the other schemes are second order accurate in

the discrete H��norm� We also provide L��error estimates utilizing a discrete variant of the

Aubin�Nitsche trick�

We derive and study two upwind cell
centered �nite di
erence schemes on locally patch

re�ned meshes� Special attention is paid on the accurate interpolation of the interface between

the coarse and �ne regions It is shown that the reduction of their accuracy due to interface

interpolation is only half an order�

The �nite volume element method is another conservative discretization technique for

elliptic partial di
erential equations� We develop a theory for both di
usion dominated and

convection dominated problems on �
D tetrahedral meshes�

Upwind approximations are applied for the discretization of the saturation equation in

the total velocity model of two
phase �ow in porous media� The linearization strategy is

proposed and tested for some model problems�
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CHAPTER I

INTRODUCTION

A very general� and as the history of science shows� successful way to study natural phe


nomena is through describing them as models with certain structures that re�ect only some

of the properties of the originals� With a slight abuse of the language we call these models

�physical�� Many physical models are written as partial di
erential equations with some

added conditions�initial and�or boundary value problems� The next step is to investigate the

qualitative behavior of the mathematical models�existence and uniqueness of the solution�

smoothness and so on� Frequently� for further understanding of the properties of a given

model� detailed quantitative information for the solution is necessary� In order to obtain this

information the continuous problem is approximated with a simpler one� usually a discrete

model� the properties of the discrete model are studied and the discrete problem is solved�

Usually computations are performed on a particular computer� and therefore computer algo


rithms that utilize the potential of this computer�s architecture must be developed� In order

to draw conclusions scientists process the solution� for example� visualize some of its features�

The results are compared with the natural phenomenon� and if they are not satisfactory the

process is properly modi�ed and repeated�

In this chain of mutually connected objects we distinguish the physical model� the contin


uous mathematical model� the discrete mathematical model� the computational model and

the interpretation block�

In this dissertation we understand scienti�c computing �sometimes called computer sim�

ulation	 as the part of the chain that begins with the physical model and �nishes with the

interpretation of the discrete solution� Scienti�c computing necessarily includes branches of

the sciences that investigate the natural phenomenon� such as physics� geology� etc�� parts of

mathematics that study continuous and discrete models� and certain disciplines of computer

science that are concerned with the development of computer algorithms and the interpre


tation of the solution� Frequently the physical model and the corresponding mathematical

models are very complicated and the most realistic way to investigate them is through per


forming physical and numerical experiments� It is a tendency in natural science to reduce the

number physical experiments by using numerical computations which are cheaper and much

more easily performed on di
erent sets of data� It is commonly accepted that the numerical

experiments have to be considered as new tools that help extract the most from physical

experiments� but not replace them�

We understand numerical analysis as the part of mathematics that constructs and studies

discrete models of given continuous problems� investigates their properties� in particular how

�close� the discrete models are to the continuous� and develops methods for solving the

discrete models�

This dissertation is devoted to the study of some problems in numerical analysis and the

numerical investigation of one class of very complicated practical problems� Thus the subject

of this thesis is scienti�c computing�

We construct �nite volume methods for a class of nonsymmetric problems and study both

theoretically and computationally their properties� These problems describe physical pro


cesses that show both di
usion and transportation e
ects and therefore exhibit features of

elliptic and hyperbolic problems� It is essential for the understanding of the mathematical

problem to recognize that the transition from an elliptic to a hyperbolic problem is singular�

causing the solution of the problem to change rapidly in a very small subdomain� This local


ized behavior of the solution makes the construction of good numerical methods a challenging

problem�
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Some examples of such processes are heat or contaminant transport problems with small

di
usion e
ects� Other examples are Navier
Stokes equations with high Reynolds numbers�

In these problems the analysis of the convection
di
usion equation is essential� Heat and

contaminant transport are described by the equation itself� Navier�Stokes equations are

frequently reduced to a coupled system of convection�di
usion and elliptic problems� The

nonlinear convection term is treated via iteratively solving a linear nonsymmetric problem

����� ����

Groundwater is one of the most important sources of drinking� irrigation and industrial

process water� However� groundwater supplies are threatened by organic� inorganic and

radioactive contaminants introduced by improper disposal or accidental release� Therefore�

protection of the quality of groundwater supplies and their remediation is a problem with

both economical and social signi�cance�

Remediation methods are usually very expensive� Such strategies as pump
and
treat and

in
situ vitri�cation require accurate knowledge of the location and extent of the contaminant

plum� It is prohibitively expensive to monitor the contamination through physical obser


vation� Another alternative is computer simulation of groundwater contaminant transport�

As we have already discussed� physical and mathematical models of the underground pro


cesses have to be formulated and studied and e�cient numerical methods for their solution

developed�

Groundwater contamination problems typically involve a broad and complex range of

physical� chemical� geochemical� nuclear� and biological processes� Still there is no available

rigorous theory �physical model	 that explains the behavior of such interconnected phenom


ena� Thus� scienti�c computing is an indispensable tool for studying such problems� and even

de�ning good physical models�

Many physical models in the engineering practice have a natural mathematical formulation

as variational principles� and therefore discrete models based on di
erent formulations of the

�nite element method will perform very well� In groundwater �uid �ow theory mathematical

models are derived from the conservation of mass and the application of Darcy�s law to each

phase� It is desirable that the discrete model inherits the conservation of mass in both a local

and global sense� i�e�� the discrete model has local conservation of mass� Cell�centered �nite

di
erence schemes have local conservation properties and therefore are some of the most used

methods in reservoir simulations ���� Mixed �nite element methods on regular meshes also

perform very well for such problems�

The convection
di
usion problems we study in this thesis are coercive and satisfy the

maximum principle� The maximum principle guarantees that the mathematical model pro


duces physically meaningful solutions� The solvability of the continuous problem follows from

the coercivity� Many numerical methods that do not satisfy the discrete maximum principle

exhibit non
physical oscillations� Thus� we would like to derive methods that satisfy the

discrete maximum principle and produce positive de�nite matrices�

For groundwater applications it is very common that the coe�cients of the equations

are discontinuous� Cell�centered �nite di
erence schemes and related mixed �nite element

methods treat discontinuities in a very successful way� using harmonicly averaged coe�cients

when the mesh lines are aligned with the discontinuities� Therefore� another requirement for

any successful method is that it works for distorted or even arbitrary meshes�

We summarize the desirable properties of numerical methods for nonsymmetric problems

in the following list�

�i	 stability�

�ii	 �good� approximation�

�iii	 local conservation�



�

�iv	 satisfy the discrete maximum principle�

�v	 produce positive de�nite matrices�

�vi	 work for general domains and arbitrary grids�

In this dissertation we are interested in constructing cell�centered �nite volume di
erence

methods and vertex�centered �nite volume element methods for model

convection�di
usion problems that have the properties �i	� �vi	�

First we consider cell�centered �nite volume methods� There are many results for cell�

centered �nite di
erence approximations of symmetric problems ������ ��� ���� ���� ����	�

For nonsymmetric problems Samarskii ����� has shown convergence in maximum norm for

nonsymmetric problems with solutions from C���	� Spalding ����� and Runchal ����� have

proposed upwind cell�centered methods on uniform meshes� but have not proved stability and

error estimates� Herbin ���� has considered cell�centered �nite di
erence schemes on special

triangular meshes and has shown �rst order convergence in the discrete L��norm� There

are many publications in the engineering and mathematical literature concerning various

upwind methods� but we are not aware of works that contain rigorous theory for the schemes

that satisfy the properties we have listed above� In fact� Kershaw ���� has shown that it is

impossible to derive �nite di
erence schemes that are second
order accurate and satisfy �iv	

and �v	 on arbitrary quadrilateral meshes� In order to overcome this di�culty we impose

some restriction on the meshes� We consider two general classes of meshes � Voronoi and

circumscribed grids that can be introduced in general domains� If the grid lines have to be

aligned with a given coarse grid triangulation we use constrained Voronoi meshes�

Thus� the �rst objective of this thesis is to provide a theoretical framework for con


struction and study of conservative� H��coercive� monotone� and accurate approximations of

convection�di
usion problems on Voronoi and circumscribed grids� Special emphasis is put

on developing stability analysis and error estimates for problems with generalized solution

from the Sobolev spaces Hs� �
� � s � ��

For Voronoi and circumscribed meshes we construct and study three cell�centered �


nite di
erence schemes� upwind �nite di
erence scheme �UDS	� modi�ed upwind di
erence

scheme �MUDS	� and Il�in�s di
erence scheme �IDS	� and show that they satisfy �i	� �iii	�

�iv	 and �v	� We also prove that MUDS and IDS have second
order of convergence in

discrete H� and L��norms and UDS is only �rst
order accurate� We point out that even

for the Laplace equation results for such general meshes are not available in the literature�

Our theory also covers the case of symmetric operators� To handle tensor coe�cients we

propose a generalization of the cell�centered �nite di
erence scheme� We also extend the re


sults of Ewing� Lazarov and Vassilevski ���� for grids with local re�nement to nonsymmetric

problems�

The second objective in this dissertation is to construct and study vertex
centered �nite

volume element methods for convection
di
usion problems� We note that although cell


centered and vertex
centered grids are dual� the stability and convergence of vertex
centered

�nite volume methods do not follow from the theory for cell
centered �nite volume meth


ods� The theory of �nite volume element methods for �
D symmetric problems has been

developed by Bank and Rose ����� Hackbusch ����� Cai and McCormick ���� ��� ���� and

Jianguo and Shitong ����� The only available result for ��D nonsymmetric problems is due

to Hackbusch ����� He has considered di
usion
dominated problems with convection terms

in non
divergence form� We generalize the results for ��D symmetric problems of Cai and

McCormick ���� ��� and Jianguo and Shitong ���� to ��D���D	 nonsymmetric equations with

convection terms in divergence form� We prove the stability and error estimates for both

di
usion and convection dominated cases�
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The third objective of this thesis is to develop stable numerical methods for the saturation

equation in the global pressure�total velocity formulation of the mathematical model for two


phase �uid �ow in porous media� This is a part of the Partnership in Computational Science

Consortium �PICS	 project in Groundwater Contaminant Transport �GCT	 directed by Dr�

Richard E� Ewing� First� following of Espedal and Ewing results ���� we develop linearization

for the saturation equation which is based on a physically meaningful approximation� Then

for the linear equation� we propose two di
erent �nite element discretizations and implement

them in the PICS GCT ��� code� Numerical experiments are presented�

This dissertation is organized as follows� In Chapter II we consider elliptic boundary

value problems� The contemporary theory of partial di
erential equations investigates their

weak �or generalized	 solutions in particular Hilbert spaces that are named after a prominent

Soviet mathematician� Sobolev� In Section ��� we introduce the necessary notation and state

the Sobolev imbedding theorem and the related trace theorem� These results are used as

tools in analyzing the proposed numerical methods� Section ����� contains several theorems

that estimate linear and bilinear functionals in Sobolev spaces� These results are usually

related to the �rst such theorem due to Bramble and Hilbert �����

Section ����� collects necessary results for abstract variational problems� In Section �����

we apply these theorems in order to establish the existence and uniqueness results for the

nonsymmetric boundary value problems of interest�

In Section ��� we discuss the most important properties of the solution of elliptic boundary

value problems� We pay special attention to the maximum principle and the conservation

properties� In the next chapters we will construct numerical methods that satisfy the discrete

analogs of such properties�

Chapter III is devoted to the general de�nition and discussion of properties of several

�nite volume methods� To de�ne a particular �nite volume method we have to specify two

things� the control volumes and the grids associated with them� and the approximation of the

�uxes� On the basis of these distinctive features we provide a classi�cation of �nite volume

methods and an extensive discussion of the literature on this subject �see references	� In

Section ��� we introduce two grids� primary and secondary� and consider the control volumes

that can be de�ned on such grids� Voronoi meshes and their dual Delaunay triangulations are

interesting examples � We de�ne various discrete inner products and norms and show that

they are equivalent under certain conditions� These discrete norms will be used to estimate

the error of approximation of numerical methods in Chapters IV� V and VI�

In Section ��� we de�ne the discrete maximum principle and discuss the related notions

of monotone and M�matrices� The necessary assertions that connect these terms are stated�

Next we consider the discrete conservation property and the conditions under which every

�nite volume method is discretely conservative�

Section ��� contains several cell�centered �nite volumemethods� The basic �nite di
erence

scheme for problems with a scalar di
usion coe�cient is derived in Section ������� and possible

extensions for tensor coe�cients are outlined in Section �������� The relations of cell�centered

�nite di
erence schemes with mixed �nite element methods are discussed in Section ������ In

Section ��� we introduce vertex�centered �nite volume element methods�

In Chapter IV all basic types of approximation methods for strongly nonsymmetric prob


lems are discussed and compared with respect to the conditions �i	� �vi	� In Section ��� we

state the necessary conditions that �nite volume meshes have to ful�ll �FV regular triangu


lations	� This condition is a natural extension of the regularity condition for �nite element

meshes ����	 to more general �nite volume grids� We also state the geometrical conditions�

collected in the so called �symmetry assumption�� that are su�cient for the higher conver


gence rate of properly designed �nite volume methods�

In Section ��� we consider four �nite di
erence schemes� central di
erence scheme �CDS	�
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upwind �nite di
erence scheme �UDS	� modi�ed upwind di
erence scheme �MUDS	� and

Il�in�s di
erence scheme �IDS	� It is known that CDS is not stable for a cell Peclet number

larger than �� We show that UDS�MUDS and IDS satisfy the discrete maximum principle�

produce M�matrices� and are unconditionally stable� In Section ��� we derive estimates for

the error of approximation in discrete H� and L� norms� Section ��� contains the results of

extensive numerical experiments performed with the UDS� MUDS and IDS schemes� Our

theory also provides error estimates for CDS when this scheme is stable�

Chapter V is devoted to the analysis of cell�centered �nite volume di
erence schemes with

local patch re�nement� In Section ��� we consider constant and linear interpolation along

the interface between re�ned and non
re�ned domains and derive the corresponding �nite

di
erence schemes� UDS and MUDS� on the composite grid� In Section ��� we prove that

these schemes are well de�ned and produce positive de�nite matrices� The error estimates

are provided in Section ��� and the numerical experiments are presented in Section ����

Finite volume element methods for nonsymmetric problems in ��D are considered in

Chapter VI� For di
usion
dominated methods we reformulate the FVE method as the Petrov�

Galerkin method and apply the general theory �check the inf�sup condition ����	� The di
u


sion and convection parts of the FVE method are compared with those of the FE method and

the estimates of the di
erence between them are derived� The inf�sup condition follows from

these estimates� For the convection
dominated case we propose the upwind FVE method and

with the tools developed in Chapter IV we show that this scheme is stable� We also prove

error estimates in the discrete H��norm�

In Chapter VII we brie�y discuss the conservation laws and the constitutive relations

that govern the two phase �uid �ow in porous media� We reformulate this model as a global

pressure�total velocity model and sketch the derivation of the coupled system of nonlinear

parabolic partial di
erential equations� We discuss two di
erent approaches to handle the

compressibility of the air�

Our main goal in this chapter is to develop numerical methods for the saturation equation�

We introduce a new macro
dispersion term in the saturation equation that can be considered

a result of the up
scaling and heterogeneity of the porous media� Because of this term the

saturation equation does not degenerate� The saturation equation is nonlinear and convection

dominated� and therefore the most important problems are related to handling the nonlinear


ity and producing stable approximation� We consider a linearization that takes into account

the two separate regimes exhibited by the modeled physical process and is also well suited for

sharp fronts� For the linear equation we propose two di
erent �nite element discretizations�

The �rst one is based on trilinear �nite elements with added arti�cial di
usion in order to

obtain a stable method� The numerical results show that this method produces smearing�

The second attempt is an upwind �nite element method on tetrahedral meshes� constructed

with the �nite volume approach developed in the previous chapters�

Finally� in Chapter VIII conclusions and possibilities for future research are provided�





CHAPTER II

ELLIPTIC BOUNDARY VALUE PROBLEMS

Mathematical models of many physical processes are described with elliptic boundary

value problems� Interesting and still not well understood is the class of nonsymmetric prob


lems� Important examples include steady state convection dominated �ows� certain classes

of heat convection problems and the Navier�Stokes �ows with small viscosity�

In this chapter we introduce the class of nonsymmetric boundary value problems we will

solve numerically in this dissertation� The necessary de�nitions and theorems from functional

analysis are collected in Section ���� The abstract variational problems are investigated in

Section ��� and the results are applied for elliptic problems� We �nish the chapter with a

short discussion of the properties of the elliptic problems of interest� in particular� maximum

principle and conservation properties�

��� Sobolev spaces

Many problems in the theory of partial di
erential equations are naturally formulated and

studied in certain functional spaces associated with the name of the Soviet mathematician

S� L� Sobolev because of his major contributions to their development in the late ����s �cf�

�����	� Below we state some of their basic properties�

����� Notation and basic properties

We use the term domain� and usually denote it by �� to refer to an open set in d�dimensional�

real Euclidean space Rd � A point in R
d is denoted by x � �x�� x�� � � � � xd	� its norm is

jxj �
�Pd

i�� x
�
i

����
and the inner product of x and y is �x� y	 �

Pd
i�� xiyi� If G � R

d � we

denote by  G the closure of G in Rd and by
�

G the interior of G in Rd � We reserve the symbol

�G for the boundary of G� i�e�� �G �  G � �RdnG��
If � � ���� ��� � � � � �d	 is an d�tuple of nonnegative integers �i� we call � a multi�index

and denote by D� the di
erential operator of order j�j

D� � D��
� � � �D�d

d �

where D�i
i � ��i��x�ii and j�j �Pd

i�� �i�

Let � be a domain in Rd � For any nonnegative integer m let Cm��	 be the vector space

consisting of all functions u�x	 which� together with all their partial derivatives D�u�x	 of

order j�j � m� are continuous on �� Clearly� C���	 � C��	� Let C���	 �
T�
m�� C

m��	�

The subspace C�� ��	 consists of all those functions in C���	 which have compact support

in �� We denote with C�c � �	 the restriction of C�� �Rd 	 to ��

We often use Lp��	 spaces de�ned as classes of all Lebesgue measurable functions u on

�� for which

Z
�

ju�x	jp dx �� � � � p �� �

ess sup
x��

ju�x	j �� � p �� �
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It is well known fact that Lp��	 � � � p � � are Banach spaces equipped with the norms

kukp�� �

�Z
�

ju�x	jp dx
���p

� � � p �� �

kuk��� � ess sup
x��

ju�x	j � p �� �

Moreover� L���	 is a Hilbert space with an inner product

�u� v	� �

Z
�

u�x	v�x	 dx � u� v � L���	 �

A function u� de�ned almost everywhere on �� is said to be locally integrable on �

�u � L�
loc��		 provided u � L����	 for every �� � � and  �� compact� Let u � L�

loc��	� We

say that v� � L�
loc��	 is a weak �or distributional	 partial derivative of u provided v� satis�esZ
�

u�x	D���x	 dx � ���	j�j
Z
�

v��x	��x	 dx �� � C�� ��	 �

We denote v� by D�u�

For any positive integer m and � � p �� Sobolev space Wm�p is de�ned by

Wm�p��	 � fu � Lp��	 � D�u � Lp��	� for � � j�j � mg �

The norm in Wm�p��	 is denoted k�km�p�� and de�ned by

kukm�p�� �

�
� X

��j�j�m

kD�ukpp��

�
A

��p

� � � p �� �

kukm���� � max
��j�j�m

kD�uk��� � p �� �

In the above de�nition D�u is the weak partial derivative of u� We also make frequent use

of the seminorms j�jk�p��� � � k � m� � � p ��

jujk�p�� �

�
� X
j�j�k

kD�ukpp��

�
A

��p

�

For the spaces Wm����	 we use the special notation Hm��	� An equivalent way to construct

Sobolev spaces Wm�p��	 is by completion of C���	 with respect to the norms k�km�p��� We

de�ne Wm�p
� ��	 as the closure of C�� ��	 in Wm�p��	�

For any integer m � � and any number � � � � � we denote with Cm��� �	 the space of

all functions in Cm� �	 whose m
th derivatives satisfy a H!older condition with exponent ��

i�e��

jD�v�x	�D�v�y	j � C�kx� yk� �
where j�j � m� Equipped with the norm

kvkCm���	�
 � kvkm���� " max
j�j�m

sup
x� y�	�
x��y

jD�v�x	�D�v�y	j
kx� yk� �

the space Cm��� �	 is a Banach space�

The following two results are well known�
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Theorem ��� Wm�p��	 �Wm�p
� ��		 is a Banach space for p� � � p � ��

Theorem ��� Hm��	 �Hm
� ���		 is a Hilbert space with an inner product

�u� v	m �
X

��j�j�m

�D�u�D�v	� �

We denote by W�m�p���	 the dual space of Wm�p
� ��	� where ��p " ��p� � �� The norm in

W�m�p���	 is de�ned by

kuk�m�p��� � sup
v�Wm�p

� ��

v ���

j �u� v	 j
kvkm�p��

�

Here we accepted the notation � u� v 	 to designate the value of the continuous linear

functional u � W�m�p���	 on the element v � Wm�p
� ��	� In future references we will call it

duality pairing for the corresponding spaces�

A standard way to introduce Sobolev spaces with real index s 	 � is by the so�called real

method of interpolation of Lions and Peetre ����� ����� We accept an alternative approach

�cf� ���� ������ ���� ����	 to de�ne W s�p��	 as a space of of all function u � W �s��p��	� s �

�s� " 
� �s� is the integral part of s and � � 
 � �� such thatZ
���

jD�u�x	�D�u�y	jp
jx� yjd��p dx dy ��

for j�j � �s�� The norm is de�ned in W s�p��	

kuks�p�� �

	

�kukp�s��p�� "

X
j�j��s�

Z
���

jD�u�x	�D�u�y	jp
jx� yjd��p dx dy

�

�

��p

�

For the spaces W s�p��	 we have the following density result�

Theorem ��� ������ Let � be a domain in R
d with a continuous boundary� Then C�c � �	

is dense in W s�p��	 for all s 	 ��

����� Sobolev imbedding theorems

The most useful properties of spaces W s�p��	� especially in studying di
erential operators

are their imbedding characteristics� The imbeddings of Sobolev spaces depend upon the

regularity properties of �� In many cases it is enough to characterize the boundary ��� The

next de�nition is su�cient for most of our subsequent purposes whenever some smoothness

of the boundary is required �cf� ����	�

De	nition ��� �Lipschitz
continuous boundary ����� We say that a domain � has a

Lipschitz�continuous boundary �� if the following conditions are ful�lled� there exist positive

constants � and �� and a �nite number of local coordinate systems and local maps ar� � �
r � R� which are Lipschitz�continuous on their respective domains of de�nitions f#xr � Rd�� �

j#xrj � �g� such that

�� �

R�
r��

f�xr�� #xr	� xr� � ar�#x
r	 � j#xrj � �g �

f�xr�� #xr	� ar�#xr	 � xr� � ar�#x
r	 " �� j#xrj � �g � � � � � r � R �

f�xr�� #xr	� ar�#xr	� � � xr� � ar�#x
r	� j#xrj � �g � �Rn�	 �

where #xr � �xr�� � � � � x
r
d	� and j#xrj � � stands for jxri j � �� � � i � d� ��



�� Elliptic Boundary Value Problems

If the functions ar are of class Cm in their domain of de�nition we say that �� is of class

Cm�

De	nition ��� �Continuous imbedding� We say that the normed space X is continu


ously imbedded in the norm space Y � and write X �	 Y to designate this imbedding� pro


vided that X is contained in Y with continuous injection� i�e�� there is a positive constant C

such that

kxkY � CkxkX �

We frequently use the following fundamental result�

Theorem ��� �Sobolev Imbedding theorem� Let � be a bounded domain with

Lipschitz�continuous boundary in Rd � Let s 	 � and � � p � d�

If d 	 sp then W s�p��	 �	 Lr��	 for p � r � dp��d� sp	� ����a	

If d � sp then W s�p��	 �	 Lr��	 for p � r ��� ����b	

If j � s� d�p � j " � for some nonnegative integer j

then W s�p��	 �	 Cj��� �	� where � � s� j � d ����c	

We recall that the elements in Sobolev spaces are equivalence classes� and therefore� the

relation ����c	 means that each equivalence class u inW s�p��	� s 	 d�p contains a continuous

member in the corresponding space� Therefore� u has well de�ned values on each subset of ��

We consider also values �traces	 of functions in Sobolev spaces in the following weak sense�

Let �k be a k�dimensional domain� � � k � d� �k � � and let � � W s�p 	 W j�q��k	

be a linear operator with the property that if limn�� ku� unkm�p�� � � � un � C�c � �	 then

limn�� k�u� unkj�q��k � � and

k�ukj�q��k � Kkuks�p��

with a constant K independent of u� Then �u � W j�q��k	 is called trace of u �W s�p��	� In

fact� � is an unique continuous extension of the mapping u��	 	 u��k	 de�ned for smooth

functions� In the following theorem we state the conditions when such mapping exists�

Theorem ��� �Trace theorem ���� Let � be a su�ciently regular domain in R
d and let

�k be the k�dimensional domain obtained by intersecting � with a k�dimensional plane in

R
d � � � k � d� Let s 	 �� � � p � q ��� and 
 � s� �d�p	 " �k�q	� If

�i	 
 � � and p � q� or

�ii	 
 	 � and 
 is not an integer� or

�iii	 
 	 � and � � p � ��

then �direct imbedding theorem�

W s�p��	 �	 W��q��k	 � ����a	

Imbedding ����a	 does not necessarily hold for p � q 	 � and 
 nonnegative integer�

Conversely� if p � q and if either

�iv	 
 � s� �d� k	�p 	 � and is not an integer� or

�v	 
 � � and p � ��
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then we have the reverse imbedding

W��q��k	 �	W s�p��	 ����b	

in the sense that each u �W��q��k	 is the trace on �k of a function w �W s�p��	 satisfying

kwks�p�� � Kkuk��p��k

with K independent of u�

Remark ��� Suppose that � is a su�ciently regular domain and the domain �� � � has

piecewise linear boundary� i�e�� each segment is of the type of �k described above� As a simple

corollary of the �trace theorem� we obtain that if W � �W�� � � � �Wd	 � �Hs��		
d
� s 	 ���

then �W�n	 � Hs��������	 � L�����	� where n is the outward normal unit vector to ����

If W � ru� then u has to be in the space Hs����	�

Another approach to work with vector functions is outlined below� The space Hdiv��	 is

de�ned via

Hdiv��	 � fv � �v�� � � � � vd	 � vi � L���	� div�v	 � L���	g
and is a Hilbert space with the norm

kvkHdiv��
 �
�kvk���� " kdiv�v	k����

����
�

The following theorem due to Thomas ����� answers the questions about the traces of func


tions from Hdiv��	�

Theorem ��� The mapping v	 �v�n	 de�ned a priori from
�
H���	

�d
into L����	 can be

extended to a continuous linear mapping from Hdiv��	 onto H
�������	� Further we have the

following characterization of the norm on H�������	�

k�k������� � inf
v�Hdiv��

�v�n
��

kvkHdiv��
 �

Therefore� instead of the integral
R
���v�n	 ds we can consider the duality pairing ��v�n	� �	

between the spaces H�������	 and H������	� In general� we prefer to work with functions

in L����	 and de�ne the Hilbert space

Hdiv��	 � fv � Hdiv��	 � �v�n	 � L����	g

with the norm

kvkHdiv��
 �
�
kvk�Hdiv��


" k�v�n	k�����
����

�

����� Bramble
Hilbert theorems

In our analysis of certain numerical methods we represent the error as a functional in some

Sobolev spaces and estimate that functional using the well known results from functional

analysis�

We denote with Pk��	 the space of all polynomials of degree � k in each variable� We say

that a linear form �functional	 f��	 � V 	 R is continuous if the following inequality holds for

every v � V
jf�v	j � kfkV�kvkV �
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where k�kV� is the norm in the dual space V � of V � Similarly� we say that a bilinear form

A��� �	 � U 
 V 	 R is continuous if there exists a constant C such that for every u � U and

v � V the following inequality holds

jA�u� v	j � CkukUkvkV �

The smallest constant C is the norm kAk of the bilinear form A in the space L��U 
 V �R	�

Theorem ��
 �Bramble
Hilbert lemma ����� Let � be a domain in Rd with

Lipschitz�continuous boundary�

�i	 For some integer k � � and some number p � ������ let f��	 be a continuous linear

form on the space W k���p��	�

�ii	 Let the linear form f��	 satisfy

�p � Pk��	 � f�p	 � � �

Then there is a constant C��	 such that

jf�v	j � C��	kfk	k���p��jvjk���p�� �

where k�k	k���p�� is the norm in the dual space of W k���p��	�

If the linear form f��	 vanishes only for polynomials of degree � k � � then the following

modi�cation of Theorem ��� holds �����

Theorem ��� �Modi	ed Bramble
Hilbert lemma� Let � be a domain in Rd with Lipschitz�

continuous boundary�

�i	 Let the assumption �i	 of Theorem 	�
 be ful�lled� with k � ��

�ii	 Let the linear form f��	 satisfy

�p � Pk����	 � f�p	 � � �

Then there is a constant C��	 such that

jf�v	j � C��	kfk	k���p�� �jvjk�p�� " jvjk���p��	 �

A similar result for bilinear forms is stated in the following theorem�

Theorem ��� �The bilinear lemma ����� Let � be a domain in R
d with Lipschitz con�

tinuous boundary� Let A��� �	 be a continuous bilinear form over the space W k���p��	 
W �

where the space W satis�es the inclusions

Pl��	 �W �W l���q��	�

and is equipped with the norm k�kl���q��� We assume that

�p � Pk��	 � �w �W � A�p� w	 � � �

�v � W k���p��	 � �q � Pl��	 � A�v� q	 � � �

Then there exists a constant C��	 such that

jA�u�w	j � C��	kAkjvjk���p��jwjl���q�� � �v �W k���p��	 � �w � W �

where kAk is the norm of the bilinear form A�� �	 in the space L��W
k���p��	
W �R	�
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��� Abstract variational problems

We consider several abstract variational problems that are closely connected with the non


symmetric boundary value problems we investigate in this thesis� We formulate the general

theorems for existence and uniqueness in Hilbert space framework and state the conditions

that spaces and bilinear form should satisfy� These results are applied to investigate solvabil


ity of particular partial di
erential equations�

Let U and V be two real Hilbert spaces with norms k�kU and k�kV respectively� and let

A � U 
 V 	 R be a bilinear form� We de�ne the following variational problem�

Find an element u � U such that

A�u� v	 � f�v	 � � v � V � ����	

We also consider generalized saddle point problems� Assume that Ui� Vi � i � �� � are real

Hilbert spaces and the following bilinear forms

A � U� 
 U� 	 R � B� � V� 
 U� 	 R � B� � V� 
 U� 	 R ����	

and the linear form f � U� 	 R are de�ned� Consider the problem�

Find a pair �u� v	 � U� 
 V� such that

A�u� u�	 " B��v� u�	 � f�v�	 �u� � U� ����a	

B��v�� u	 � � � v� � V� ����b	

In the following section we state a few theorems that answer the question whether the prob


lems ����	 and ����	 can be solved�

����� Existence and uniqueness theorems

First we consider the case when U � V � We say that a bilinear form A��� �	 � V 
 V 	 R is

V�elliptic �coercive	 if there exists a positive number � such that

�kuk�V � A�u� u	 �u � V �

Theorem ���� �Lax
Milgram lemma ����� Let V be a Hilbert space� let A��� �	 � V
V 	
R is a continuous V�elliptic bilinear form� and let f��	 � V 	 R be a continuous linear form�

Then the abstract variational problem ����	 has one and only one solution and the following

stability estimate holds�

kukV � �

�
kfkV� �

We also need the generalization of Lax�Milgram lemma due to Ne$cas ���� and modi�ed by

Babu$ska and Aziz �����

Theorem ���� Let U and V be two real Hilbert spaces with norms k�kU and k�kV � respec�
tively� Assume that there exist a positive constants � such that the continuous bilinear form

A � U 
 V 	 R satis�es

sup
v�V
v ���

jA�u� v	j
kvkV � �kukU �u � U � ����a	

sup
u�U

jA�u� v	j 	 � � v � V � v �� � � ����b	
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and assume that f��	 � V 	 R is a continuous linear form� Then the abstract variational

problem ����	 has one and only one solution and the following stability estimate holds�

kukU � �

�
kfkV� �

Remark ��� The most di�cult of the conditions ����	 is ����a	� This condition is frequently

represented in the following equivalent form�

inf
u�U
u���

sup
v�V
v ���

jA�u� v	j
kukUkvkV � � 	 �

and is called Ladyzhenskaya�Babu�ska�Brezzi or inf�sup condition� The general scheme to

check ����a	 is to construct a mapping T� � U 	 V and such that

jA�u� T�u	j � �kukUkT�ukV ����a	

with � 	 �� Similarly� we construct a mapping T� � V 	 U and such that

jA�T�u� u	j 	 � � ����b	

Clearly� conditions ����a	 and ����b	 imply the conditions ����a	 and ����b	�

Now we consider some applications of Theorem ���� to the generalized saddle point prob


lem ����	 due to Nicolaides ���� �see also ����	� Consider the problem ����	 with and additional

restriction

A�u� v	 � � � v � V � u � Z � ����	

where U � Z 
W and W � Z
� We call Z a null space of the bilinear form A�

Corollary ��� Let A � U 
 V 	 R be continuous bilinear form that satisfy the conditions

����	 for the spaces W and V and assume that f��	 � V 	 R is a continuous linear form�

Then the abstract variational problem ����	� ����	 has one and only one solution in W and

the following stability estimate holds�

kukU � �

�
kfkV� �

Theorem ���� ������ Assume that Ui� Vi � i � �� � are real Hilbert spaces and the continu�

ous bilinear forms A� B� and B� are de�ned in the corresponding spaces ����	� Let Zi be the
null spaces of Bi � i � �� �� Moreover� suppose that B� and B� satisfy the conditions ����	

for the spaces V�� U� and V�� U� with constants �� and ��� respectively� and A ful�lls the

conditions ����	 for the spaces Z� and Z� with a constant � and assume that f��	 � U� 	 R

is a continuous linear form� Then the abstract variational problem ����	 has one and only

one solution and the following stability estimate holds�

kukU� �
�

�
kfkU �� � kvkU� �

�
�" kAk
���

�
kfkU �� � ����	

����� Applications to elliptic boundary value problems

Let � � Rd be a bounded domain� We consider the operator of the form

Lu � div��A�x	ru�x	 " b�x	u�x		 �����	
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and the corresponding boundary value problem�

Find a function u�x	 which satis�es the following di
erential equation and boundary condi


tion�

Lu�x	 � f�x	 in � �����a	

u�x	 � � on �� �����b	

where a symmetric d 
 d matrix A�x	 � faij�x	gdi�j�� � aij�x	 � L���	� a vector b�x	 �

�b��x	� � � � � bd�x		 � bi�x	 � L���	� and right hand side f�x	 � H����	 are given functions

in �� We say that L is elliptic in � if A�x	 is positive de�nite for almost every x � �� and

uniformly elliptic in � if there exist positive constants C and M such that

C��j�j� � �A�x	�� �	 � Cj�j� � �����a	

jaij�x	j �M� jbi�x	j �M � i� j � �� � � � � d �����b	

for any � � Rd and for almost every x � ��

We note that less restrictive assumptions on the coe�cients aij � bi could be made �cf�

����	� In general� the problem �����	 has no classical solution u � C���	
T
C� �	 even for

bounded coe�cients� We introduce the bilinear form associated with the problem �����	

A�u� v	 �
Z
�

�A�x	ru�x	�rv�x		 dx�
Z
�

�b�x	�rv�x		u�x	 dx �����a	

and the linear form

f�v	 ��f�x	� v�x		 � �����b	

The problem �����	 can also be formulated in the following weak form�

Find u � H�
� ��	 such that

A�u� v	 � f�v	 for all v � H�
� ��	 � �����	

The solution u of �����	 is called weak �or generalized	 solution of �����	 in H�
� ��	��

In order to assure the global solvability of the problem �����	 we impose the following

assumptions�

Assumption ��� The operator L is uniformly elliptic�

Assumption ��� b�x	 � �
W �����	

�d
and div�b�x		 � � for almost every x � ��

We consider also a weaker version of Assumption ����

Assumption ��� Z
�

�b�rv	 dx � � � v � C���	 � v � � �

Here we apply results from the previous section to the problem �����	� Suppose that

Assumptions ��� and ��� are satis�ed� FromZ
�

�b�ru	u dx � �
Z
�

div�bu	u dx

� �
Z
�

div�b	u� dx�
Z
�

�b�ru	u dx
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we obtain Z
�

�b�ru	u dx � ��

�

Z
�

div�b	u� dx

and hence

A�u� u	 �
Z
�

�Aru�rv	 dx " �

�

Z
�

div�b	u� dx �����	

The Assumptions ��� and ��� guarantee that A�� �	 is H�
� ��	�elliptic� i�e��

Ckuk���� � A�u� u	 �

We also show that A�� �	 is continuous�

jA�u� v	j � kAk�����kuk���kvk��� " kbk�����kvk���kuk��� � Ckuk���kvk��� �

Clearly�

jf�v	j � kfk����kvk��� �
Therefore� from Lax
Milgram lemma follows that the problem �����	 has an unique solution

in H�
� ��	� The Lax�Milgram lemma also guarantees that the solution is stable with respect

to the right hand side� i�e��

kuk��� � C��kfk�����
We also prove that A��� �	 is H�

� ��	�coercive if Assumption ��� is replaced by Assumption

���� This follows from the equality

�
Z
�

�b�x	�ru�x		u�x	 dx � ��

�

Z
�

�b�x	�ru�	 dx

and the density of C�� ��	 in H�
� ��	�

Remark ��� We can relax the Assumption ��� in the following sense ������ Let C� be the

constant in the Poincar%e inequality

kvk��� � C�jvj��� � v � H�
� ��	 �

Then for the H�
� ��	�coercivity of A��� �	 it su�ces that

div�b	 � � � � �

CC�
� � �� �

where C is the constant in the condition �����a	 of the Assumption ����

We consistently use the notion of �ux q de�ned below� Then the equation �����a	 can be

written in the ��ux� form

q � �Aru" bu � �����a	

div�q	 � f � �����b	

We brie�y discuss the dual weak form of the problem �����	� First we rewrite �����	 in

the following form�

Kq"ru� �u � � �

div�q	 � f �
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where K � A�� and � � Kb� The dual weak form is obtain by testing the equation with

functions from the appropriate spaces and applying the Green�s formulas

Find the pair �q� u	 � Hdiv��	
 L���	 such that

�Kq�v	� � �div�v	� u	� � ��u�v	� � � �v � H�div� �	 � �����a	

�div�q	� w	� � �f� w	� �w � L���	 � �����b	

Clearly� the spaces here are U� � U� � H�div� �	 � V� � V� � L���	 and the bilinear forms

are A�q�v	 � �Kq�v	�� B��u�q	 � ��u� div�q		� � ��u�v	� and

B��q� w	 � �div�q	� w	��

The �nite volume weak formulation is de�ne as follows�

Find u � Hs��	 � H�
� ��	 � s 	 ��� such that for any volume V �  � with Lipschitz�

continuous boundary Z
�V

�q�n	 ds �

Z
V

f x � �����	

��� Properties of the solutions of elliptic problems

In this section we consider two properties of the solutions of elliptic problems� These charac


teristics of the solution are very important for the applications� In next chapter we construct

numerical methods that satisfy discrete versions of these properties�

����� Maximum principle

One of the most important properties of the elliptic problems is that they satisfy the maximum

principle under certain conditions� In order to state the maximum principle for the weak

solution of �����	 due to Stampacchia ����� we introduce some de�nitions�

De	nition ��� We call a function u�x	 � H���	 superelliptic �subelliptic	 if

A�u� v	 � � �� �	 � v � C�� ��	 � v � �

and elliptic if it is both superelliptic and subelliptic�

De	nition ��� We say that u � H���	 satis�es the inequality u � � on ��� if its negative

part u� � min�u� �	 � H�
� ��	�

Theorem ���� �Maximum principle ����� Let u�x	 � H���	 be a subelliptic function�

let Assumptions 	�� and 	�
 be satis�ed� Then if u�x	 � k on ���

ess inf
x��

u�x	 � min��� k	 �

Suppose the problem �����	 is a mathematical model of some physical process� for example

u�x	 can be a concentration of some substance� Then since the concentration on �� is greater

or equal to zero� so is the concentration inside �� This shows that our model produces

physically meaningful solutions�

The maximum principle is a powerful tool for the investigating the solvability of par


tial di
erential equations� We cite some results that can be obtain with application of the

maximum principle for the more general problem de�ned below� Consider the di
erential

operator

Lu � div��A�x	ru�x	 " b�x	u�x		 " c�x	ru�x	 " d�x	u�x	 �����	
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where the coe�cients A � faijgdi�j��� b�x	 � fbigdi��� c�x	 � fcigdi�� and d�x	 are functions

in L���	� The corresponding boundary value problem is de�ned by �����	 and the bilinear

form is

A�u� v	 �

Z
�

�A�x	ru�x	�rv�x		 dx�
Z
�

�b�x	�rv�x		u�x	 dx

"

Z
�

�c�x	�ru�x		v�x	 dx "
Z
�

d�x	u�x	v�x	 dx

We add to the conditions �����	 assumptions that the coe�cients c and d are also uniformly

bounded� i�e��

jci�x	j �M � jd�x	j �M � i � �� � � � � d �����	

where M is the same constant as in �����b	� Therefore� we say that L is uniformly elliptic if

conditions �����a	� �����b	 and �����	 are satis�ed� We also modify the Assumption ���� in

the following way�

Assumption ��� Z
�

�dv � �b�rv	� dx � � � v � C���	 � v � � �

The uniqueness of the generalized solution of the problem �����	 where di
erential oper


ator L is de�ned in �����	 is immediate consequence of the maximum principle�

Corollary ��� If u � H�
� ��	 is an elliptic function in �� then u � � almost everywhere in

��

The existence result is stated in the following theorem �����

Theorem ���� If Assumptions 	�� and 	�� are satis�ed� then the problem �����	 has a

generalized solution�

Remark ��� Note that the bilinear form A��� �	 is not H�
� ��	�coercive under the Assump


tions ��� and ��� � We have only the G!arding�s inequality satis�ed�

A�u� u	 � C�juj���� � C�kuk���� �

where C� � C���� and C� � ��Cd� �	M �

This can be seen by the following simple computations�

A�u� u	 � C��juj���� �
Z
�

��b� c	�ru	u dx "
Z
�

du� dx

�
Z
�

��b� c	�ru	u dx � �C
��

�
juj���� � C

�
dX
i��

jbij" jcij
�
kuk����

� �C
��

�
juj���� � �CMdkuk����

In general we cannot show that the constant C� is positive� but if the function d�x	 is big

enough or the domain � is small enough �recall that in the Poancar%e inequality the constant

C� is proportional to diam��		� then we can prove that A��� �	 is H�
� ��	�elliptic�
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����� General solvability and regularity results

Here we present a few comments on the solvability and regularity of the solution of the

problem �����	 where L is de�ned by �����	� Consider the problem

�L � �E	u � f�x	 in � �����a	

u�x	 � � on �� � �����b	

where � is a complex number� From the remark above it is clear that if � is real and j�j � ��
for some positive number ��� then the problem �����	 has a unique generalized solution� The

general result is stated below in a theorem due to Ladyzhenskaya and Uralt�tseva ����� We

collect all the conditions of the theorem in the following assumption�

Assumption ��� Suppose that the condition �����a	 is satis�ed� Moreover������
dX
i��

b�i �

dX
i��

c�i

�����
��q����

� kd�x	k��q���� � C for q 	 d �

�

meas��	

Z
�

d�x	 x � Cd 	 � �

f � f� " div�f	 � f � ffigdi�� � where f � Lm��	� f � L���	 and

m �
�#n

#n" �
� #n �

�
d � d 	 �

� " � � d � � � � 	 �

Theorem ���� Suppose that Assumption 	�� is satis�ed� Then the problem �����	 has a

unique generalized solution in H�
� ��	 for every � � C except at a countable set of values

� � �k� k � �� �� � � � such that j�kj 	 � as k 	 �� To every �k there corresponds a �nite

number of linearly independent generalized solutions u
�i

k of �����	 in H�

� ��	 if and only if

u
�i

k are solutions of the problem

�L	 �  �E
�
u � � in �

u�x	 � � on �� �

where L	 is the conjugate operator of L and  � is the complex conjugate of ��

To prove convergence of the numerical methods considered in this dissertation we will

need higher regularity of the weak solution of the problem �����	 than just membership in

H���	� The regularity result is usually formulated in the following form�

kuk��� � Ckfk���� � � ��� �� � �����	

The case � � � is called full elliptic regularity�

There are three factors that in�uence the regularity� the regularity of the domain ��

the smoothness of the coe�cients of �����	 and the regularity of the right hand side� For

thorough discussion of the �rst factor we refer books by Grisvard ���� ��� and Dauge �����

Results concerning the other two factors are presented in the monographs by Ladyzhenskaya

and Ural�tseva ���� and Lions and Magenes ���� for example�

����� Conservation properties

We start with a short discussion of the Gauss divergence formulas� Below we derive it from

the Green�s formulas �����



�� Elliptic Boundary Value Problems

Given functions u� vi � H���	� i � �� � � � � d� the following fundamental formulasZ
�

u�ivi dx � �
Z
�

�iu vi dx "

Z
��

u vini ds �����	

holds for any i � �� � � � � d� Here n � �n�� � � � � nd	 is the unit outward normal vector de�ned

on the boundary ��� By letting u � � and summing from � to d� we get the Gauss divergence

formulae Z
�

div�v	 dx �

Z
��

�v�n	 ds � �����	

where v � �
H���	

�d
�

For v � Hdiv��	� u � H���	 the following version of Green�s formulas holds �cf� �����	�Z
�

u div�v	 dx � �
Z
�

�ru�v	 dx "
Z
��

u �v�n	 ds �

Again by letting u � � we obtain �����	�

The following simple fact in Lebesgue integration theory �cf� �����	 is frequently called a

localization theorem�

Proposition ��� Let f�x	 � L���	 and be such that for any measurable subset G � �Z
G

f�x	 dx � � �

Then f�x	 � � for almost every x � ��

With an obvious argument this fact can be proven for more reasonable domains� say� domains

with Lipschitz�continuous boundary and for functions in L���	�

Most of the PDEs used for modeling of some processes of interest are derived from physical

laws of conservation� Without formalization� these laws state that the net change of a physical

quantity by way of �uxes through the boundary of a given region equals the net contribution

to this quantity from the source or sink inside the region� Typical examples are conservation

of mass� conservation of momentum and conservation of energy laws� These laws usually are

augmented by constitutive laws like Fourier�s law of heat conduction� Darcy�s law for porous

media �ow� or Ohm�s law of electric conduction�

Let q be the �ux de�ned by �����a	 and f�x	 be the density of the source�sink� Then�

one particular conservation law can be written asZ
�V

�q�n	 ds �

Z
V

f�x	 dx � �����	

for every su�ciently regular domain V � �� If the �ux is smooth enough� i�e�� q � �
H���	

�d
�q � Hdiv��		� then we can apply the Gauss divergence formulas and obtainZ

V

div�q	 dx �

Z
V

f�x	 dx � �����	

Using the localization theorem we get exactly the equation �����b	 in the de�nition of the

boundary value problem �����	�

On the other hand if the equation �����b	 is integrated over a given volume V and the

Gauss divergence formulas is applied� the result is �����	�

Previous remarks showed that the problem �����	 is equivalent to the problem �����	

with condition �����b	� The equation �����	 with condition �����b	 can be considered as a



��� Properties of the solutions of elliptic problems ��

�weak� formulation of the problem �����	 in the corresponding spaces� If the �ux q and u are

approximated separately� this leads naturally to an analogy of the mixed method formulation

�cf� ����� �����	 in the couple of spaces
�Hdiv��	� H

�
� ��	

�
� Our approach is to represent the

�ux q via u� and consequently� because of the Theorem ��� we need higher regularity for the

�ux q � �Hs��		d � s 	 ���� which results for smooth coe�cients A and b in the requirement

u � Hs����	� s 	 ����





CHAPTER III

FINITE VOLUME DISCRETIZATIONS OF ELLIPTIC
PROBLEMS

Finite volume methods are one of the most popular approximation techniques for partial

di
erential equations in the engineering calculation and computational physics� Their distinct

conservation property that stems from the approximation of integral conservation laws is

very important for the accurate simulation of complicated physical processes on relatively

coarse grids� For some problems using conservative methods is almost a necessity �recall the

famous Lax�Wendro
 theorem for conservation laws ���� and many known non�conservative

methods that have local approximation properties� but do not converge globally	� In other

cases� as in the simulation of �uid �ow in porous media� �nite volume methods produce more

accurate solutions compared to non�conservative ones because of the proper treatment of the

discontinuous coe�cients through so called �harmonic average transmissibilities��

In this chapter we introduce a class of cell�centered and vertex�centered methods for

second order elliptic problems and necessary notations and technical tools to analyze them�

The basic idea of all �nite volume methods is to use a �nite set of control volumes to

describe the equations and restrict the unknowns to be in a �nite�dimensional space� We

use the �ux form �����	 of the elliptic boundary problem �����	 and integrate over specially

chosen volumes� called boxes� cells� or control volumes� i�e��Z
V

div�q	 dx �

Z
V

f dx �

After applying the Gauss divergence formulas for the integral on the left� we getZ
�V

�q�n	 ds �

Z
V

f dx � ����	

where n is the outward unit normal vector to �V � We accept the term control volume for

the volume where the integration is performed�

The solution u�x	 of �����	 is approximated at a set of points called a grid� The values

of u�x	 in the the grid points are called degrees of freedom� We introduce �nite element

triangulations and two grids related to them� primary and secondary� denoted by �P and

�S � respectively� The cardinality of the corresponding grids are denoted by nI � I � P� S�

The primary grid consists of all vertexes of �nite elements� therefore� is determined by the

FE triangulations� The secondary grid is designed by choosing one point in the interior of

every �nite element 
 �the cell center�� We consider two cases� circumcenters �centers of

circumscribed circle of the corresponding �nite element	 and barycenters �centers of gravity	�

We choose nI control volumes Vi� i � �� � � � � nI in a such way that in each control volume

there is only one point of the associated grid� The control volumes of cell�centered �nite

volume methods coincide with �nite elements and the degrees of freedom are at the vertexes

of the secondary grid� The construction of the control volumes of vertex�centered �nite

volume methods is more complicated and is outlined in Section ���� The degrees of freedom

are in the vertexes of the primary grid�

On each control volume we approximate the integral of the normal component of the �ux

and the integral of the source �sink	 function

Z
�Vi

�q� n	 ds �
kiX
j��

qij �

Z
Vi

f dx � �i �



�� Finite Volume Discretizations

or the equation ����	 on the control volumes Vi� i � �� � � � � nI is replaced by

kiX
j��

qij � �i � i � �� � � � � nI � I � P or S � ����	

We call qij approximate �uxes� For the approximate �uxes we impose the natural assumption

that the approximate �uxes on a common face sum up to zero �cf� Assumption ��� for

a detailed description�	 This condition will ensure that �nite volume discretizations have

certain discrete conservation properties introduced in De�nition ����

The �nite volume discretizations are based on ����	 and the relation between the �ux and

the scalar variable expressed in the equation �����a	� If �����a	 is considered as a separate

equation� then the resulting approximations are mixed methods� In the standard �nite volume

methods �����a	 is directly incorporated into the equation ����	�

Remark ��� Note that in order to apply the �nite volume approach we need some regularity

of the �ux �cf� Remark ��� and the discussion after	�

A particular �nite volume method is uniquely determined by specifying

�i	 the control volumes and the associated grid�

�ii	 the approximation of the �ux surface integrals�

With respect to the control volumes� we distinguish cell�centered and vertex�centered

�nite volume methods� Approximation of �ux surface integrals can be done in the framework

of �nite di
erence methods� or with the tools of �nite element methods� Therefore� the

consistent names for such methods are� �nite volume di
erence methods and �nite volume

element methods� In this dissertation we consider�

�i	 cell�centered �nite volume di
erence methods�

�ii	 vertex�centered �nite volume element methods�

Finite volume element methods on their own right can be divided in two groups� conform


ing and nonconforming with respect to the �nite element spaces used for the approximation�

We sketch a simple classi�cation in Fig� ��� and brie�y discuss some of the methods�

Finite volume di
erence methods were the �rst conservative approximations� They have

been used as a systematic approach for e
ective discretization of conservation law equations

�cf�� e�g� Patankar and Spalding ����� and Hirsch ���� for �uid �ow	� Pioneering work in

this area for one
dimensional elliptic and parabolic equations with piece
wise smooth coe�


cients has been done by Samarskii in the early ��
s �for a comprehensive presentation see e�g�

Samarskii �����	� Among the characterizations� Tikhonov and Samarskii ����� have proved

that the conservation property is a necessary condition for the convergence of �nite di
er


ence solutions for problems with discontinuous coe�cients� For ��D problems on uniform

grids and also multidimensional problems on tensor product uniform grids cell�centered and

vertex�centered methods coincides ignoring the boundary conditions� The theory for such

methods have been extended for problems with generalized solution by Samarskii� Lazarov

and Makarov ������ For nonuniform meshes second order convergence in the maximum norm

has been proven in the papers by Manteu
el and White ���� and Kreiss et� al� �����

The theory of vertex�centered FV di
erence methods on triangular meshes has been

developed by Heinrich ���� using similar technical tools as in the book by Samarskii� Lazarov

and Makarov ������ Interesting results have been reported for quadrilateral vertex�centered

FV di
erence methods by Morton and S!uli ����� Mackenzie and Morton ���� and S!uli ������

but the consistent theory for such meshes is still not available�
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�� Finite Volume Discretizations

In late seventies and early eighties the mixed �nite element theory was a subject of

intensive study �cf� ���� ����	� Russell and Wheeler ����� have shown that certain cell�

centered FV di
erence methods on regular meshes can be obtained from the mixed method

system via specially chosen quadrature rules� Weiser andWheeler ����� have used this relation

to prove superconvergence results for cell�centered FV di
erence methods on rectangular

meshes� Recently Arbogast� Wheeler and Yotov ��� have generalized the results in ����� for

di
usion problems with tensor coe�cients and have derived and analyzed new cell�centered

FV di
erence schemes� Di
erent mixed �nite element methods have been proposed and

investigated by Thomas and Trujillo ����� �����

A few terms are used for the �nite volume element methods� In the engineering literature

they are popular as Control Volume FEM� Bank� Rose and Hackbusch call them box methods�

We believe that McCormick promoted the name Finite Volume Element Methods� We accept

this name throughout this dissertation because it relatively well indicates the main ideas of

the methods�

First attempts to apply �nite element ideas in the �nite element context were made

in the late sixties by engineers and physicists �cf� Winslow �����	� At that time it was

noticed that FEM and FVEM were identical for certain grids and coe�cients� In the early

eighties Patankar and his coworkers applied FVEM for convection�di
usion problems ����

���� ���� ���� Exponentially �tted �nite element spaces have been utilized in order to align

the approximating function to streamlines of the convection term� The resulting approximate

solution is continuous only in the nodal points� We consider this as a nonconforming FVEM�

Bank and Rose ���� have derived the estimates for the di
erence between FE and conforming

FVE solutions of the Poisson equation� Hackbusch ���� has considered the case when the

sti
ness matrices of FEM and FVEM coincide and estimated the di
erence of the right hand

sides� Cai with collaboration of McCormick and Mandel has derived the estimates for the

more general di
usion equation ���� ��� ��� including also local re�nement� Under certain

geometrical conditions some superconvergence results have been obtained� Later Jianguo and

Shitong ���� have extended the results of Cai to more general meshes� They also have shown

with a counterexample that an L� lifting is not possible in general for FVE methods� S!uli �����

has considered FVEM on arbitrary rectangular meshes� He has derived superconvergence

estimates for bilinear and linear �nite element spaces� Schmidt ����� has proven a �rst order

rate of convergence for FVEM on quasi
uniform quadrilateral meshes with bilinear spaces

and superconvergence on rectangular grids�

Exponentially �tted nonconforming FVEM on a a Voronoi mesh and its dual Delaunay

triangulation have been analyzed by Miller and Wang �����

FVEM are well suited for nonregular domains and meshes and handle successfully di
erent

boundary conditions ����� Because of their conservation properties they are frequently used

for approximation of practical problems like �uid �ow and heat transfer ���� ���� the Navier�

Stokes equations ���� and the equations of the �uid �ow in porous media �����

The remainder of this chapter is organized as follows� In Section ��� we consider various

types of control volumes introduced using �nite element triangulations� Voronoi or circum


scribed meshes� The necessary notations� discrete inner products and norms are de�ned and

some simple results that are used in the next chapters proven� In Section ��� we state the

conditions for the discrete maximum principle and discrete conservation� Section ��� is de


voted to cell�centered �nite volume methods� We derive the basic di
erence scheme for scalar

coe�cients and propose a new method for problems with tensor coe�cients� The schemes for

problems with scalar coe�cients are extended and studied in Chapters IV and V� We discuss

the relation of mixed �nite element methods with cell�centered �nite di
erence schemes in

Section ������ The de�nition and some simple observations for �nite volume element methods

are collected in Section ���



��� Control volumes ��

Figure ���� Voronoi diagram

��� Control volumes

In the beginning of this chapter we outlined the general idea of constructing primary and sec


ondary triangulations� Frequently the names Voronoi� Delaunay and Dirichlet are associated

with this process� We introduce some de�nitions and historical references in order to explain

the ideas behind these names� We use substantially the survey papers by Aurenhammer ���

and Fortune �����

Let P denote a set of nP points �or sites	 in the plane� For two di
erent points p� q � P �

the set of dominance of p over q is the set

dom�p� q	 � fx � R� � d�x� p	 � d�x� q	g �

Clearly dom�p� q	 is a closed half plane bounded by the perpendicular bisector of p and q�

The Voronoi region of p is de�ned by

reg�p	 �
�

q�Pnfpg

dom�p� q	 �

By the de�nition follows that reg�p	 is a closed convex polygon as intersection of nP � � half

planes� It is also easy to see that the interior of reg�p	 is the set of points that are closer to

p than to any other point of Pnfpg� This process generates a partition of R� called Voronoi

diagram� Restricting this partition to a �nite subdomain � we obtain Voronoi mesh� One

simple Voronoi diagram is shown on Fig� ���� The vertexes of the Voronoi diagram are called

Voronoi vertexes�

It seems that the earliest motivation for the study of Voronoi diagrams stemmed from

their application in the theory of quadratic forms observed by Gauss and further exploited

by Dirichlet� Voronoi ����� generalized the results of Gauss and Dirichlet to higher dimen


sions and called these triangulations Dirichlet tessellations� Closely connected with Voronoi

diagrams are Delaunay triangulations� Delaunay triangulations contains an edge connecting

two points of P if and only if their Voronoi regions share a common edge� This construction

was introduced by Voronoi � Delaunay ���� extended it to irregular domains by considering

all triangles formed by points of P and such that the circumcircle of each triangle is empty

of other points of P �

The planar Voronoi diagram and the Delaunay triangulation are dual in a graph
theoretical

sense� Voronoi vertexes correspond to Delaunay triangles� It is clear that Delaunay edges

are orthogonal to Voronoi edges� These constructions extend also to n�dimensional case�
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From the discussion above is clear that given a domain � and a primary grid inside �� we

can construct the Voronoi mesh and the corresponding Delaunay triangulation� We choose

Voronoi regions as vertex�centered control volumes and the Delaunay triangulation as a �nite

element triangulation� We note that the Delaunay triangulation is one of the most popular

in computational mesh generation ���� especially for �nite element computations because of

its optimal properties ����� For example the Delaunay triangulation maximize the minimum

angle of the triangles�

On the other hand we can choose �rst the secondary mesh as Voronoi sites and construct

the Voronoi mesh� Then the primary mesh consist of Voronoi vertexes and cell�centered

control volumes coincides with Voronoi regions�

����� Finite element triangulations

For the FVE methods we will need some of the basic constructions of the �nite element meth


ods� Let � be a polyhedral domain in Rd � d � �� �� We consider a family of triangulations Fh
of � into �nite elements K� By a triangulation� Fh� we mean a set of polygonal �polyhedral	

elements such that the intersection of any two distinct elements in Fh either consists of a

common face� common side or common vertex� or is empty� and  � �
S
K�Fh

K�

For any K � Fh� let
hK � diam�K	 � h � max

K�Fh
hK �

and

�K � supfdiam�B	 � B is a ball contained in Kg �
We assume that Fh is regular in sense of Ciarlet ���� p� ����� i�e�� the following two conditions

are satis�ed�

�i	 There exists a positive constant 
 such that � for all K � Fh� h � R�

hK � 
�K � ����	

�ii	 The parameter h approaches zero�

Later we will specify the admissible �nite elements�

����� A�ne mappings

We need some facts about a�ne mappings and estimates of the seminorms� We say that

two domains � and #� in Rd are a�ne�equivalent if there exists an invertible a�ne mapping

F � #�	 �� x � F �#x	 � B�#x " b such that � � F �#�	� We use the correspondence

v � �	 R � #v � #�	 R � v � #v � F�� � v�x	 � #v�#x	 �

Theorem ��� ������ Let � and #� be two a�ne�equivalent domains in R
d � If a function v

belongs to the space Wm�p��	 for some integer m � � and some number p � � � p � �� the

function #v � v � F belongs to the space Wm�p�#�	� and in addition� there exists a constant

C � C�m� d	 such that

j#vjm�p�
� � CkB�kmj det�B�	j���pjvjm�p�� � ����a	

Analogously� one has

jvjm�p�� � CkB��� kmj det�B�	j��pj#vjm�p�
� � ����b	
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The norms kB�k and kB��� k are evaluated in terms of the following geometric quantities�

h � diam��	 � #h � diam�#�	�

� � supfdiam�S	 � S is the ball contained in �g�
#� � supfdiam� #S	 � #S is the ball contained in #�g�

Theorem ��� ������ Let � and #� be two a�ne�equivalent domains in Rd � where F � #�	 ��

x � F �#x	 � B�#x" b is an invertible a�ne mapping� Then the upper bounds

kB�k � h

#�
� ����a	

kB��� k �
#h

�
� ����b	

hold� Moreover�

j det�B�	j � meas��	

meas�#�	
����c	

We introduce the notion of reference element #K and a�ne families of �nite elements� Let
#K be a given �nite element� We say that the triangulation Fh is a�ne family if any �nite

element K � Fh is a�ne�equivalent to the reference �nite element�

We use a simple corollary of Theorem ��� stated below�

Proposition ��� Assume that Fh is an a�ne family of �nite elements that satis�es the

regularity assumption �
�
�� Then� there exist positive constants C� and C� such that for any

u � R� the following inequalities hold�

C�

h
kuk � kB��K uk � C�

h
kuk � �K � Fh � ����	

Proof� Note that by ����b	 we have kB��K uk � �#h��K	kuk� The chain of inequality

� � kBKB
��
K k � kBKkkB��K k

combined with ����a	 gives �#��hK	kuk � kB��K uk� Application of the regularity condition

����	 completes the proof� �

We consider some polynomial preserving operators� i�e�� which satisfy a relation of the

form ����	 for some integer k � ��

Theorem ��� ������ For some integers k � � and m � � and some numbers

p� q � ������ let W k���p��	 and Wm�q��	 be Sobolev spaces satisfying the inclusion

W k���p��	 �	Wm�q��	

and let & � W k���p��		Wm�q��	 be a continuous linear mapping such that

� p � Pk��	� &p � p � ����	

Then there exists a constant C�&��	 such that

jv �&vjm�q�� � C�&��	 �meas��		
��q���p

hk���mjvjk���p�� � ����	

Later we will use this general theorem for linear and constant interpolants in Hk����	�

k � �� � and and m � �� ��
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����� Primary and secondary grids

Here we describe another general way to construct grids starting from a FE triangulation�

We assume that we are given a primary grid and some �nite element triangulation with

vertexes at the points of the primary grid� Suppose that the vertexes of the �nite element

triangulation are numbered in a unique way� i�e�� fxi � i � �� � � � � nP g� The �nite element

triangulation uniquely determines a primary grid �P �

�P �
�
xi � � � xi is a vertex in a �nite element K

�
�

We also need the set of interior grid points �P and the boundary grid points �P �

�P � �P � �� �P � �P n�P �

Consider a particular �nite element K with vertexes xi� � � � � � xik and let IK be the index

set fi�� � � � � ikg� Denote by fZK�ijgi�j�IK the edges and by fZK�j����jlgj����� �jl�IK the faces of

a given �nite element �the polygons with vertexes xj� � � � � � xjl � K	� K � Fh� i�e��

�K �

�
BB� �

i�j�IK
xi�xj edge in K

ZK�ij

�
CCA�

�
BB� �

j����� �jl�IK
xj� ���� �xjl face in K

ZK�j����jl

�
CCA �

We de�ne the secondary grid in the following way� Choose one interior point SK � �

K in every

�nite element K � Fh� Then
�S � fSK � K � Fhg �

The cell�centered control volumes coincide with the �nite elements and there is one�to�

one correspondence of �nite elements and nodes of the secondary grid� We assume that the

vertexes of the secondary grid are also numbered in unique way� i�e� fxi � i � �� � � � � nSg� If
xi � �S we denote with Ki the corresponding �nite element� Whether we use nodes from a

primary or secondary grid will be clear from the context�

Given a primary grid vertex xi we de�ne by &�i	 the index set of all neighbors of xi in

�P � i�e��

&�i	 � fj � there is an edge between xi and xj in Fhg � ����	

We denote with '�i	 the index set of all neighbors of xi � �S

'�i	 � fj � �nite elements Ki and Kj have common faceg � �����	

To describe vertex�centered control volumes we select one interior point on each face of

every �nite element Ki� MKi�j����jl � ZKi�j����jl such that if ZKi�j����jl � ZKp�j����jl � i �� p then

MKi�j����jl � MKp�i����jl � i�e�� on each face only one point is chosen� The points on the edges

are selected in the same manner� Connect a given point from the secondary grid xi� Ki � Fh
with MK�j�j� � j�� j� � IKi and MK�i����il � i�� � � � � il � IKi � These lines and the planes that

they span form a polygonal �polyhedral	 domain around each vertex of the primary grid and

are called vertex�centered control volumes� There is one�to�one correspondence of nodes in

primary grid with vertex�centered control volumes� If xi � �P we denote the corresponding

vertex�centered control volume with Vi and with

�ij � Vi � Vj � j � &�i	 �

To specify a particular primary and secondary grids we have to choose the �nite elements�

secondary grid points and points MKi�j�j� on the edges� MKi�j����jl on the faces�
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Figure ���� Vertex�centered control volume

First we de�ne grids for the �nite volume element methods we will investigate in Chapter

VI� We choose �nite elements to be triangles in ��D and tetrahedra in ��D� The �cell�centers�

are the barycenters of the �nite elements and pointsM are barycenters of the edges and faces�

correspondingly� A speci�c ��D example is shown on Fig� ���� where the primary node is

displayed with a �lled circle and the secondary nodes are shown with empty circles� The

control volume corresponding to the primary node is depicted by a dotted line� Note that in

general �ij is not a straight line� We also consider Delaunay triangulations and corresponding

Voronoi vertex�centered control volumes�

For cell�centered di
erence methods we require that �nite elements be chosen in a such

way that there exists a circumscribed circle around each �nite element or cell�centered control

volumes are Voronoi regions� The cell�centers are chosen in the centers of the circumscribed

circles for the �rst case� We call the former one a circumscribed cell�centered grid and the

latter one a Voronoi cell�centered grid� Note that in both choices the line connecting two

neighboring cell�centers is perpendicular to face between them� Therefore� �ij is a straight

line now� An example of cell�centered circumscribed grid is shown in Fig ����

We do not impose any restriction that the �nite elements have the same shape�

����� Finite element spaces� Discrete inner products and norms

We introduce a piecewise linear �nite element space for the simplex triangulation

Vh � fv � C���	 � vjK is linear for all K � Fhg

where vjK is the restriction of v to K� The �nite element space Vh� is de�ned by

Vh� � fv � Vh � vj� � �g �

Functions de�ned for x � �I � I � P� S are called vertex�centered �cell�centered	 grid func


tions� To emphasize their dependence of the triangulation we use the subscript h� for example

uh�x	� x � �P is a vertex�centered grid function� Denote with 
i the characteristic functions

that corresponds to the vertex�centered control volume Vi and with Wh the space spanned

on f
igxi�	P � Let f�igxi�	P be the basis of Vh� � We de�ne a few operators� The linear
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Figure ���� Cell�centered control volume

interpolant I lh � �P 	 Vh� is de�ned by

I lhuh�x	 �
X
xi�	P

uh�xi	�i�x	

and the �inverse� mapping Rl
h �� �I lh	

��� Rl
h � Vh� 	 �P is simply the restriction of elements

of Vh� on �P � The �box� interpolant �constant interpolant	 Ich � �P 	Wh is given by

Ichuh�x	 �
X
xi�	P

uh�xi	
i�x	

and Rc
h �Wh 	 �S � the restriction of elements of Wh on �S � We de�ne also the mapping  Ich

between spaces Vh� and Wh via  Ich �� Rl
hI

c
h and the mapping  I lh �W 	 V by  I lh �� Rc

hI
l
h� Let

Hs��	 be a Sobolev space with s 	 ��� � De�ne (I lh � Hs��		 Vh� and (Ich � Hs��		Wh by

(I lhu�x	 �
X
xi�	P

u�xi	�i�x	

(Ichu�x	 �
X
xi�	P

u�xi	
i�x	

When there is no danger of ambiguity we will skip the bars and tildes�

We use Theorem ��� to estimate the error of interpolation�

Corollary ��� For every function v � H�������	� � � � � �
� the following estimates hold�

jv � (Ichvj��� � Chjvj��� �����	

jv � (I lhvj��� � Ch�����jvj������� �����	

Given the cell�centered grid functions uh�x	� vh�x	 � x � �S we de�ne the following discrete

inner products and norms�

�uh� vh	S �
X
xi�	S

meas�Ki	uh�xi	vh�xi	 � kuhk���	S � �uh� uh	S �
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juhj���	S �
�

�

X
xi�	S

X
y���xi


meas�Ki	

�
uh�xi	� uh�y	

d�xi� y	

��

where d�x� y	 is the Euclidean distance between x and y� The discrete H��norm is de�ned

by

kuhk���	S � kuhk���	S " juhj���	S �
We de�ne vertex�centered inner products and norms in the following way�

�uh� vh	P � �I lhuh� I
l
hvh	L� � kuhk���	P � �uh� uh	P �

juhj��	P � jI lhuhj��� � kuhk���	P � kuhk���	P " juhj���	P �
We also use the �box� norms and seminorms

kuhk���B �
X
x�	P

meas�Vx	uh�x	vh�x	 �

juhj���B �
�

�

X
K�Fh

meas�K	
X
x�y�K

�
uh�x	 � uh�y	

d�x� y	

��

�

Note that

kuk��B � kIchuhkL� �
The following result is well known �see for example ���� for the ��D case and regular

geometry� ���� for the ��D case and general geometry� and ���� for the �nite di
erence case

discussion	� but we include it for the sake of completeness� There are some small di
erences

in ��D�

Lemma ��� The norms k�k��	P � k�k��B and k�k��	P � k�k��B are equivalent� i�e�� there exist

positive constants C�� C�� C� and C� independent of h such that

C�kuhk��	P � kuhk��B � C�kuhk��	P � �����	

C�kuhk��	P � kuhk��B � C�kuhk��	P � �����	

Proof� We prove the equivalence on the element level� Let #K be the reference tetrahedron

and K be the current tetrahedron� Consider juhj��	P restricted on K� i�e�� jI lhuhj��K � Denote

w �� I lhuh�

jwj���K �

Z
K

jrwj� dx �

Z

K

jB�TK r #wj�j det�BK	j d#x �
det�BK	

�
kB�TK r #wk� �

Using the equality ����c	 and the fact that meas� #K	 � ��� we see that

det�BK	

�
� meas�K	 �

Let the values of u in the vertexes of K be u�� u�� u�� u�� Then r #w � �u��u�� u��u�� u��
u�	

T � Taking into account the inequalities

C�d�ui� uj	 � hK � C�d�ui� uj	 �

C�

d��X
j��

�uj � u�	
� �

dX
i��

d��X
j
i

�uj � ui	
� � C�

d��X
j��

�uj � u�	
�
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and ����	 we get that

C�jwj��K � �juhj��B	jK � C�jwj��K � �����	

The contribution in kuhk��B from a particular element K is

meas�K	

d" �

�
d��X
i��

u�i

�
� �����	

On the other hand

kuhk��	P �K �

Z
K

jI lhuhj� dx � j det�BK	j
Z

K

jI lhuhj� d#x �����	

and there exist positive constants C� and C� such that

C�

d��X
i��

u�i �
Z

K

jI lhuhj� d#x � C�

d��X
i��

u�i � �����	

Combining �����	 and �����	 we obtain the estimates in �����	� The inequalities in �����	

follow from �����	 and �����	� �

Remark ��� In the proof of Lemma ��� we used that the secondary grid is formed by

barycenters in the expression �����	� If the secondary grid is arbitrary the norms k�k��	P and

k�k��B are not equivalent� This is seen by the following simple example� Consider one control

volume Vi� such that meas�Vi	 	 �� i�e�� the secondary points around xi go to xi� Pick a

function uh � ��� � � � � �� � � � � �	� where the only nonzero element is on the ith position� Then

kuhk��B 	 �� but kuhk��	P is bounded from below�

If the �nite element triangulation is regular� then

juhj���B �
�

�

X
xi�	P

meas�Vi	
X

j���i


�
uh�xi	� uh�xj	

d�xi� xj	

�

as can be seen easily by comparing�
uh�x	� uh�y	

d�x� y	

��

�meas�Vx	 " meas�Vy	� and

�
uh�x	� uh�y	

d�x� y	

��

�meas�K�	 " meas�K�	� �

where �xi� xj	 � K� �K�� We will use this de�nition in Chapter VI�

The seminorms j�j��B and j�j��	P are equivalent without any restriction on the secondary

grid�

We pay special attention to rectangular cell�centered meshes� In this case we denote the

points in S by x � �x�� x�	 � �x��i� x��j	 � �ih� jh	� where i � �� �� � � � � Nx� j � �� �� � � � � Ny

are integer indices� Therefore

�S �
�
�x��i� x��j	 � � � i � �� �� � � � � Nx� j � �� �� � � � � Ny

�
�

and �S � �S ��� We also use subgrids of �S

��S�i � �S � ��i � where ��i � fx � � � cos�xi�n	 � ��g � i � �� � �

We consistently use the dual notation for the value of the function y at the grid point x �

�x��i� x��j	 � y�x	 � y�x��i� x��j	 � yi�j and in the points �x��i� x��j�h��	 � �x��i� x��j����	 and

�x��i � h��� x��j	 � �x��i����� x��j	� yi�j���� � y�x��i� x��j����	� yi�����j � y�x��i����� x��j	�
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Let the �i� j	 cell have length h��i and height h��j For rectangular meshes we can rewrite

cell�centered inner products and norms in the following way�

�y� v	S �
X

xi�j�	S

h��ih��jy�xi�j	v�xi�j 	� kyk��	 � �y� y	
�
� �

�y� v�s �
X

xi�j�	
�
S�i

h��ih��jy�xi�j	v�xi�j	 � kyeji � �y� y�
�
�

i � i � �� � �

We introduce the following �nite di
erences for grid functions y�x	�

�i	 forward di
erence )�yi�j � yi���j � yi�j and divided forward di
erence yx��i�j �

)�yi�j�dist�xi���j � xi�j	 �

�ii	 backward di
erence )�yi�j � yi�j � yi���j and divided backward di
erence yx��i�j �

)�yi�j�dist�xi�j � xi���j	 �

�iii	 divided central di
erence of second order

�for uniform meshes with h��i � h��j � h	

yx�x� �
)�yi�j �)�yi�j

h�
�

Similarly� the di
erences are de�ned in x� and in combination of x� and x� coordinate direc


tions�

We also introduce the discrete analogs of H� 
norms�

jyj���	S � jyx�x� j� " �jyx�x� j� " jyx�x� j� �
kyk���	S � jyj���	S " kyk���	S �

We will also need the negative norm�

kyk���	I � sup
v ���

j�y� v	I j
kvk��	I

� I � P� S �

��� Properties of �nite volume methods

In Chapter II we have discussed the properties of the continuous problem� Here we de�ne

the corresponding discrete analogs and brie�y discuss them�

Suppose the approximate �uxes qij have been expressed through the values of uh� Denote

by S�i	 the index set of all points xj that enter the approximation of the integral
R
�Ki

�q�n	 ds�

This set is called the stencil of the ith vertex� Then the system of equations ����	 is equivalent

to the following system

aiiuh�i "
X
j�S�i


aijuh�j � �i � i � �� � � � � nI � I � P or S � �����	

Usually the stencil S�i	 coincides with the index sets &�i	 or '�i	 �cf� ����	� �����		� corre


spondingly�

Any grid function yh�x	 can be considered as an element of a vector space of dimension

equal to nI � the number of the grid points in �I � I � P� S� In this case� we denote yh�x	 by

y � RnI and consider it as an nI 
dimensional column vector� Then yT will be the row vector

transpose of y�

We can rewrite �����	 in the following form�

Lhuh � � � �����	

where Lh � RnI 	 R
nI is a linear operator�

We say that Lh satis�es the discrete maximum principle if the following conditions hold

�����
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�i	 aii 	 � � aij � � � j �� i

�ii	 For each xi �  �I � I � P� S� the inequality

aii "
X
j���i


aij � � �����	

holds�

�iii	 At least at one point xi �  �I � I � P� S the inequality �����	 is strict� i�e�� instead of �
we have 	�

�iv	 If �����	 is equality at a point xi �  �I � I � P� S� then there is a �nite sequence

of grid points x��
� x��
� � � � � x�m
 from  �I with x
��

i �� xi� x

�j
 � *�j � �	 for j �

�� �� � � � � � m �m �	 and �Lh��		�x�m
	 	 �� �Lh��		�x�j
	 � � for j � �� �� � � � � m� ��

Theorem ��� �Discrete maximum principle� Let y be a grid function de�ned on a con�

nected grid  � and the conditions �i	��iv	 be satis�ed� If Lh�y	�xi	 � � and yj�		n	
 � �� then

y�xi	 � �� xi � ��

Remark ��� If the condition �ii	 is replaced by�

�ii	� For each xi �  �I � I � P� S� the following inequality holds

aii "
X
j���i


aij 	 � � �����	

Then the the discrete maximum principle follows from �i	 and �ii	�� The inequality �����	

means that the matrix is strictly diagonally dominant�

Closely related with discrete maximum principle are monotone matrices ������

De	nition ��� ����
�� A matrix A is a monotone matrix � if A is nonsingular and A�� � ��

We use the notation B � � for a matrix B � fbijgni�j�� to denote that for every entry bij � �

holds�

Theorem ��� A real matrix A is monotone if and only if Ax � � implies x � ��

The notion of an M�matrix is stronger condition than monotonicity�

De	nition ��� ����
�� A real matrix A is anM�matrix if A is nonsingular and the following

conditions hold�

�i	 aij � � � i �� j �

�ii	 A�� � � �

Theorem ��� ����
�� If A is an M�matrix� then A is a monotone matrix� On the other

hand � if A is a monotone matrix� such that �����	 holds� then A is an M�matrix�

Theorems ��� and ��� show that the conditions �i	��iv	 guarantee that the matrix faijg is

an M�matrix�

We distinguish global and local conservation properties� It will become clear from the Def


inition ��� that the local conservation property and an appropriate treatment of the boundary

conditions imply a global conservation property� Examples show that a global conservation

property does not imply a local conservation property �standard �nite element methods are

classical examples	�
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De	nition ��� �Discrete conservation� We say that a particular discretization

method is discrete conservative� if for any connected volume V that is a union of control

volumes the sum of discrete �uxes on �V is equal to the sum of discrete sources�sinks inside

V �

We impose two natural conditions on the control volumes �cf� ����	�

Assumption ��� The union of all control volumes in � is equal to the domain ��

We call two volumes Vi and Vj �neighbors�� if they share a common face �ij �

Assumption ��� Control volumes may overlap� but every control volume has to have a

�neighbor� on each of its faces�

Examples of overlapping control volumes have been investigated by Schmidt ������ All the

control volumes considered in this chapter satisfy the Assumptions ��� and ����

We impose also the following condition on the approximate �uxes�

Assumption ��� Suppose that the control volumes Vi and Vj are �neighbors� and �ij �

Vi � Vj � Denote by qij the approximation of
R
�ij

�q�nVi	 ds and by qji the approximation ofR
�ij

�q�nVj 	 ds� Then we require that the following equality be satis�ed

qij " qji � � � �����	

Here nVi is the outward normal to �Vi and nVj is the outward normal to �Vj restricted to

�ij �

The following result is self�evident�

Proposition ��� Every �nite volume method de�ned by ����	 and satisfying Assumptions


��� 
�	 and 
�
 is discrete conservative�

��� Cell�centered �nite volume methods

In this section we de�ne the classical ��pont cell�centered FV di
erence schemes and investi


gate one possible generalization� The second subsection is devoted to a short introduction of

mixed �nite element methods and their relations with cell�centered FV di
erence schemes�

����� Di�erence methods

All discussed di
erence schemes are considered either on circumscribed cell�centered grids or

on Voronoi cell�centered grids� In both cases the straight line connecting two neighboring

vertexes is perpendicular to the face that separates them�

������� Scalar di�usion coe�cient

We consider �rst the case of a scalar di
usion coe�cient� i�e�� A�x	 � a�x	I � where I is the

identity d
 d matrix� Uniform ellipticity guarantees that a�x	 � C�� 	 �� We split the �ux

Q into a di
usive part W and a convective part V� Q � W"V� We want to approximate
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the integrals
R
�ij

�W�n	 ds and
R
�ij

�V�n	 ds� Pick a point xij � �ij and apply the simplest

one point quadrature formula

Z
�ij

�W�n	 ds � meas��ij	�W�n	�xij	 � �����a	

Z
�ij

�V�n	 ds � meas��ij	�W�n	�xij	 � �����b	

We choose xij to be the intersection point of �ij and the straight line through xi and xj � We

can rewrite �W�n	 � ��a�x	ru�n	 as

�u

�n
� � �W�n	

a�x	

and integrate along the interval with end points xi and xj � Since the integration is performed

along the normal vector n we have

ui � uj � �
Z xj

xi

�W�n	

a�s	
ds � ��W�n	�xij 	

Z xj

xi

ds

a�s	
� �����	

Combining �����a	 and �����	 we can write the following approximate relation for the di
usive

�ux Z
�ij

�W�n	 ds � �meas��ij	
�

�

dist�xi� xj	

Z xj

xi

ds

a�s	

���
�ui � uj �

dist�xi� xj	
�

This approximate relation allows us to de�ne the approximate di
usive �ux wij on �ij with

the the following formulas

wij�x	 � �meas��ij	kij
�uh�j � uh�i�

dist�xi� xj	
� �����	

where

kij �

�
�

dist�xi� xj	

Z xj

xi

ds

a�s	

���
�����	

and uh is the approximate solution� Usually the coe�cients kij are called harmonic average

transmissibilities�

The integral
R
�ij

�V�n	 ds can be approximated as follows

Z
�ij

�V�n	 ds � meas��ij	�b�n	�xij 	u�xij	

� meas��ij	�b�n	�xij 	

�
dist�xj � xij	

dist�xi� xj	
ui "

dist�xi� xij	

dist�xi� xj	
uj

�
�

And thus we can de�ne the approximation�

vij�x	 � meas��ij	�b�n	�xij	

�
dist�xj � xij	

dist�xi� xj	
uh�i "

dist�xi� xij	

dist�xi� xj	
uh�j

�
� �����	

In the next chapter we will consider other approximations of the convective �ux that are

especially suited for convection dominated problems�
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Figure ���� Quadrilateral parts Vi�jk in the volume Vi

������� Tensor di�usion coe�cient

Approximating di
usive �uxes with a full tensor A�x	 on distorted meshes is still a �hot�

problem� There are many �ad hoc� algorithms in the engineering literature� especially in

Computational Fluid Dynamics� We sketch one scheme that can be considered as a gener


alization of the classical ��point cell�centered schemes� This method is an extension of the

work of Ware� Parrott and Rogers ����� where only rectangular meshes have been used�

We assume that the grid is Voronoi and that the intervals �xi� xj	 intersect the faces

�ij � The intervals �xi� xj	� j � '�i	 divide the control volume Vi into quadrilateral parts

Vi�jk � j� k � '�i	� j �� k� A simple example is shown on Fig� ���� We approximate the �ux

W in Vi�jk with a constant vector wi�jk � Therefore� the conservation law takes the formX
j���i


��wi�jk� �nij	meas��ij � Vi�jk� 	 " �wi�jk� �nij	meas��ij � Vi�jk� 	� � �i
�����	

Here �ik� and �ik� are two neighbors of �ij and nij is the outward normal vector to �ij � We

have to express wi�jk through the values of the approximate solution uh�i� uh�j and uh�k �k

is k� and k� correspondingly	�

We split the integral of the �ux into two partsZ
�ij

�W�nij	 ds �

Z
�ij�Vi�jk�

�W�nij	 ds"

Z
�ij�Vi�jk�

�W�nij	 ds �

and approximate each of themZ
�ij�Vi�jk�

�W�nij	 ds �
Z
�ij�Vi�jk�

�wi�jk �nij	 ds �

Suppose that A�x	 is a piecewise constant matrix in each control volume� i�e�� A�x	 � Ai for
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Figure ���� Three quadrilaterals

x � Vi and A��i � Li� By the de�nition of the �ux W and Li

W � �Airu � LiW � �ru �

and taking the inner product with nij we have

�LiW�nij	 � �W� Linij	 � �W� li�ij	 � ��ru�nij	

We denote the vector Linj by li�ij �

For ��D Voronoi meshes the degree of every Voronoi vertex is either � or �� i�e�� either

three or four control volumes intersect in this point� First we consider one particular Voronoi

vertex with degree three� Let Vi�j�k� � Vj�ik� and Vk� �ij be three neighboring quadrilaterals

sketched on the Fig� ���� Integrating from xi to xj and approximating W with wi�jk� in

Vi�jk� and with wj�ik� in Vj�ik� we get

ui � uj � �
Z xj

xi

�ru�nij	 ds �

Z xij

xi

�W� Linij	 ds"

Z xj

xij

�W� Ljnij	 ds

�
Z xij

xi

�wi�jk � li�ij	 ds"

Z xj

xij

�wj�ik� � lj�ij	 ds

� dist�xi� xi�j	
�
w�
i�jk� l

�
i�ij " w�

i�jk� l
�
i�ij

�
"dist�xi�j � xj	

�
w�
j�ik� l

�
j�ij " w�

j�ik� l
�
j�ij

�
�

The continuity of the �ux across �ij gives the relation

w�
i�jk�n

�
ij " w�

i�jk�n
�
ij � w�

j�ik�n
�
ij " w�

j�ik�n
�
ij �

In the same way we derive four more equations integrating along �xi� xk�	 and �xj � xk� 	 and

using the assumption for the continuity of normal �ux on the control volume faces� Note

that as long as we consider only one triangle we can use the notation wi for wi�jk� � wj for

wj�ik� and wk� for wk��ij � We also denote in the system below dist��� �	 with d��� �	� These



��� Cell�centered �nite volume methods ��

�������������������
���

L
L
L
L
L
L
L
L
L
L
L
�
�
�
�
�
�
�
�
�

XXXXXXXXX
C
C
C
C
C
C
C
C
C
�
�
�
�
�
�
�
�
����������������

��

�
�
�
�
�
�
�
�
�
�

Figure ���� Degree four � four quadrilaterals

six equations form a linear system for the unknown �uxes wi� wj and wk� �

d�xi� xi�j	
�
w�
i l
�
i�ij " w�

i l
�
i�ij

�
" d�xi�j � xj	

�
w�
j l
�
j�ij " w�

j l
�
j�ij

�
� ui � uj �

w�
i n

�
ij " w�

i n
�
ij � w�

jn
�
ij � w�

jn
�
ij � � �

d�xi� xi�k�	
�
w�
i l
�
i�ik� " w�

i l
�
i�ik�

�
" d�xi�k� � xk�	

�
w�
k� l

�
k��ik� " w�

k� l
�
k��ik�

�
� ui � uk� �

w�
i n

�
ik� " w�

i n
�
ik� � w�

k�n
�
ik� � w�

k�n
�
ik� � � �

d�xk� � xj�k�	
�
w�
k� l

�
k��jk� " w�

k� l
�
k��jk�

�
" d�xj�k� � xj	

�
w�
j l
�
j�jk� " w�

j l
�
j�jk�

�
� uk� � uj �

w�
k�n

�
jk� " w�

k�n
�
jk� � w�

jn
�
jk� � w�

jn
�
jk� � � �

We can solve this �
 � linear system for the �uxes and substitute the result into the discrete

conservation law �����	�

If the considered vertex has degree four then the system is �
 �� This case is shown on

Fig� ����

This scheme shows striking similarity with mixed �nite element methods and probably

in some cases can be considered as a MFEM method with a properly chosen quadrature

formulae� We will not attempt to investigate the properties of the derived cell�centered �nite

volume method for tensor coe�cients in this dissertation�

����� Mixed 	nite element methods

The theory of mixed �nite element methods for nonsymmetric problems has been developed

by Douglas and Roberts in a series of papers ���� ���� Here we de�ne the discrete problem

and brie�y discuss its relation with cell�centered FV di
erence methods�

Let Vh � Hdiv��	 and Wh � L���	� We consider the mixed �nite element method de�ne

as�
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Find the pair �qh� uh	 � Vh 
Wh such that

�Kqh�v	� � �div�v	� uh	� � ��uh�v	� � � �v � Vh � �����a	

�div�q	� w	� � �f� w	��w �Wh � �����b	

Suppose we can express qh through uh from �����a	 and substitute this relation in �����b	�

This will lead to a particular cell�centered �nite volume di
erence method� Usually this is

achieved by using a quadrature formulae to approximate the inner products in �����	 �cf�

����� ��	�

��� Finite volume element methods

The discrete FVE problem is de�ned as follows�

Find uh � Vh� such that� for all vertex�centered control volumes Vi� i � �� � � � � nPZ
�Vi

��Aruh " buh�n	 ds �

Z
Vi

f dx � �����	

In order to investigate the problem �����	 we introduce the following bilinear forms�

Bh�uh� vh	 � �
nPX
i��

Z
�Vi

�Aruh�n	 ds vh�xi	 "
nPX
i��

Z
�Vi

�b�n	uh ds vh�xi	 �

�����	

Note that
R
�Vi

��Aruh " buh�n	vh ds is not well de�ned for functions vh � W � To

overcome this little discrepancy we de�neZ
�Vi

��Aruh " buh�n	vh ds � lim
n��

Z
�V

�n�
i

��Aruh " buh�n	vh ds � �����	

where V
�n

i �� Vi and dist��Vi� �V

�n

i 	 � ��n� Since Vi is a domain with Lipschitz�continuous

boundary such a sequence of domains V
�n

i exists� Using the Lebesgue dominated convergence

theorem we see that the limit on the right hand side exists and is equal to
R
�Vi

��Aruh "

buhn	 ds vh�xi	�

Therefore� we can use the notation

B�uh� vh	 �

nPX
i��

Z
�Vi

��Aruh " buh�n	vh ds �

and the problem �����	 is equivalent to

Find uh � Vh� such that

Bh�uh� vh	 � f�vh	 � vh � Wh �

where

f�vh	 �

nPX
i��

Z
Vi

f dx v�xi	 �

In fact� we have formulated the problem �����	 as a Petrov�Galerkin method�

In Chapter VI we will investigate the properties of the bilinear form Bh��� �	�



CHAPTER IV

FINITE VOLUME METHODS FOR NONSYMMETRIC
PROBLEMS

In this chapter we construct cell�centered FV di
erence schemes for the continuous prob


lem discussed in Chapter II �cf� �����	� �����		� We pay special attention to the convection

dominated case� i�e�� when the ratio kAk�kbk �� �� A typical example of such an equation

is the model singularly perturbed problem�

� �)u" div�bu	 � f in � � ����	

u � � on ��

with � � � �� � and kbk � O��	� The problem ����	 exhibits both hyperbolic and elliptic

features and� moreover� its solution possesses boundary �and in some cases interior	 layers in

general� i�e�� the derivatives of u are of order O���p	 for some positive number p in certain

subdomains of � with measure of the order of ��

Our goal is to develop approximation methods that have the following properties�

�i	 stability�

�ii	 �good� approximation�

�iii	 local conservation�

�iv	 satisfy the discrete maximum principle�

�v	 produce positive de�nite matrices�

�vi	 work for general domains and suitable grids introduced into them�

We brie�y discuss the existent methods for the solution of the problem ����	 and point out

what are our objectives�

The approximation methods for the solution of convection dominated problems can be

separated into three large groups� characteristics methods� methods that require special types

of re�nement into the boundary layer regions� and methods on uniform or regular grids�

The characteristics numerical methods use special meshes that are aligned with the char


acteristics of the hyperbolic part of ����	 �for parabolic problems see ����� ����	� Because

of their problem dependence� we will not consider such methods in this dissertation� The

methods in the second group are based on a simple idea due to the Russian mathematician

Bakhvalov ���� to construct an ��D mesh in a such way that on each interval the error of

the approximation is almost the same� Clearly� these constructions can be extended to ten


sor product grids� but not to general meshes �cf� Shishkin ����� ��� for multidimensional

generalizations	� We will discuss only methods from the third group�

For problems like ����	 the standard �nite element and �nite di
erence methods �cen


tral �nite di
erence approximation of the convection term	 are conditionally stable� i�e��

only for su�ciently small h� For the model problem ����	� h � �� and this requirement

makes using standard methods prohibitively expensive for ��D problems and impossible for

multidimensional ones� The upwind �nite di
erence schemes ����� ���� and corresponding

�nite element methods with modi�ed basis functions� also called Petrov�Galerkin methods

�Portions of ���� reprinted with permission from the SIAM Journal on Numerical Analysis� Copyright
���� by the Society for Industrial and Applied Mathematics� Philadelphia� Pennsylvania� All rights reserved�
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���� ���� overcome the stability restrictions� but reduce the accuracy to �rst order and intro


duce considerable smearing� Upwind �nite element methods have been extensively studied

by Japanese mathematicians Baba� Tabata ����� Ikeda et�al �see the monograph by Ikeda ����

and references there	� Their methods handle the convection term in a way very similar to

�nite volume methods� Some modi�ed upwind schemes have been proposed by Samarskii

����� and later by Axelsson and Gustafsson ��� � It has been shown that they have second

order of accuracy �cf� also ���� ���	� The work of Il�in ���� established the exponentially �tted

methods as another alternative to obtain stable approximations� More resent developments

in the �nite element theory are the streamline
di
usion methods ����� ��� ���	 and strongly

consistent stabilization methods �see ����� and works cited there	� Instead of adding arti�cial

viscosity in all direction as upwind methods� streamline
di
usion methods try to stabilize the

problem via increasing the di
usion only in the directions of the streamlines� Unfortunately�

this can be done only for a constant vector b� For varying convection coe�cients b these

schemes get closer to upwind methods and keep only the advantage that there are strongly

consistent in sense that the exact solution satis�es the di
erence scheme� An uniform frame


work to describe di
erent upwind methods including also streamline
di
usion case have been

proposed by Bank et� al� ����� Discontinuous Galerkin methods ����� ���� ���� sometimes

called explicit methods� are also stable for � � h and seems to be very e�cient for the constant

coe�cient case�

The problem of obtaining a discretization scheme with good approximation properties

is considerably more di�cult than that of satisfying the stability requirements� For elliptic

problems the classical error estimates �for �nite element theory see Ciarlet ����	 and for �nite

di
erence schemes see Samarskii� Lazarov and Makarov �����	 are of the following type�

ku� uhkk�� � Chm�kjujm�� �

Since the mth derivative of the solution u is not bounded as � 	 � these estimates are not

appropriate for convection�dominated problems� Another de�nition of �good approximation

properties� can be

ku� uhk	�� � Ch�� � 	 � � ����	

where C does not depend on � and h and k�k	�� is a suitable norm� Discretization methods

that produce approximations satisfying ����	 are called uniformly convergent �with respect

to �	� Note that the estimate ����	 requires global convergence� Allen and Southwell ���

proposed the �rst scheme that later was proven to converge uniformly for ��D problems�

but their work was not widely noticed� In the late sixties a Russian mathematician A� Il�in

independently rediscovered exponentially �tted schemes� His work initiated the development

of many methods �at least ten according to Roos �����	 and as a result comprehensive the


ory for ��D problems crystallized �cf� ����	� The attempts to generalize exponentially �tted

schemes for multidimensional problems do not produce the same results� The best known

global estimates of O�h���	 convergence rate are proven by O�Riordan and Stynes ���� for

a special exponentially �tted discretization� The same accuracy can be achieved by solving

only the hyperbolic part of ����	� Our numerical experiments show that upwind schemes

also asymptoticly converge with half an order� There are no available better global results

for streamline
di
usion methods either� If we consider only the maximum error away from

the boundary layers streamline
di
usion methods for problems with constant convection co


e�cients are de�nitely superior to the upwind methods� Johnson� Shatz and Walbin ����

have proven an estimate later improved by Nijima ���� to h����j loghj and recently Zhou and

Rannacher ����� have shown optimal error in maximum norm for special grids�

Although the construction of uniformly convergent approximations of singularly perturbed

problems is a notoriously di�cult problem that is still not solved� the explanation for this is



��

relatively simple� The ��D problems like ����	 have solutions that are essentially exponential

functions and therefore� every method which can approximate exponentials well has good

properties� The behavior of the solution dramatically changes for multidimensional problems�

New types of layers like ordinary di
erential� parabolic� elliptic and corner layers have been

studied for ��D problems �cf� the survey papers by Eckhaus ���� and Shih and Kellogg �����	

and probably the solutions are more complicated for higher dimension �still not classi�ed	�

The di
erent types of layers just mentioned cannot be approximated easily by exponential

like functions� For example� parabolic and elliptic boundary layers are solution of properly

constructed parabolic or elliptic partial di
erential equations� correspondingly� In fact� the

approximation rates of piecewise exponential function is not better than that of the piecewise

linear functions�

Only a few of the methods of �nite volume type as those proposed by Spalding ����� and

Runchal ����� possess local conservation properties� In resent years the �rst attempts have

been made to construct mixed �nite element methods for convection dominated problems by

Junping Wang et� al� ���� and van Nooyen ������ For related problems that consider models

of semiconductor devices� mixed approximations have been proposed by Miller and Wang

���� and and Brezzi� Marini and Pietra �����

In summary� there are still no reliable and robust discretization methods that outper


form the upwind and exponentially �tted schemes in terms of global accuracy and have the

properties �i	� �iii	� �vi	� Therefore� methods of upwind type that satisfy �i	 � �v	 will be

superior to the known ones�

This chapter is devoted to the construction of monotone cell
centered FV di
erence

schemes for convection
di
usion equations on Voronoi and curcumscribed grids that are un


conditionally stable and have second
order accuracy in a discrete H��norm for grids that

satisfy some additional assumptions� From the discussion above is clear that we can hope for

O�h�	 convergence rate only in the di
usion dominated case� For such problems Samarskii

����� has proven such an estimate in the discrete maximum norm under rather demanding

assumptions on the solution �to have four continuous derivatives	� A general approach for

cell
centered �nite di
erence schemes on triangles including local re�nement was considered

in Vassilevski� Petrova and Lazarov ������ The error estimates derived in ����� are in a dis


crete H�
norm including some superconvergence type estimates on uniform triangulations�

namely� O�h�	 error estimate on uniform triangulations� Our results generalize the results in

����� in two directions� they are proven for convection�di
usion problems and are valid also

for more general grids in ��D and ��D�

Cell
centered discretizations on tensor
product nonuniform meshes were considered by

Weiser and Wheeler ����� and superconvergence type error estimates derived� Similar results

for the Poisson equation were proved in S!uli ������ i�e�� H�
estimates of order O�h���	 � �
� �

� � �� Cai ����� Cai� Mandel and McCormick ���� also have shown some superconvergence

results for �nite volume element methods� In Hackbusch ���� second order error estimates in

H�
norm on uniform mesh has been proved�

We also provide error estimates in L�
norm elaborating the discrete �Aubin
Nitsche trick�

of duality argument proposed in Samarskii� Lazarov� and Makarov ����� and used in the case

of �nite di
erence schemes for general self
adjoint elliptic equations in Lazarov� Makarov and

Weinelt ����� For the original duality technique in the �nite element method� cf�� Aubin ����

Nitsche ����� which can also be found in Ciarlet ����� For another approach for L� error

estimates see Herbin �����

The remainder of the chapter is organized as follows� The discretization schemes are

presented in Section ���� It is shown that they satisfy the discrete maximum principle and the

discrete operators are positive de�nite� The stability �a priori estimates	 and error estimates

in H�
norm are derived in Section ������ The error estimates in L�
norm are proved in Section
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������ Finally� in Section ��� some computational results that illustrate the developed theory

are presented�

��� Discretization schemes

We assume that the triangulation is given by circumscribed or Voronoi cell�centered grid

� �we skip in this chapter the subindex S	� For such triangulations we add an extra regu


larity condition to condition ����	 in order to accommodate more general elements �control

volumes	�

Assumption ��� �FV regular triangulations� We say that a cell�centered triangulation

fVignSi�� is �nite volume regular if every control volume satis�es ����	 and� moreover� there

exist two positive constants C� and C� such that the following inequalities hold

C�meas��ij	dist�xi� xj	 � meas�Vi	 � C�meas��ij	dist�xi� xj	 i � �� � � � � nS � j � '�i	�

The rate of convergence of cell�centered �nite volume methods depends on the geometric

properties of the triangulation� For some special triangulations we will prove that higher rates

of convergence can be achieved for properly designed �nite volume methods �cf� Theorem

���	� Such triangulations usually exhibit some special symmetries of the position of the point

xij � �xi� xj	 � �ij with respect to the points xi and xj and to the face �ij � The exact

conditions are formulated in the following assumption�

Assumption ��� �The symmetry assumption� We say that the �nite volume triangu�

lation fVignSi�� satis�es the symmetry assumption if the following conditions hold�

�i	 xij is the middle point of the interval �xi� xj	�

�ii	 for triangular faces �ij � xij is the barycenter of �ij � Otherwise� we require that �ij
has two perpendicular axes of symmetry and xij is their intersection point�

We point out that the symmetry assumption is only a su�cient condition�

We recall the derivation of �nite volume approximation of the equation �����a	� We

integrate �����a	 over each cell�centered control volume Vi� i � �� � � � nSZ
Vi

div��a�x	ru�x	 " b�x	u�x		 dx �

Z
Vi

f�x	 dx

and then using the Green�s formula and dividing by meas�Vi	 we get

�

meas�Vi	

Z
�Vi

��aru" bu�n	 ds �
�

meas�Vi	

Z
Vi

f�x	 dx ����	

where n is the unit outward vector normal to the boundary of Vi� Denote

W � �a�x	ru�x	 and V � b�x	u�x	�

Splitting �Vi � �j���i
�ij �see Fig� ���	 the left
hand side of this identity is written in

the form�

�

meas�Vi	

�Z
�Vi

�W�n	 ds"

Z
�Vi

�V�n	 ds

�
�

�

meas�Vi	

�
� X
j���i


Z
�ij

�W�n	 ds"
X
j���i


Z
�ij

�V�n	 ds

�
� ����	
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Figure ���� General control volume Vi

In order to construct the �nite di
erence scheme we approximate the balance equation

����	� We split the approximation of the balance equation ����	 in two parts

A��
uh "A��
uh ����	

where A��
 is the part arising from the approximation of the second derivatives� and A��


comes from the approximation of the �rst derivatives� uh is an approximation to the exact

solution solution u� We have the expressions

A��
uh �
X
j���i


wi�j � xi � � � ����	

A��
uh �
X
j���i


vi�j � xi � � �

In these formulae wij and vij are some approximations of the corresponding integralsR
�ij

�W�n	 ds and
R
�ij

�V�n	 ds� Now� in order to complete the �nite di
erence scheme we

have to express the approximate �uxes wij and vij by the approximate values uh�x	 of the

solution u�x	 at the grid points� We consider the following approximations�

�� central di
erence scheme �CDS	�

�� upwind di
erence scheme �UDS	�

�� modi�ed upwind di
erence scheme �MUDS	�

�� Il�in�s di
erence scheme �IDS	�

We denote by �i�j an approximation of the integral
R
�ij

�b�n	 ds with the properties�

�i	 �i�j " �j�i � � � ����a	

�ii	 j�i�j j � Cmeas��ij	kbkd�������� � ����b	

�iii	

�����
Z
�ij

�b�n	 ds� �i�j

����� � Chd��jbj������� � ����c	
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where C is a positive constant and � 	 �� We consider some examples of quadrature formulas

that satisfy conditions ����	� Let �ij be an interval with end points a� and a� and a middle

point a��� The following well known quadrature formulas clearly satisfy the conditions ����	

�ij � �b�n	�a��	meas��ij	�

�ij �
meas��ij	

�
��b�n	�a�	 " �b�n	�a�	� �

For triangular and rectangular faces �ij the quadrature formulae

�ij � �b�n	�abary	meas��ij	

ful�lls ����	 with abary the barycenter of �ij �

����� Central di�erence scheme �CDS�

We call this scheme �central� because of the analogy of A��
 and a central di
erence approx


imation of the �rst derivatives� We recall the formulas derived in Chapter III

wij�x	 � �meas��ij	

meas�Vi	
kij

�uh�j � uh�i�

dist�xi� xj	
� ����	

vij�x	 �
�i�j

meas�Vi	

�
dist�xj � xij	

dist�xi� xj	
uh�i "

dist�xi� xij	

dist�xi� xj	
uh�j

�
����	

with ki�j de�ned by

ki�j �

�
�

dist�xi� xj	

Z xj

xi

ds

a�s	

���
�

An application of the discrete maximum principle shows that CDS is stable if the following

inequalities are satis�ed

Pi � max
j���i


j�i�j j
meas��ij	

�
dist�xi� xij	

ki�j
� � � xi � �� � � � � nS � �����	

In some application Pi is called a local �cell	 Peclet number �cf� ����� �����	� Note that the

quantity j�i�j j�meas��ij	 does not depend upon h and therefore the inequalities �����	 are

satis�ed only for su�ciently small h� We will not further consider the CDS because of its

conditional stability�

����� Upwind di�erence scheme �UDS�

One of the ways to �nd stable �nite di
erence approximation for convection
di
usion bound


ary value problem is to use upwind approximation for the �rst derivatives� In this case� A��


is de�ned as in CDS and the terms vi�j in A��
 are approximated in the following way�

vi�j � ��i�juh�i " ��i�juh�j �����a	

where ��i�j and ��i�j are de�ned via the formulas

��i�j �
�

meas�Vi	
�
��i�j " j�i�j j	

�
� ��i�j �

�

meas�Vi	
�
��i�j � j�i�j j	

�
�

�����b	

In order to investigate the properties of the UDS we need the following auxiliary result�
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Proposition ��� Let b�x	 � �W d��x������		d � � 	 � and there exists a positive constant

�� such that Z
�V

�b�x	�n	 ds � ��meas�V 	 �����	

for any volume V � � with Lipschitz�continuous boundary �V � �j�S�i
�ij � Suppose that

�i�j satis�es the condition ����c	� Then there exists h� such that for h � ��� h�	 the following

inequality holds� X
j���i


�i�j � c�meas�V 	 � �����	

where c� � �� �O�h�	�

Proof� It follows from the FV regularity of the control volume V and the condition ����c	�

�

We replace the condition �����	 with the stronger one�

Assumption ��� b�x	 � �
W d��������	

�d
� � 	 � and div�b�x		 � �� 	 �

for almost every x � ��

In fact� this is a stronger version of the Assumption ����

Remark ��� We can consider the left hand side of �����	 as a de�nition of the discrete

divergence operator� Then the above proposition means that� if the divergence of the vector

b is greater than �� 	 �� the discrete analogy of div�b	 is also positive for su�ciently small

h�

First we will prove that the considered scheme is monotone�

Proposition ��� Let the Assumption ��
 be satis�ed� the discrete �uxes wi�j and vi�j be

de�ned by the formulas ����	 and �����	� respectively� and the approximations �i�j ful�ll the

condition ����c	� Then UDS satis�es the discrete maximum principle and the corresponding

matrix A is an M�matrix�

Proof� Let ai�j be the coe�cients in front of uh�j in the ith equation� Then it is enough to

check the conditions �����

�� ai�i 	 � ai�j � � j �� i�

�� ai�i "
P

j���i
 ai�j 	 �� i�e�� A is strictly diagonally dominant�

We have

��

ai�i �
�

meas�Vi	

X
j���i


�
meas��ij	

dist�xi� xj	
ki�j " �i�j " j�i�j j

�
	 � �

ai�j �
�

meas�Vi	

�
� meas��ij	

dist�xi� xj	
ki�j " �i�j � j�i�j j

�
� � �
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��

ai�i "
X
j���i


ai�j �
�

meas�Vi	

X
j���i


�i�j � c� 	 � �

The last inequality follows from the Proposition ���� �

Note that to prove Proposition ��� we used only that kij 	 �� the Assumption ��� and

����c	�

Now we discuss on the positive de�niteness of the operator Ah and the matrix A� In

Chapter II we have shown that the bilinear form� corresponding to the continuous problem

�����	 is H�
��elliptic� In the following proposition we establish that the discrete analog of the

bilinear form inherits this property�

Proposition ��� Let the Assumptions ��� and ��
 be satis�ed� the discrete �uxes wi�j and

vi�j be de�ned by the formulas ����	 and �����	� respectively� and the approximations �i�j
ful�ll the conditions ����	� Then the matrix A of UDS is a positive real matrix and there

exists a constant C such that the following inequality is true�

�Ahy� y	 � Ckyk���	 � for all y � D� � fy� yj� � �g�

The constant C depends only on the ratio a�x	�jb�x	j�

Proof� Let z�x	 and y�x	 be grid functions from D�� Then

�Ahy� z	S � �
X
xi�	

X
j���i


meas�Vi	wi�jzj "
X
xi�	

X
j���i


meas�Vi	vi�jzj �����	

� I " J �

We transform the sums in formulae �����	

I � �
X
xi�	

X
j���i


meas�Vi	

�
meas��ij	

meas�Vi	
ki�j

�yj � yi�

dist�xi� xj	

�
zi

�
�

�

X
xi�	

X
j���i


meas��ij	

dist�xi� xj	
ki�j ��yj � yi�zj � �yj � yi�zi	

�
�

�

X
xi�	

X
j���i


meas�Vi	ki�j
�yj � yi�

dist�xi� xj	

��
meas��ij	

meas�Vi	

�
�zj � zi�

�
�

Using �����	 we rewrite J in the following way

J �
�

�

X
xi�	

X
j���i


���i�j " j�i�j j	yi " ��i�j � j�i�j j	yj �

�
�

�

X
xi�	

�
� X
j���i


�i�jyizi "
X
j���i


j�i�j j�yi � yj	 "
X
j���i


�i�jyjzi

�
� �����	

� J� " J� " J� �

We now transform the second term in �����	

J� �
�

�

X
xi�	

X
j���i


j�i�j j�yi � yj	zi �
�

�

X
xi�	

X
j���i


j�i�j j�yi � yj	�zi � zj	
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and the third term in �����	

J� �
�

�

X
xi�	

X
j���i


�i�jyjzi �
�

�

X
xi�	

X
j���i


�i�jyjzi " �j�iyizj

�
�

�

X
xi�	

X
j���i


�i�j�yjzi � yizj	 �

Finally we get

�Ahy� z	 �
�

�

X
xi�	

X
j���i


meas�Vi	ki�j
�yj � yi�

dist�xi� xj	

��
meas��ij	

meas�Vi	

�
�zj � zi�

�

"
�

�

X
xi�	

�
� X
j���i


�i�j

�
A yizi "

�

�

X
xi�	

X
j���i


j�i�j j�yi � yj	�zi � zj	

"
�

�

X
xi�	

X
j���i


�i�j�yjzi � yizj	 �

Letting z � y in the above formula the desired result follows using Proposition ���� and the

FV regularity of the control volumes� �

����� Modi	ed upwind di�erence scheme �MUDS�

As we will later show the UDS is only O�h	 accurate� We would like to exploit the symmetry

of some special triangulations in order to obtain higher order convergence and still have a

diagonally dominant matrix� Such triangulations for example are Voronoi meshes� We sketch

the derivation of MUDS only for ��D mesh for simplicity� We assume that dist�xj � xij	 �

dist�xi� xij	 and that the ratio meas��ij	�dist�xi� xj	 is bounded by constants independent

of h� Without loss of generality we suppose that this ratio is equal to one� Then we modify

the upwind scheme in the following way ���� �see also �����	Z
�ij

�b�n	u ds�
�i�j " j�i�j j

�
ui "

�i�j � j�i�j j
�

uj "O�h	 � I� "O�h	 �

Z
�ij

�b�n	u ds�
�i�j
�
ui "

�i�j
�
uj "O�h�	 � I� "O�h�	 �

Z
�ij

��aru" bu�n	 ds � �ki�j �uh�j � uh�i� " I� "O�h�	

� �
�
ki�j � j�i�j j

�

�
�uh�j � uh�i� " I� "O�h�	

� � ki�j
� " j�i�j j��ki�j �uh�j � uh�i�

�
�
ki�j � j�i�j j

�
� k�i�j
ki�j " j�i�j j��

�
�uh�j � uh�i�

"I� "O�h�	

� � ki�j
� " j�i�j j��ki�j �uh�j � uh�i�

"
��i�j��

ki�j " j�i�j j���uh�j � uh�i� " I� "O�h�	

� � ki�j
� " j�i�j j��k��i�j �uh�j � uh�i� " I� "O�h�	�
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In the last step we have taken into account that �i�j � O�h	� This heuristic formulae show

that if we want to get a second
order �nite di
erence scheme we should choose wi�j and vi�j
in such a way that they satisfy the following condition�

wi�j " v��i�j �
�

meas�Vi	

�
�meas��ij	(ki�j �uh�j � uh�i�

dist�xi� xj	

"
�i�j " j�i�j j

�
uh�i ""

�i�j � j�i�j j
�

uh�j

�
�

We remark here that we split the scheme into two parts only for convenience of the error

analysis� Then we de�ne MUDS as follows� A��
 is the same as in CDS and the expressions

wi�j in A��
 are de�ned by

wi�j � � �

meas�Vi	

�
meas��ij	(ki�j " dist�xi� xj	

j�i�j j
�

�
�uh�j � uh�i�

dist�xi� xj	
� �����	

where

(ki�j �
ki�j

� " jBi�j j��k��i�j � with Bi�j �
�i�jdist�xi� xj	

meas��ij	
� �����	

Using similar argument as in Proposition ��� and Proposition ��� we can prove the fol


lowing�

Proposition ��� Let the Assumption ��
 be satis�ed� the discrete �uxes wi�j and vi�j be

de�ned by the formulas �����	 and ����	� respectively� and the approximations �i�j ful�ll the

condition ����c	� Then MUDS satis�es the discrete maximum principle and the correspond�

ing matrix A is an M�matrix�

Proposition ��� Let the Assumptions ��� and ��
 be satis�ed� the discrete �uxes wi�j and

vi�j be de�ned by the formulas �����	 and ����	� respectively� and the approximations �i�j
ful�ll the conditions ����	� Then the matrix A of the MUDS is a positive real matrix and

there exists a constant C such that the following inequality is true�

�Ahy� y	 � Ckyk���	 � for all y � D� � fy� yj� � �g �

The constant C depends only on the ratio a�x	�jb�x	j�

����� Il�in�s di�erence scheme �IDS�

Another approximation we derive in a similar way as in ����Z
�ij

��aru" bu�n	 ds � �meas��ij	#ki�j �uh�j � uh�i�

dist�xi� xj	
"
�i�j
�
uh�i "

�i�j
�
uh�j

or

wi�j � �meas��ij	
meas�Vi	

#ki�j
�uh�j � uh�i�

dist�xi� xj	
�����	

and vi�j are de�ned as in CDS� We choose the coe�cient #ki�j such that the above approximate

relation is exact for u � e�b�n
t�a when a�x	 and b are constants and t is a variable on the

line xi� xj � Simple computations show that #ki�j have to be de�ned through the equality

#ki�j � Bi�j coth

�
Bi�j

ki�j

�
� where Bi�j �

�i�jdist�xi� xj	

�meas��ij	
� �����	
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It is easy to see that #ki�j are positive regardless of the sign of �b�n	� From j coth�x	j 	 � we

have #ki�j 	 jBi�j j� In order to investigate the properties of the IDS we rewrite wi�j " vi�j
with wi�j de�ned by �����	 in the following way�

wi�j " vi�j � �meas��ij	
meas�Vi	

h
#ki�j �Bi�j

i �uh�j � uh�i�

dist�xi� xj	

"
��i�j " j�i�j j	

�
uh�i "

��i�j � j�i�j j	
�

uh�j �

Using the same technique as in previous propositions we have�

Proposition ��� Let the Assumption ��
 be satis�ed� the discrete �uxes wi�j and vi�j be

de�ned by the formulas �����	 and ����	� respectively� and the approximations �i�j ful�ll the

condition ����c	� Then IDS satis�es the discrete maximum principle and the corresponding

matrix A is an M�matrix�

Proposition ��
 Let the Assumptions ��� and ��
 be satis�ed� the discrete �uxes wi�j and

vi�j be de�ned by the formulas �����	 and ����	� respectively� and the approximations �i�j
ful�ll the conditions ����	� Then the matrix A of the IDS is a positive real matrix and there

exists a constant C such that the following inequality is true�

�Ahy� y	 � Ckyk���	 � for all y � D� � fy� yj� � �g �
The constant C depends only on the ratio a�x	�jb�x	j�

Remark ��� If �� � � the UDS� MUDS and IDS does not satisfy the discrete maximum

principle� but for su�ciently small h the considered �nite di
erence operators are coercive�

This means that the error estimates which we prove in the next sections hold in this case

with one more restriction�

Summarizing these approximations we formulate the following discrete problem for �����	�

Find a grid function uh�x	� which satis�es the �nite di
erence equations�

X
j���i


wi�j "
X

j���i


vi�j � �i in � � i � �� � � � nS �

uh�x	 � � on + �

where wi�j � vi�j are de�ned by ����	� �����	� �����	� ����	 and �����	� respectively� and �i �
�

meas�Vi


R
Vi
f�x	 dx� These schemes can be written as systems of linear algebraic equations

Auh � � � �����	

��� Stability and error analysis

The stability of problem �����	 is a simple consequence of the positive de�niteness of the

matrix A� Namely� we prove the following lemma�

Lemma ��� Let the Assumptions ��� and ��
 be satis�ed� Then for all considered di�erence

schemes the following a priori estimate is valid�

kuhk��	 � Ck�k���	 �
where uh is the discrete solution and � is the right�hand side of ���	��� The constant C in

this estimate does not depend on h or ��
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Proof� The proof follows from the inequalities based on the the coercivity of the operator A

and on the de�nition of the norm jj�jj���	

kuhk���	 � C�Ahuh� uh	 � C��� uh	S � Ck�k���	kuhk��	 �

�

Remark ��� Since k�k���	 � k�k��	 and kuhk��	 � kuhk��	 we also can obtain the following

estimate�

kuhk��	 � Ck�k��	 � �

����� Error estimates in discrete H�
norm

The error analysis presented here is done in the general framework of the methods developed

in ����� and ����� We consider only the case when a�x	 � �� Let

z�x	 � uh�x	 � u�x	 � x � �

be the error of the �nite di
erence method� Substituting uh � z " u in �����	 we obtain

Az � ��Au � � � �����	

Then using ����	������	 we transform � in the following form

X
j���i


�
�

meas�Vi	

Z
�ij

�W�n	 ds� wi�j

 

"
X
j���i


�
�

meas�Vi	

Z
�ij

�V�n	 ds� vi�j

 
� ���i " ���i � �i �

We de�ne the local truncation error in the following way�

�i�j �
�

meas��ij	

Z
�ij

�W�n	 ds� meas�Vi	

meas��ij	
wi�j � �����a	

�i�j �
�

meas��ij	

Z
�ij

�V�n	 ds� meas�Vi	

meas��ij	
vi�j � �����b	

First we consider the term ���� z	S � By the de�nition of the discrete inner product and ���i
we have

���� z	S �
X
xi�	

meas�Vi	���izi

�
X
xi�	

X
j���i


�Z
�ij

�W�n	 ds"meas��ij	kij
�uj � ui�

dist�xi� xj	

 
zi �
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We can regroup the terms �we call this nonuniform summation by parts	 to get

���� z	S �
�

�

X
xi�	

X
j���i


!�Z
�ij

�W�n	 "meas��ij	kij
�uj � ui�

dist�xi� xj	

 
zi

"

�Z
�ji

�W�n	 "meas��ji	kji
�ui � uj �

dist�xi� xj	

 
zj

"

� ��

�

X
xi�	

X
j���i


�Z
�ij

�W�n	 "meas��ij	kij
�uj � ui�

dist�xi� xj	

 
�zj � zi�

� ��

�

X
xi�	

X
j���i


dist�xi� xj	meas��ij	

�
�

meas��ij	

Z
�ij

�W�n	� meas�Vi	

meas��ij	
wi�j

 
�zj � zi�

dist�xi� xj	

� ��

�

X
xi�	

X
j���i


dist�xi� xj	meas��ij	�i�j
�zj � zi�

dist�xi� xj	
�

By the FV regularity of the grid and Cauchy�Schwartz inequality follows

���� z	S �
�
�X
xi�	

X
j���i


meas�Vi	�
�
i�j

�
A

����
�X
xi�	

X
j���i


meas�Vi	

�
�zj � zi�

dist�xi� xj	

���A
���

� k�k	�	kzk��	 �
Here for convenience we denote with k�k	�	 the �rst sum above�

Likewise

���� z	S �
X
xi�	

meas�Vi	���izi

�
X
xi�	

X
j���i


�Z
�ij

�W�n	 ds�
�
�i�j " j�i�j

�
ui "

�i�j � j�i�j
�

uj

� 
zi

� ��

�

X
xi�	

X
j���i


dist�xi� xj	meas��ij	

�
�

meas��ij	

Z
�ij

�V�n	� meas�Vi	

meas��ij	
vi�j

 
�zj � zi�

dist�xi� xj	

� ��

�

X
xi�	

X
j���i


dist�xi� xj	meas��ij	�i�j
�zj � zi�

dist�xi� xj	

�
�
�X
xi�	

X
j���i


meas�Vi	�
�
i�j

�
A

����
�X
xi�	

X
j���i


meas�Vi	

�
�zj � zi�

dist�xi� xj	

���A
���

� k�k	�	kzk��	 �
Summarizing these results and using Propositions ���� ���� ��� we obtain the following

main result�

Lemma ��� Let the Assumptions ��� and ��
 be satis�ed� The error z�x	 � uh�x	�u�x	 � x �
� of all considered �nite di�erence schemes satis�es the a priori estimate

kzk��	 � C �k�k	�	 " k�k	�		 �����	
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where the components �i�j and �i�j of the local truncation error are de�ned by ���		� with

approximate �uxes wi�j and vi�j determined by ���
�� ������� ������ and ����
� for the UDS�

MUDS and IDS� correspondingly� The constant C in this estimate does not depend on h

or z�

In order to use the estimate �����	 of Lemma ��� we have to bound the corresponding norms

of the local truncation error components �i�j and �i�j de�ned by �����	� These estimates are

provided in the lemmas given below�

Consider one �xed face �ij and the prism eij with two faces through xi and other faces

are parallel to the straight line �xi� xj	 and go through the boundary of �ij � Note that �ij is

a convex polygon by construction�

Lemma ��� Let the solution of the problem �	���� be Hs�regular� �
� � s� and the compo�

nent of the local truncation error �i�j be de�ned by ���		a� with the approximate �ux wi�j
determined by ���
�� ������ and ����
�� Then the following estimate holds�

j�i�j j � Chs�d����jujs�eij �
�

�
� s � � " sym� �����	

where sym � � for a general triangulation� and equals � if the symmetry assumption is

satis�ed�

Proof� We transform eij into a  eij with a linear transformation �x�� x�� x�	 	 ���� ��� ��	

such that xj is mapped into ��� �� �	� xi into ���� �� �	 and meas� �ij	 � �� Let

u�x�� x�� x�	 �  u���� ��� ��	� Consider �rst the component �i�j�u	 for the UDS� Denote h� �

dist�xi� xj	� Then

�i�j�u	 � � meas�Vi	

meas��ij	
wi�j "

�

meas��ij	

Z
�ij

�W�n	 ds

�
�uj � ui�

dist�xi� xj	
� �

meas��ij	

Z
�ij

�u

�n
ds

�i�j�u	 � �i�j� u	 �
�

h�

�
 uj �  ui �

Z
	�ij

� u

�n
� xij � ��� ��	 d��d��

 
�

Using the imbedding of Sobolev spaces Hs��	 �	 C�����	� � � s � d�� 	 � �cf� ����c		

and Hs��	 �	 H���ij	� 
 � s� ��� 	 � �cf� ����a		 we have

j�i�j� u	j � �

h�

#
�j ujC����	eij 
 " j uj���ij

$ � C

h�
k uks�	eij �

It is easy to check that �i�j� u	 vanishes if  u is a polynomial of �rst degree� Therefore� by the

Bramble
Hilbert lemma �Theorem ���	 we get that

j�i�j� u	j � C

h�
j ujs�	eij �

�

�
� s � �

and with inverse transformation and the inequality ����a	 we get

jujs�	eij � Chs�d��jujs�eij �
�

�
� s � � �

Therefore�

j�i�j�u	j � Chs�d����jujs�eij �
�

�
� s � � � �����	
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Suppose that the symmetry assumption is satis�ed� Then �i�j� u	 vanishes if  u is a poly


nomial of second degree� In this case the estimate �����	 holds for �
� � s � ��

Now we consider �i�j for the MUDS� By construction

�i�j�u	 �

�
�

� " jBi�j j�� "
jBi�j j
�

�
�
�uj � ui�

dist�xi� xj	
� �

meas��ij	

Z
�ij

�u

�n
ds

�

!
�uj � ui�

dist�xi� xj	
� �

meas��ij	

Z
�ij

�u

�n
ds

"
"

�
C��x	�dist�xi � xj		

� �uj � ui�

dist�xi� xj	

�

since �
�

� " jBi�j j�� "
jBi�j j
�

�
� � " C��x	�dist�xi� xj		

� � C��x	 � jb�x	j��

Here Bi�j is de�ned via the formulae �����	�

We consider �uj � ui��h� as a linear functional of u� With the same argument as for the

UDS we show ����uj � ui
h�

���� � �

h�
jujC����	eij
 �

C

h�
kuks�	eij �

d

�
� s�

This functional vanishes for constants� Therefore� if follows from the modi�ed Bramble�

Hilbert lemma �Theorem ���	 that

dist�xi� xj	
�

����uj � ui
h�

���� � Ch��d����kuks�eij �
�

�
� s �

Hence the estimate �����	 is valid in this case as well and if the symmetry assumption is

satis�ed s can reach ��

Finally for the IDS the result follows from the fact

Bi�jcoth�Bi�j	 � � " (C��x	dist�xi� xj	
� � (C��x	 � jb�x	j��

and the same reasons as in the case for the MUDS� Here Bi�j is de�ned by �����	� �

Lemma ��� Let the solution of the problem �	���� be Hs�regular� �
� � s� and the component

of the local truncation error �i�j be de�ned by ���		b� with the approximate �ux vi�j determined

by ����	 and �����	� Then the following estimate holds�

j�i�j j �
�

Chs�d��kbkd��������kuks�eij for MUDS and IDS�

Ch��d��
#jbj�����juj��eij " hs��kbkd��������kuks�eij

$
for UDS�

�����	

where d
� � s � ��

Proof� We consider two cases� For UDS suppose �i�j 	 �� Then

�i�j�u	 �
�

meas��ij	

Z
�ij

�V�n	 ds� meas�Vi	

meas��ij	
vi�j

�
�

meas��ij	

Z
�ij

�b�n	u ds� �

meas��ij	
�i�jui�

We again use the linear transformation of coordinates from the proof of Lemma ���� After

the linear transformation is performed� the truncation error �i�j simpli�es to

�i�j� u	 �

Z
	�ij

� b�n	 u ds�  �i�j  ui�
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Denote l�� b�  u	 � ��i�j� u	� We represent l� in the following way�

l�� b�  u	 �  �i�j  ui �
Z
	�ij

� b�n	 u ds

�  �i�j

�
 ui �

Z
	�ij

 uds

 
"

�Z
	�ij

�  �i�j � � b�n	� u ds

 

�  �i�j

�
 ui �

Z
	�ij

 uds

 
"

Z
	�ij

�  �i�j � � b�n	�� u�  ui� ds

"  ui

Z
	�ij

��i�j � �b�n	� ds

�  �i�jp�� u	 " c� b�  u	 "  uiq�b	 �

where the linear functionals p�� u	� q�b	 and the bilinear functional c� b�  u	 are de�ned by

p�� u	 �  ui �
Z
	�ij

 uds�

c� b�  u	 �

Z
	�ij

�  �i�j � � b�n	�� u�  ui� ds�

q�b	 �

Z
	�ij

��i�j � �b�n	� ds �

Therefore� using ����b	 we have

jl�� b�  u	j � jbj����	eij jp�� u	j" jc� b�  u	j" j uj����	eij jq�b	j �

First we consider p�� u	� The Sobolev imbedding theorem �Theorem ���	 and the trace theo


rem �Theorem ���	 imply that p�� u	 is bounded for  u � Hs� eij	 �

jp�� u	j � j uj����	eij " juj��	�ij � Ck uks�	eij �
d

�
� s �

Moreover� p���	 vanishes for constants� By the modi�ed Bramble�Hilbert lemma �Theorem

���	 follows

jp�� u	j � C�j uj��	eij " j ujs�	eij 	 �
d

�
� s � � �

The inverse transformation �cf� ����a		 produces the estimate

jp��u	j � Ch��d���juj��eij " hs��j ujs�	eij 	 �
d

�
� s � ��

Obviously c� b�  u	 is a bilinear functional bounded for � b�  u	 � �
W ���� eij	

�d 
H�� eij	 and

vanishes for r� s polynomials of zero degree� i�e�� c�r�  u	 � � for  u � H�� eij	 and c� b� s	 � �

for  b � �W ���� eij		
d� Then by the bilinear variant of the Bramble
Hilbert lemma �Theorem

���	 and the inverse transformation we have

jc�b� u	j � Ch��d��jbj����eij juj��eij �

And �nally the linear functional is estimated by the assumption ����c	

jq�b	j � Chd��kbkd���������

Combining the estimates for p��	� c��� �	 and q��	 we get the desired assertion�
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Now we consider �i�j for MUDS and IDS

�i�j�u	 �
�

meas��ij	

Z
�ij

�V�n	 ds � meas�Vi	

meas��ij	
vi�j

�
�

meas��ij	

Z
�ij

�b�n	u ds� �

meas��ij	
�i�j ��jui " �iuj � �

where

�j �
dist�xj � xij	

dist�xi� xj	
� �i �

dist�xi� xij	

dist�xi� xj	
�

With the usual linear transformation of coordinates we get

�i�j� u	 �

Z
	�ij

� b�n	 uds�  �i�j ��j  ui " �i uj ��

De�ne l�� b�  u	 � ��i�j� u	� With the similar argument as in the case for UDS we rewrite l�
is the following form�

l�� b�  u	 �  �i�jp�� u	 " c� b�  u	 "  uiq�b	 �

where the linear functional p���	 is given by the formulae

p�� u	 � ��j  ui " �j  uj ��
Z
	�ij

 uds

and q��	 and c��� �	 are the same as above�

p�� u	 is bounded for  u � Hs� eij	�
d
� � s and vanishes for all polynomials of �rst degree�

Hence

jp��u	j � Chs�d��jujs�eij �
d

�
� s � ��

�

We point out that the symmetry condition is used only to estimate the truncation error

�i�j of the di
usion term�

Now we are ready to prove the main result of this subsection�

Theorem ��� If the solution u�x	 of the problem �	���� is Hs�regular� with �
� � s � �

and the Assumptions ��� and ��
 are satis�ed then� �i	 if the Assumption ��	 is satis�ed�

the MUDS and the IDS de�ned by ������� ������ ����
� and ����� have O�hs��� rate of

convergence in the H�� discrete norm� and

kuh � uk��	 � Chs��
�
� " h�kbkd��������

� kuks�� �
�ii	 the UDS de�ned by ���
� and ������ has at most �rst order of convergence in the H��

discrete norm� and

kuh � uk��	 � Chjbj�����juj��� " Chs��
�
� " h�kbkd��������

� kuks���
Here

� �

�
� �

� � s � ��

�� s � � s � ��
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Proof� In Lemmas ��� and ��� we have proved the estimates for the components �i�j and

�i�j of the local truncation error� Hence

k�k	�	 �

�
�X
xi�	

meas�Vi	
X
j���i


��i�j

�
A

���

� C

�
�X
xi�	

hd
X
j���i


h�s�d��juj�s�eij

�
A

���

� C�h
s��jujs�� � d

�
� s � � " sym �

In the same way we show that

k�k	�	 � Chskbkd��������kuks��
when MUDS or IDS are used� and

k�k	�	 � C
�
hskbkd��������kuks�� " hjbj�����juj���

�
otherwise� This completes the proof� �

����� Error estimates in discrete L��norm

Here we elaborate the discrete Aubin
Nitsche �trick� for �nite di
erence operators introduced

in Section ���� �see also �����	� We consider only ��D square meshes An example of such

a grid is shown on Fig� ���� Since the issue of constructing and studying of monotone

approximation to convection
di
usion operators is our main goal we disregard the di
erences

that may occur from the approximation of the right hand side� Thus we consider the following

homogeneous problem�
div��a�x	ru�x	 " b�x	u�x		 � � in � �

u�x	 � g�x	 on + �
�����	

where g�x	 � L��+	� In order to simplify our presentation we consider only the case a�x	 � ��

We use the fact that the mesh is aligned with the coordinate axes and de�ne the approximate

�uxes in each direction� A typical volume V is shown on Fig� ���� The boundary �V is split

�V � s�� � s�� � s� � s�� If this subsection we denote the approximate solution uh with y in

order to reduce the subindices� The operators A��
 and A��
 are de�ned by

A��
y � w�
��i�j � w��i�j " w�

��i�j � w��i�j � x � � � �����	

A��
y � v���i�j � v��i�j " v���i�j � v��i�j � x � �

and the approximate �uxes are given via

w�
l �x	 � w�

l�i�j � �k
�
l�i�j

h
yxl�i�j � l � �� �� �����	

wl�x	 � wl�i�j � �kl�i�j
h

yxl�i�j � l � �� � �

and

v���i�j � B�
��i�j�yi���j " yi�j	 � B�

��i�j �
b��i�����j

�h
�

v��i�j � B��i�j�yi�j " yi���j	 � B��i�j �
b��i�����j

�h
�
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����	
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Figure ���� Cell
centered mesh

s� s��

s�

s��

�x��i� x��j	

Figure ���� Control volume V �x	
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v���i�j � B�
��i�j�yi�j�� " yi�j	 � B�

��i�j �
b��i�j����

�h
� �����	

v��i�j � B��i�j�yi�j " yi�j��	 � B��i�j �
b��i�j����

�h
�

where

k��i�j �

�
�

h

Z x��i

x��i��

ds

a�s� x��j	

���
� k���i�j � k��i���j �����	

k��i�j �

�
�

h

Z x��j

x��j��

ds

a�x��i� s	

���
� k���i�j � k��i�j�� �

For the UDS we de�ne the approximate �uxes vl�i�j with the formulas

v���i�j � �B�
��i�j � jB�

��i�j j	yi���j " �B�
��i�j " jB�

��i�j j	yi�j � �����	

v��i�j � �B��i�j � jB��i�j j	yi�j " �B��i�j " jB��i�j j	yi���j �

The approximate �uxes for MUDS are introduced by

w�
l�i�j � � �

h

�
(k�l�i�j " jB�

l�i�jh
�j
�
yxl�i�j � l � �� � � �����	

wl�i�j � � �

h

�
kl�i�j " jBl�i�jh

�j� yxli�j � l � �� � �

where

(k��i�j �
k��i�j

� " jB��i�jh�j�k��i�j �
(k���i�j �

(k��i���j � �����	

(k��i�j �
k��i�j

� " jB��i�jh�j�k��i�j �
(k���i�j �

(k��i�j�� �

and for IDS

w�
l�i�j � ��

�
l�i�j

h
yxl�i�j � wl�i�j � ��l�i�j

h
yxl�i�j � l � �� � � �����	

��l�i�j � B�
l�i�jh

� coth

�
B�
l�i�jh

�

k�l�i�j

�
�

�l�i�j � Bl�i�jh
� coth

�
Bl�i�jh

�

kl�i�j

�
�

�����	

First� we introduce the following averaging operators ������

Siu �
�

h

Z xi�h��

xi�h��

u�x�� � � � � �i� � � � � xn	 d�i �

S�
i u �

�

h

Z xi�h

xi

u�x�� � � � � �i� � � � � xn	 d�i �

S�i u �
�

h

Z xi

xi�h

u�x�� � � � � �i� � � � � xn	 d�i �

Ti � S�
i � S�

i S
�
i � T � T�T� �
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Then applying T to the di
erential equation �����	 at any grid point x � � and using the

properties�

Ti

�
��u

�x�i

�
�x	 � uxi�xi � S�

i

�
�u

�xi

�
�x	 � uxi

we get

� �T�u	x��x� � �T�u	x��x� " T�S
�
� �b�u	x� " T�S

�
� �b�u	x� � � � �����	

We express the operator Ah in the form

hw��x� " hw��x� "A��
y � � � x � � � �����	

y�x	 � T��lg�x	 � x � ��l � l � �� � � �����	

Let z�x	 � y�x	� u�x	 � x � �S be the error of the �nite di
erence method� We de�ne

u �

�
u�x	 � x � �

T��lg�x	 � x � ��l � l � �� � �

Then z � �y � u	 " �u � u	 � z " u � u� Note that z � � on �� Substituting y � z " u in

�����	 we obtain

Ahz � Ahy � Ahu � �����	

The right
hand side of �����	 is the local truncation error� In order to obtain a priori estimate

we represent the local truncation error in a divergence or almost divergence form �depending

upon the choice of the di
erence scheme	� Next� we rewrite �����	 as

Ahz �
�X
l��

#
hwl " �T��lu	xl

$
xl

"
�X
l��

#
hvl � T��lS

�
l �blu	

$
xl

�
�X
l��

�T��lu� u	xlxl "
�X
l��

#
hvl � T��lS

�
l �blu	

$
xl

"

�X
l��

���kl � �	uxl �xl �

Finally� we �nd the expression for the local truncation error

Ahz � ���x�x� " ���x�x� " ���x� " ���x� " ���x� " ���x� �����	

where

�l � T��lu� u � x � ��l � �����	

�l � hvl � T��lS
�
l �blu	 � �l � ��kl � �	uxl � x � ��

l � �����	

where v is gotten by replacing u with u in the formulas �����	 and �����	�

Let us introduce the solution of the following auxiliary discrete problem

AT
hw � z in �S �

w � � on � �
�����	
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Note that similarly to the Aubin
Nitsche �trick� w is a solution of a discrete second order

problem with a right
hand side the error z�x	 of the method� Obviously�

�Ahz� w	 � �AT
hw� z	S � �z� z	S � kzk���	 � �����	

On the other hand from �����	 we get

�Ahz� w	S �
�X
l��

���l�xlxl � w	S " ��l�xl � w	S " ��l�xl � w	S �

�
�X
l��

��l� wxlxl	S �
�X
l��

f��l� wxl �l " ��l� wxl �lg �����	

�
�X
l��

�k�lk��	 " k�lejl " k�lejl	�kwxlxlk��	 " kwxlejl	 �

To complete the proof of the a priori estimate we need the following lemma�

Lemma ��� Let b�x	 � �
W �����	

��
� Then for the error z�x	 � y�x	 � u�x	� x � � of all

considered schemes and the solution w of the problem ������ the inequalities are valid�

kwk��	 � C�kA��

h wk��	 � C�kzk��	 �����	

for su�ciently small h�

Proof� Using the de�nition of A
��

h and the triangle inequality we get

kA��

h wk��	 � k�k�wx� �x� " �k�wx� �x�k��	

� k��� " C��x	h
�	wx� �x� " ��� " C��x		wx� �x�k��	

� kwx�x� " wx�x�k��	
�h�kC��x�wx� " C�wx�x� " C��x�wx� " C�wx�x�k��	

� kwx�x� " wx�x�k��	 �D�h
�kwk��	 �

Here kl � � � Cl � � � l � �� � for the UDS and

kl � �" Cl�x	h
� � Cl�x	 � b�l �x	 � l � �� �

otherwise� We use also that C�� C� and C��x� � C��x� are bounded�

Finally using the equivalence of kwx�x� "wx�x�k��	 and kwk��	 in the space D� we obtain

kA��

h k��	 �

�
D� �D�h

�
� kwk��	 �

where D� and D� are positive constants� Hence for su�ciently small h the lower bound in

�����	 is proved�

An upper estimate for kA��

h k��	 is derived by using the standard a priori estimate in

W �
� ��	� kwk��	 � Ckzk��	� Then

kA��

h wk��	 � kA��
T

h wk��	 � k�Ah �A
��

h 	Twk��	

� kAT
hwk��	 " kA��
T

h wk��	
� kzk��	 " Ckwk��	
� Ckzk��	 �

�
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Remark ��� Lemma ��� is actually a discrete regularity result in W �����	 �cf�� Hackbusch

����	

kwk��	 � Ckzk��	 �
Then �����	 and �����	 yield

kzk���	 � �Ahz� w	 � C

�X
l��

�k�lk��	 " k�lejl " k�lejl	kzk��	�

Thus� we have proved the following a priori estimate

Lemma ��� The error z�x	 � y�x	� u�x	� x � � of all considered �nite di�erence schemes

satis�es the a priori estimate�

kzk��	 � C
�X
l��

�k�lk��	 " k�lejl " k�lejl	 �

where the components �l� �l and �l � l � �� � of the local truncation error are de�ned by

����	� and ����
�� The constant C does not depend on h or z�

Now we are ready to prove the following basic lemma�

Lemma ��
 If the solution u of the problem ���	�� with constant coe�cient a�x	 is Hs��	�

regular� � � s � � then the components of the local truncation error �l and �l� l � �� ��

de�ned by ����	� and ����
�� respectively� satisfy the following estimates�

�i	

k�lk��	 � Chskuks�� �
�ii	

k�lejl �
�

Chskblk�����kuks�� for MUDS and IDS

C �hjblj�����juj��� " hskblk�����kuks��	 for UDS�

�iii	

k�lejl �
�

Ch�kuks�� for MUDS and IDS

� for UDS�

Proof� Consider ei�j � f�x�� x�	 � x��i�� � x� � x��i�� � x��j�� � x� � x��j��g� We begin

with UDS� To obtain �i	 we rewrite �����	 in the form

�� � u�x��i� x��j	�
Z �

��

��� js�j	u�x��i� x��j " s�h	 ds��

It su�ces to prove the estimate for x � � because by construction �l � � on ��l � We have

that �� is a linear functional of u�x	� bounded for u � Hs��	 � � � s � �� This functional

vanishes for all polynomial of �rst degree� Therefore� by a Bramble
Hilbert lemma argument

we get

j���x	j � Chs��jujs�e � � � s � �� �����	

k��k��	 �

�X
x�	

����x	h
�

� �
�

� Chsjujs�e�
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We note that in this case ���x	 � �� Now� let us take the component ���x	 for theMUDS and

the IDS� In both schemes the coe�cients (k��x	 and ���x	 are perturbations of the coe�cient

k��x	 � � of the UDS with a term of order O�h�	� More precisely�

(k��x	 �
�

� " jb��x	h��j "
jb��x	jh

�
� � " C�h

� �MUDS	

and

���x	 �
b��x	h

�
coth

�
b��x	h

�

�
� � " (C�h

� �IDS	�

Since

���x	 � ��k��x	� �	ux� � �C�h
� �ui�j � ui�j���

h

we have

j��x	j � Ch�juj��e " hs��jujs�e	 � � � s � �

for the interior points and hence

k��ej� � Ch�kuks�� � � � s � ��

For the boundary points we have ���x	 � �Ch�ui��j �ui���j � "Ch�ui�j �ui�j � and the second

term is estimated with the approach used in the proof of Theorem ����

�ii	 For the second component ���x	 we proceed in the same way as in Lemma ���� First�

we need the equality �see �����	�

T�S
�
� �b�u	�x��i� x��j	 �Z �

��

��� js�j	
�Z �

��

b��x��i " s�h� x��j " s�h	u�x��i " s�h� x��j " s�h	 ds�

�
ds��

Now� let us consider the component for the MUDS and IDS

���x	 �
b��i�����j

�
�ui�j " ui���j �� T�S

�
� �b�u	�x��i� x��j	 �

We can represent �� in the following way

���x	 � b��i�����jp�u	� c�b�� u	 " ui�jq�b�	

where

p�u	 �
�ui�j " ui���j �

�

�
Z �

��

��� js�j	
�Z �

��

u�x��i " s�h� x��j " s�h	 ds�

�
ds� �

c�b�� u	 �

Z �

��

��� js�j	
�Z �

��

u�x��i " s�h� x��j " s�h	� ui�j

�

 #

b��x��i " s�h� x��j " s�h	� b��i�����j
$
ds� ds�

and

q�b�	 � b��i�����j

�
Z �

��

��� js�j	
�Z �

��

b��x��i " s�h� x��j " s�h	� b��i�����j ds�

�
ds� �
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We have the estimates�

jp�u	j � Chs��jujs�e � � � s � ��

jc�b�� u	j � Chjb�j����ejuj��e�
jq�u	j � Chjb�j����e�

Hence

j���x	j � Chs��kb�k�jujs�e " h��s�juj��e " juj����e		�

For UDS we have to add the error of the term �jb��i�j jux� which is

h
�jb�j����e�juj��e " hs��jujs�e	

�
� �

Combining the above results we obtain the assertions of the lemma� �

Now we can prove the main result in this subsection�

Theorem ��� If the solution of problem �	���� is Hs�regular� � � s � � then�

�i	 the MUDS and IDS de�ned by ���

�� ���
��� ���
�� and ���
�� have O�hm� rate of

convergence in the L�� discrete norm� i�e��

ky � uk��	 � Chs��� " kb�k����� " kb�k�����	 kuks�� " kgks� �
� ��

�

�ii	 the UDS de�ned by ���	�� and ���
	� has at most �rst order of convergence in the

L��discrete norm� i�e��

ky � uk��	 � Ch �jb�j����� " jb�j�����	 juj���
"Chs��� " kb�k����� " kb�k�����	 kuks�� " kgks��

� ��
��

Proof� We have ky� uk��	 � ky� uk��	 " ku� uk��	� From Lemma ��� and Lemma ��� we

get immediately the estimate for ky � uk��	� To �nd the upper bound of the second term

ku� uk���	 �

�X
l��

X
��l

h� �T��lg�x	� g�x		
�
�

we observe that we can consider T��lg � g as a linear functional of g which is bounded in

Hm� �
� �+	 and vanishes for all polynomials of �rst degree� Then

jT��lg � gj � Chm��kgkm� �
� �e�

where e� � �xl � h� xl " h	 which shows that

ku� uk��	 � Chmkgkm� �
� ��

� �

Remark ��� The technique used in Subsections ����� and ����� directly gives the same

estimates for the CDS as for MUDS and IDS� when this scheme is stable� i�e�� when �����	

holds�

��� Numerical results

In this section we study the error behavior of our three schemes � UDS� MUDS� and IDS	

in both H� and L� discrete norms on model test examples�

We consider �
div���ru�x� y	 " b�x� y	u�x� y		 � f�x� y	 � in � �

u�x� y	 � � � on + �
�����	

and for velocity vector b we choose

b� � ���� x cos�	 cos� � b� � ���� y sin�	 sin� �

where the angle is � � ����
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Table ���� UDS � � � ��� � d � �
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Problem ��� f�x� y	 is chosen such that the solution is

u�x� y	 � x��� x	y��� y	ed�x��y
 for d � � or d � ��

In Tables ���
��� we display the error for smooth solutions without boundary layer behavior�

In the �rst and the second rows we show the L���	 and H���	
norms of the error z � y � u

and �numerical� rate of convergence �� i�e�� h� � Our computational experiments clearly show

that MUDS and IDS exhibit second order of convergence both in L� and H�
norms for

problems with moderate convection �i�e�� not too small � 	 �	 � the factor � is in the range

of ������������ correspondingly� For these problems UDS is only �rst order accurate� � is

between �����
������ For highly dominating convection all schemes show about �rst order of

accuracy� The results for � � ����� ���� show that all considered schemes are stable�

Problem ���

f�x� y	 � r � �bu�	 � u��x� y	 � x�y��� y	 �

Here u� is the solution of the equation �����	 when � � �� In Tables ���
��� we show

ky�u�k��	� where � is a grid in � � ��� ����
 ��� ��� i�e�� away from the boundary layer� This

gives us a reasonable information since for small � the function u� is close to the exact solution

of problem �� except within the boundary layer� In fact we have an estimate ku�u�k��� � C��

and when � is signi�cantly less than h we may use u� instead of the unknown exact solution u

in �� In case that h and � are of the same order this is inappropriate as is shown by Tables ���


 ��� h � ����� and � � ����� Our experiments show very weak dependence of the numerical

solution with respect to �	 � in �� This means that if we use a more sophisticated method

near the boundary layer� e�g�� local re�nement� or defect�correction� in combination with the

proposed schemes outside the layer� we can get better results�
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CHAPTER V

LOCAL REFINEMENT FOR FV PROBLEMS

The goal of every numerical simulation is to capture accurately the behavior of the mod


eled quantities� In this chapter we will concentrate on the error due to the approximation of

a di
erential model with a discrete one� The classical error estimates state that the approxi


mation error is proportional to some norm of the solution u and to some degree of the mesh

step h � i�e�� the error is proportional to hpkuks�� for some real numbers p and s� p � s� We

say that the solution u has singularities if it is not smooth enough �s is small	� or the norm

kuks�� is very large �usually called large gradients	�

If the solution has singularities� in order to achieve good accuracy� the mesh size h has

to be very small� Even with the most powerful computers available this cannot be done in

a uniform manner for many multidimensional problems� However� if the singularities of the

solution are localized� a substantial reduction of the computational cost can be achieved via

local re�nement� This means that where the gradient is large we re�ne the mesh so that the

overall error is not big�

The most common way to re�ne the grid is via smooth variation of the mesh size� Practical

applications of such algorithms are usually very complicated� Grid re�nement procedures that

consist of underlying coarse grid and patches of locally re�ned grids �possibly in more than

one level	� have been used and discussed by many authors� This approach has been also

widely used in reservoir modeling �see� e�g�� Pedrosa ����� and references there	�

The local patch re�nement procedure requires accurate treatment of the interface between

the coarse and �ne regions� This issue has been investigated for symmetric problems by Ew


ing� Lazarov and Vassilevski ����� They have developed various interpolation procedures

for cell�centered �nite volume di
erence schemes on uniform rectangular meshes and have

derived the corresponding error estimates� An extension to triangular meshes has been con


sidered by Vassilevski� Petrova and Lazarov ������ The convergence theory for �nite volume

element methods has been provided by Cai� Mandel and McCormick ���� ��� and the analysis

of mixed �nite element methods on locally re�ned grids has been considered by Ewing and

J� Wang �����

In recent years a more general approach to combine di
erent meshes and approximation

techniques� the so called �mortar� element methods has been popularized by Maday� Le

Tallec and their coworkers ���� ���� The idea of mortar element methods is to construct some

matching condition between di
erent domains and elements�

In this chapter we construct conservative cell
centered approximations on locally
re�ned

grids for convection
di
usion second
order elliptic equations that have optimal order of con


vergence and satisfy the discrete maximum principle�

This chapter is organized as follows� In Section ��� the �nite di
erence schemes are

described and studied� In Section ����� and Section ����� the constant and linear interpolation

on the interface are derived� Section ��� deals with the main properties of the discrete

problems� The error analysis is presented in Section ���� In Section ��� extensive computer

experiments are provided for a variety of convection
 di
usion problems� including convection

dominated ones� These tests support our theoretical results and assess the applicability of

the derived schemes and error bounds� Some technical details are given in Appendices A and

B�

�Portions of ���� reprinted with permission from Computing� Copyright ���� by Springer�Verlag� Wien�
All rights reserved�
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Figure ���� Composite cell
centered mesh

��� Finite di�erence schemes

We investigate cell�centered �nite di
erence schemes with local re�nement on ��D uniform

meshes� The schemes for such meshes are given in Section ������ We will derive error estimates

for UDS and MUDS�

Now we consider the case with local re�nement� where some of the cells are re�ned into

a number of �ne grid cells and introduced as grid points the centers of the new �ner cells

�see Fig� ���	� The subregion covered by the re�ned grid is denoted by �� and the remaining

part of � is denoted by ��� i�e��  � �  ��

S
 ��� We assume that the cells are squares� There

are cells of two di
erent sizes� coarse grid cells of size hc and �ne grid cells of size hf � �
mhc�

where m is a given positive integer�

The centers of the coarse grid cells contained in � de�ne the coarse grid� which is denoted

by (�� The set of coarse grid points in �� is designated by (��� i�e�� (�� � (�
T
��� The coarse

grid points in �� and the �ne grid points in �� de�ne the composite grid denoted by ��

The grid points of the composite grid next to the boundary between �� and �� we will call

irregular� All remaining grid points will be called regular�

From now on we will consider only the terms of the di
erence schemes in the x��direction�

In the other direction the corresponding expressions are derived similarly�

Conservation of mass implies that output �ux through the side of a coarse cell �s���i���j��	

is equal to the sum of input �uxes through the sides of neighboring �ne cells� �s��i�j � s��i�j��
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and s��i�j�� for the particular mesh shown on Fig� ���� m � �	� i�e��Z
s���i���j��

�W� " V�	 d� �

Z
s��i�j

�W� " V�	 d� "

Z
s��i�j��

�W� " V�	 d�

"

Z
s��i�j��

�W� " V�	 d� �

We require that the �nite di
erence schemes ful�ll a conservation law at the irregular points

as well� We de�ne w�
��i���j�� and v���i���j�� via the relation

w�
��i���j�� " v���i���j�� � w��i�j " v��i�j " w��i�j�� " v��i�j�� " w��i�j�� " v��i�j�� �

There exist various ways to approximate the �uxes w��i�j�l and v��i�j�l � l � �� �� �� Next we

consider two simple ways based on constant and linear interpolation�

����� Constant approximation

We suppose that the grid function y�x	 � x � � is extended in � as a constant over each

cell e�x	 � x � �� We have to consider the modi�cation of our �nite volume schemes that

have to be made along the interface between �� and ��� i�e�� at the irregular points� We use

the following formulae for non uniform mesh �see Fig� ���	 where for de�niteness we assume

hc � �hf

w��i�j�l � � �hf
hc " hf

k��i�j�l�lyi�j�l � l � �� �� ��

here

k��i�j�l �

�
�

hc " hf

Z x��i

x��i��

ds

a�s� x��j	

���
� k���i�j � k��i���j

and

��yi�j�l � yi�j�l � yi���j�l � yi�j�l � yi���j�� �

Note that �x��i��� x��j�l	� l � �� � are �slave� nodes and yi���j�� � yi���j�l� l � �� � because

we use constant interpolation� Since hc � �hf we get

w��i�j�l � ��

�
k��i�j�l��yi�j�l � ����	

v��i�j�l � �B��i�j�l � jB��i�j j	yi�j�l " �B��i�j�l " jB��i�j j	yi���j�� � ����	

Because of the poor approximation properties we do not consider constant approximation for

MUDS�

����� Linear approximation

We use this approximations for MUDS in irregular points� In this case is supposed that

y�x	 � x � � is interpolated linearly between any two neighboring coarse grid nodes� For

simplicity of presentation we con�ne again only with the case hc � �hf � We will need values

of y at the points �x��i��� x��j	 and �x��i��� x��j��	 which are not grid ones �see Fig� ���	� To

get them we use the following linear interpolation

yi���j �
�

�
yi���j�� "

�

�
yi���j�� � ����	

yi���j�� �
�

�
yi���j�� "

�

�
yi���j�� �
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�x��i��� x��j��	

�x��i��� x��j	

�x��i��� x��j��	

�x��i��� x��j��	

�x��i��� x��j��	

�x��i� x��j	

�x��i� x��j��	

�x��i� x��j��	

Figure ���� Irregular cell e�x��i��� x��j��	

We sketch the derivation of MUDS at the irregular points �see Sections ����� for a detailed

derivation of MUDS at the regular points and ����� for the formulas on a uniform mesh	�

First we write the standard central �nite di
erence scheme� i�e��
R
s
V is approximated by the

analog of central di
erences

Z
s��i�j

�W " V 	 ds � � �hf
hc " hf

k��i�j �yi�j � yi���j �

"b��i�����jhf

�
hfyi���j " hcyi�j

hf " hc

�
"O�h�	

� ��

�
k��i�j �yi�j � yi���j � "

B��i�j

�
�yi���j " �yi�j � "O�h�	 �

Next we substitute yi���j from ����	 and represent the terms approximating
R
s
V in an upwind

mannerZ
s��i�j

�W " V 	 ds � ��

�
k��i�j

�
yi�j � �

�
yi���j�� � �

�
yi���j��

�

"
B��i�j

�

�
�

�
yi���j�� "

�

�
yi���j�� " �yi�j

�
"O�h�	

� ��

�
k��i�j

�
�yi�j � yi���j��	 "

�

�
�yi���j�� � yi���j��	

�
"�B��i�j � jB��i�j j	 yi�j
"�B��i�j " jB��i�j j	

�
�

�
yi���j�� "

�

�
yi���j��

�

"

�
B��i�j

�
" jB��i�j j

�
�yi�j � yi���j��	

"
�

�

�
B��i�j

�
" jB��i�j j

�
�yi���j�� � yi���j��	 "O�h�	 �
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Finally� we getZ
s��i�j

�W " V 	 ds � ��

�
�k��i�j � ��jB��i�j j"B��i�j	���yi�j

��

�
�k��i�j � ��jB��i�j j"B��i�j	���yi���j��

"�B��i�j � jB��i�j j	 yi�j
"�B��i�j " jB��i�j j	

�
�

�
yi���j�� "

�

�
yi���j��

�
"O�h�	 �

In order to obtain an upwind scheme we approximate the �rst term in the above formulae

k��i�j � ��jB��i�j j"B��i�j	 �
k��i�j

� " ��jB��i�j j"B��i�j	 �k��i�j

� ��jB��i�j j"B��i�j	
�

k��i�j " �jB��i�j j"B��i�j

�
k��i�j

� " ��jB��i�j j"B��i�j	 �k��i�j
"O�h�	 �

In the last step we have taken into account that B� � O�h	� In this way we de�ne the

approximate �uxes w and v as follows�

w��i�j � ��

�
�

k��i�j
� " ��jB��i�j j"B��i�j	 �k��i�j

��yi�j ����	

��

�

�
k��i�j

� " ��jB��i�j j"B��i�j	 �k��i�j

�
��yi���j�� �

w��i�j�� � ��

�
�

k��i�j��
� " ��jB��i�j��j"B��i�j��	 �k��i�j��

��yi�j�� �

w��i�j�� � ��

�
�

k��i�j��
� " ��jB��i�j��j"B��i�j��	 �k��i�j��

��yi�j��

��

�
�

k��i�j��
� " ��jB��i�j��j"B��i�j��	 �k��i�j��

��yi���j�� �

and

v��i�j � �B��i�j � jB��i�j j	 yi�j " �B��i�j " jB��i�j j	 yi���j�� ����	

��

�
�B��i�j " jB��i�j j	��yi���j�� �

v��i�j�� � �B��i�j�� � jB��i�j��j	 yi�j�� " �B��i�j�� " jB��i�j��j	 yi���j�� �
v��i�j�� � �B��i�j�� � jB��i�j��j	 yi�j�� " �B��i�j�� " jB��i�j��j	 yi���j��

"
�

�
�B��i�j�� " jB��i�j��j	��yi���j�� �

��� Formulation of the discrete problems

Two di
erence schemes derived in Sections ����� and ����� can be written in the general form� P
x�	

P�
l��

�
w�
l �x	� wl�x	

�
"
�
u�l �x	 � ul�x	

�
�

R
e
f�x	 ds in ��

y�x	 � g�x	 on +�

For MUDS the approximate �uxes w�
l �x	� wl�x	� v

�
l �x	 and vl�x	 are de�ned by �����	�

�����	 at the regular and by ����	 and ����	 at the irregular points� In matrix terms we write

Ay � f� ����	



�� Local re�nement for FV Problems

where in the right
hand side f we have taken into account the boundary conditions� We will

denote A� the matrix of constant approximation ����	� ����	 in irregular points and �����	�

�����	 in regular points� for this scheme we denote

A�y � f � ����	

Consider x � �x��i��� x��j��	 �see Fig� ���	� We let

B�
��i���j�� � B��i�j "B��i�j�� "B��i�j�� �

We will use the following auxiliary result�

Lemma ��� Let b�x	 � �W �������		�� � 	 � and �div�b�x		 � �� Then there exists a

positive constant C� such that the inequality holds#
�B�

��i�j �B��i�j	 " �B�
��i�j �B��i�j	

$ � �C�h
��� � � � � � � �

Proof� We �rst show the result for regular points� Consider the linear functional�

l�b�	 ��
b��i�����j � b��i�����j

h
� �b��i�j

�x�
�

This functional is bounded for b� � W �������	 � � � � � � and vanishes for all polynomials

of second degree� Therefore� by the Bramble
Hilbert lemma argument we get

jl�b�	j � Ch�jb�j������e �

Similar inequality holds for b�� Using the triangle inequality and the assumption div�b�x		 �
�� the desired inequality is obtained�

For the irregular point x � �x��i��� x��j��	 and the adjacent points �x��i� x��j	�

�x��i� x��j��	 and �x��i� x��j��	 in the re�ned region we consider the linear functional l

l�b�	 �
b��i�����j " b��i�����j�� " b��i�����j�� � �b��i�����j��

�hc

��b��x��i��� x��j��	
�x�

�

The functional l is bounded for b� � W �
��e�x��i� x��j		 and vanishing for all polynomials of

�rst degree� Hence

jl�b�	j � Ch�jb�j������e � � � � � � �

A similar inequality holds for b�� Using the triangle inequality and the assumption div�b	 � �

the result follows� �

Our goal now is to show that both schemes have unique solutions� First we investigate

some properties of UDS in the following lemma�

Lemma ��� Let p�x	 and q�x	 be grid functions� If A� is the matrix de�ned by ���	���

���
	�� ����� and ���	� then the following formulae holds

pTA�q � �
X
x�	

�X
l��

wl�x	�lp�x	 ����	

"
X
x�	

�X
l��

jBl�x	j�lp�x	�lq�x	

"
X
x�	

�X
l��

�
B�
l �x	�Bl�x	

�
p�x	q�x	

"
X
x�	

�X
l��

Bl�x	
�
p�x	�lq�x	� q�x	�lp�x	

�
�



��� Formulation of the discrete problems ��

for all p� q � D� � fp � pj� � �g� where the approximate �uxes wl are de�ned by the values

of q�x	�

�The proof is provided in Appendix A�	

Corollary ��� If b � �
W �������	

��
� � 	 � then there exists an h� such that for h � h�

the matrix A� is positive real� i�e� iits symmetric part is a positive de�nite matrix� and hence

the UDS de�ned by ���	��� ���
	�� ����� and ���	� has unique solution� Moreover� we have

the discrete H�
� �coercivity estimate

qTA�q � Ckqk���	 � q � D� �

Proof� Consider a one
dimensional grid function q�x��i� x���	� i � �� � � � � N � where x��� is

�xed and q�x��N � x���	 � �� The following inequality holds �����

NX
i��

��

�qi�� � C

NX
i��

h�q�i�� �

Combining similar inequalities in the x� and x� directions� we obtain jqj��	 � Ckqk��	 for

q � D�� To conclude the proof we set p � q in ����	 and apply Lemma ���� �

We establish the uniqueness of the solution for MUDS in the following theorem�

Theorem ��� If b�x	 � �
W �������	

��
� � 	 � then there exists an h� such that for h � h�

MUDS de�ned by ���

�� ���
��� ����� and ����� has a unique solution� Moreover� the

following inequalities hold

��q
TA�q � qTAq � ��q

TA�q � q � D��

jpTAqj � ���p
TA�p	

����qTA�q	
��� � p� q � D��

where A� is the matrix of constant approximation� and A is the matrix of linear approxima�

tion�

Proof� We can write matrix A� in the following form

A� � A
��

� "A

��

� �

where A
��

� corresponds to the di
usion part and A

��

� corresponds to the remaining convection

part� For A
��

� we have

pTA
��

� q � �

X
x�	

w��x	��p�x	 " w��x	��p�x	 ����	

�
X
x�	

�
����q��p" ����q��p

�
�

where

�� � ���i�j �

�
k��i�j�� for j � �� i � ��

k��i�j for the remaining indices�

�� � ���i�j �

�
k��i�j�� for i � �� j � ��

k��i�j for the remaining indices
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�See Fig� ���	� In the same way we split the matrix A arising from linear approximation into

two parts

A � A��
 "A��
�

For A��
 we get

pTA��
q �
X
x�	

�
���lq�lp" ����q��p

�

"
�

�

X
j����������

#
�����j����q���j��p��j�� � �����j����q���j��p��j��

$

"
�

�

X
i����������

#
���i������qi�����pi���� � ���i������qi�����pi����

$
�

where

�� � ���i�j �

� (k��i�j�� for j � �� i � ��
#k��i�j for the remaining indices�

�� � ���i�j �

� (k��i�j�� for i � �� j � ��
#k��i�j for the remaining indices�

and
(kl�i�j �

kl�i�j
� " ��jBlj"Bl	 �kl�i�j

� #kl�i�j �
kl�i�j

� " jBlj�kl�i�j �

Applying the Cauchy inequality to the pTA��
q and taking into account that (kl�i�j and #kl�i�j
are less than kl�i�j we get

jpTA��
qj �
�
�

�
" C�h

��
pTA

��

� p

���� �
qTA

��

� q

����
�

where the constant C� depends on the values of the coe�cient a�x	 only locally� i�e�� cell by

cell� To derive a lower bound we need the inequality

Pkl�i�j � kl�i�j � jBl�i�j j 	 � � P �� � " sup
x�	
l����

jbl�x	jhc
�kl�x	

�

Consider auxiliary matrix A
��

	 obtained by replacing in ����	 the coe�cients �� � �� with

��� ��� For p � q combining�
�

�
� C�h

�
qTA

��

	 q � qTA��
q and P��qTA

��

� q � qTA

��

	 q

we get

P��
�
�

�
� C�h

�
qTA

��

� q � qTA��
q �

�
�

�
" C�h

�
qTA

��

� q � �����	

The remark above is also valid for the constant C�� The derivation of Lemma ���� ����	 and

����	 gives us

pTA��
q � pTA
��

� q"

�

�

X
j����������

#
�B����j " jB����j j	��q���j��p��j

� �B����j�� " jB����j��j	��q���j��p��j��
$

"
�

�

X
i����������

#
�B��i�� " jB��i��j	��qi�����pi��

� �B��i���� " jB��i����j	��qi�����pi����
$
�
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Similarly as �����	 was derived we �nd�
�

�
� C�h

�
qTA

��

� q � qTA��
q �

�
�

�
" C�h

�
qTA

��

� q �

The above inequalities show the desired result� �

Remark ��� P is in fact local Peclet number plus � and �� depends on P � This shows that

condition number of the matrix A��� A can become very large when P is a large number�

Corollary ��� If b�x	 � �
W �������	

��
� � 	 � then there exists h� such that for h � h�

the matrix A is positive real� Moreover� the discrete H�
� �coercivity holds

qTAq � Ckqk���	 � q � D� �

Remark ��� The corollaries ��� and ��� asserts that for su�ciently small step
size h A and

A� are M
matrices�

Remark ��� If the equation �����	 is singularly perturbed we still have stability� but the

constant C in the corollaries ��� and ��� depends on �� In this case error estimates derived

in x��� deteriorate� However� for �xed � the asymptotic behavior of the error is correctly

predicted by our estimates for h � ��

��� Error estimates

The error analysis presented here is done in the general framework of the methods developed

in ����� and ����� We consider only the case when a�x	 � �� Let

z�x	 � y�x	 � u�x	 � x � �

be the error of the �nite di
erence method� Substituting y � z " u in ����	 ����	 we obtain

Az � f�Au � �� �����	

Then using ����	������	 we transform � in the following form

�X
l��

!�Z
s�l

� �u

�xl
d� � w�

l

 
�
�Z

sl

� �u

�xl
d� � wl

�"

"

�X
l��

!�Z
s�l

blu d� � v�l

 
�
�Z

sl

blu d� � vl

�"
� �� " �� � � �

where the local truncation error � has been split up into two terms

�� �
�X
l��

�
��l �x	� �l�x	

�
� �� �

�X
l��

�
��l �x	 � �l�x	

�
�

�l �

Z
sl

� �u

�xl
d� � wl � �l �

Z
sl

blu d� � vl � �����	

Here �� is the error of approximation of �rst derivatives� and �� is the error of approximation

of the second derivatives�
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Note that the approximate �uxes w�
l � wl� v

�
l � vl are de�ned by the values of u�x	 at the

grid points� and the components of the local truncation error �l and �l are determined on the

shifted grids ��
l � l � �� �� Using summation by parts and the Schwartz inequality� we get

���� z	 �

�X
l��

X
x�	

#
��l �x	� �l�x	

$
z�x	

� �
�X
l��

X
x�	�l

�l�x	�lz�x	

�
�
� �X

l��

X
x�	�l

��l �x	

�
A

����
� �X

l��

X
x�	�l

��

l z�x	

�
A

���

� �k��ej� " k��ej�	 kzk��	 �

Likewise�

���� z	 � �k��ej� " k��ej�	 kzk��	 �

Summarizing these results and using the corollaries � and � we obtain the following main

result�

Lemma ��� The error z�x	 � y�x	� u�x	 � x � � of all considered �nite di�erence schemes

satis�es the a priori estimate

kzk��	 � C

�X
l��

�k�lejl " k�lejl	 � �����	

where the components �l � �l � l � � � � of the local truncation error are de�ned by ����	� with

approximate �uxes w�
l � wl � v

�
l � vl � l � � � � determined by ���	��� ���
	�� ����� and ���	�

for UDS and ���

�� ���
��� ����� and ����� for MUDS� �The constant C does not depend

on h or z��

In order to use the estimate �����	 of Lemma ��� we have to bound the norms of �l � �l � l �

� � � de�ned by �����	� We state the estimates for the local truncation error components in

regular points� proved in Ewing� Lazarov and Vassilevski ����

j�l�x	j � Chm��jujm�e �
�

�
� m � �� �����	

and in Lazarov� Mishev and Vassilevski ����

j�l�x	j �
�

Chmkblk�����jujm�e for MUDS�

C �hjblj�����juj��e " hmkblk�����jujm�e� for UDS�
�����	

where � � m � �� e � ei���j
S
ei�j for l � � and e � ei�j��

S
ei�j for l � ��

Now we consider the components of the local truncation error for the MUDS at the

irregular points �x��i� x��j�l	 � l � �� �� �� We remark here that we split the schemes into two
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parts only for convenience of the analysis� We replace ����	 by

w��i�j � ��

�

�
�

� " �jB��i�j j"B��i�j
" �jB��i�j j"B��i�j

�



�
ui�j � �

�
ui���j�l � �

�
ui���j��

�
�

w��i�j�� � ��

�

�
�

� " �jB��i�j��j"B��i�j��
" �jB��i�j��j"B��i�j��

�

 �ui�j�� � ui���j��� �

w��i�j�� � ��

�

�
�

� " �jB��i�j��j"B��i�j��
" �jB��i�j��j"B��i�j��

�



�
ui�j�� � �

�
ui���j�� � �

�
ui���j��

�
�

and ����	 by

v��i�j �
B��i�j

�

�
�

�
ui���j�� "

�

�
ui���j�� " �yi�j

�
�

v��i�j�� �
B��i�j��

�
�ui���j�� " �ui�j�l� �

v��i�j�� �
B��i�j��

�

�
�

�
ui���j�� "

�

�
ui���j�� " �ui�j��

�
�

Note that w��i�j�l " v��i�j�l � l � �� �� � is not changed� Consider ��� By construction�
�

� " �jB��i�j�lj"B��i�j�l
" �jB��i�j�lj"B��i�j�l

�
� � " C��x	h

� �

where C��x	 � b���x	� Then in the point �x��i� x��j	 we have

���x��i� x��j	 � �
Z
s�i�j


�u

�x�
d� " w��x	

� �
Z
s�i�j


�u

�x�
d� "

�

�
�� " C�h

�	

�
ui�j � �

�
ui���j�� � �

�
ui���j��

�
�

Taking into account����ui�j � �

�
ui���j�� � �

�
ui���j��

���� � C�juj��e " hm��jujm�e	 � � � m � �

and the estimate �see ����	�����
Z
s�i�j


�u

�x�
d� � �

�

�
ui�j � �

�
ui���j�� � �

�
ui���j��

������ � Chm��jujm�e �
�

�
� m � � �

we get

j���x��i� x��j	j � Chm��jujm�e �
�

�
� m � � � �����	

With the similar argument we obtain the estimate �����	 for ��x��i� x��j�l	 � l � �� �� The

inequalities �����	 and �����	 imply

X
x�	

����x	 � Ch�m��

�X
x��h

juj�m�e�x
 "
X
x�	

h��juj�m���e�x


�

� Ch�m���juj�m��h
" h��juj�m����	�
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here �h is a strip with a width �h around the interface between �� and �� �coarse and �ne

grid regions	 and �
� � m � � � � � � � ��

The �rst term in the right is estimated by the well
known Il�in�s inequality ������ ����

kuk���� � C��kuk��� � � � � �
�

�
�

where �� is a strip in � with a width �� Therefore� we have

k��ej� �
�X
x�	

����x	

����

� Chm��kukm�� �
�

�
� m �

�

�
� �����	

In a similar way we can estimate ���x	�

For the component ���x	 at the irregular points we prove in the Appendix B the upper

bound

k��ej� � Chmkb�k�����kukm�� � � � m � �� �����	

Summarizing these results we get

Theorem ��� If the solution of the problem �	���� is Hm�regular� �
� � m � �

� then for the

MUDS is valid

ky � uk��	 � Chm��
#
� " h� �kb�k����� " kb�k�����	

$ kukm�� �

Here

� �

�
� �

� � m � ��

��m � � m � �
� �

With the same approach one can prove the following result for UDS�

Theorem ��� If the solution u�x	 of the problem �	���� is Hm�regular� �
� � m � � then for

the UDS is valid

ky � uk��	 � Ch���
h
� " h����kb�k����� " kb�k�����	

i
kukm��

��� Numerical results

In this section on the basis of model examples we study the error behavior of all considered

schemes� We consider three test problems� In �rst two examples we solved �����	 with the

velocity �eld

b� � �� " x cos��		 cos��	 � b� � �� " y sin��		 sin��	 � �����	

where the angle was � � ����

Problem ��� Consider a smooth solution with a di�usion coe�cient a�x	 � �

u�x	 �

!
�� exp�� c�

c��r� 	� r � c�

�� r � c�

where c � ����� � r� � �x� x�	
� " �y � y�	

� � x� � ��� � y� � ����



��� Numerical results ��

Table ���� Problem ���� MUDS

nc hc�hf error ��� order error �
� order
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We choose two di
erent domains � � �
�l

� � l � �� � for local re�nement to investigate the

in�uence of the interpolation along the boundary of ��� When the support of u�x	 is in

�
��

� � f��� � x � � � ��� � y � �g � the error caused by the interpolation is eliminated

and we get approximately second order of convergence� This shows that when juj���� is

comparatively small we can expect good results using schemes with local re�nement� The

worst possible case is when the solution u�x	 has a large gradient along the boundary of ���

We tested this case for a subdomain �
��

� � f��� � x � � � ��� � y � �g� The results in

Table ��� show O�h���	 convergence rate in the discrete H��norm� i�e�� we lose half of order

of accuracy which is in agreement with Theorem ����

Problem ��� Consider a solution u � Hm��	� m � �
� which support is in �� � f��� � x �

� � ��� � y � �g and a smooth coe�cient a�x	�

a�x	 �
#
� " ���x� " y�	

$��
� u�x	 � ��x	��y	 �

��x	 �

!
sin�

�
� x�d���d�

�
� x � �d�� �	�

�� otherwise�

��y	 �

!
sin�

�
� y�d���d�

�
� y � �d�� �	�

�� otherwise�

where d� � d� � ������

We compare the H� error for both schemes� UDS and MUDS� In the last column of Table

��� the number of unknowns N is shown� It is clear from the results in Table ��� thatMUDS

is superior to UDS and it is also seen that a prescribed accuracy can be achieved for less

unknowns when local re�nement is used�

Problem ��� Consider a smooth solution u with a boundary layer along line x � ��

u�x	 � �xy��� y	

�
�� exp�x��	� �

exp����	� �

�
�



�� Local re�nement for FV Problems

Table ���� Problem ���

nc hc�hf UDS MUDS N
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Table ���� Problem ���� b�x	 de�ned by �����	

nc hc�hf norm � � � � � �
�� � � �
��

L� 
�
����
�� 
�

���
� 
��
	��
��

� L� 
���
��
�� 
�
����
�� 
������
��

�
 H� 
������
�� 
���
��
� 
��
���
��

L� 
�
�	��
�� 
���
��
�� 
�
�
��
��

	 L� 
������
�� 
��
���
�� 
��

��
��

H� 
��		��
�� 
������
� 
��
���
�

L� 
������
�� 
�
����
� 
��
���
��

�
 � L� 
�


��
�� 
������
�� 
������
��

H� 
��	���
�� 
���	��
� 
�	�
��
��

a coe�cient a�x	 � � and two di�erent velocity �elds� First is ������ and second is

b� � �y��� x�	 " ���x � b� � ��x��� y�	 " ���y � �����	

We re�ne in the strip along the boundary layer �� � f��� � x � � � � � y � �g � The

objective is to compare the behavior of the �nite di
erence scheme �MUDS	 with and without

re�nement� We report the discrete L�� L� and H� norm in the �rst� second and third row in

Tables ��� and ��� correspondingly� For mildly dominated convection �� � ����	 the scheme

with local re�nement shows better accuracy for both velocity �elds�

��� Appendix A

We prove Lemma ��� for the case shown on Fig� ����



��� Appendix A ��

Table ���� Problem ���� b�x	 de�ned by �����	

nc hc�hf norm � � � � � �
�� � � �
��

L� 
�
����
�� 
������
� 
��
���
�

� L� 
��
���
�� 
�	����
�� 
�
����
��

�
 H� 
��	���
�� 
�	����
� 
�	�	��
�

L� 
�
����
�� 
������
�� 
�	����
�

	 L� 
������
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������
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�
����
��

H� 
��

��
�� 
���
��
� 
������
��

L� 
��
	��
�� 
������
�� 
�
����
��

�
 � L� 
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���	��
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�
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j

� � � �

x�

������	

Figure ���� Example of a composite cell
centered mesh



�� Local re�nement for FV Problems

Consider the following inner product

pTA�q �
X
x�	

p�x	

�X
l��

#�
w�
l �x	 � wl�x	

�
"
�
v�l �x	� vl�x	

�$

�

�X
l��

X
x�	

p�x	
#�
w�
l �x	 � wl�x	

�
"
�
v�l �x	� vl�x	

�$

�

�X
l��

Il�

We represent the term I� for the case of Figure ��� in the form

I� �
X
j
�

X

i

"
X
j
�

X
i
�

"
X
j��

X
i��

or

I� � A� "A� "B� "B� " C� " C�

��	� �

�X
l��

w�
l � wl � ��	� �

�X
l��

v�l � vl �

Expressions for A�� B� and C� were derived in �����

A� �
X
j
�

X

i

�
w�
��i�j � w��i�j

�
pi�j � �

X
j
�

X

i

w��i�j��pi�j �

B� �
X
j
�

X
i
�

�
w�
��i�j � w��i�j

�
pi�j �

X
j
�

�X
i
�

w��i�j��pi�j � w�
�����jp���j

 
�

C� �
X
j��

X
i��

�
w�
��i�j � w��i�j

�
pi�j �

X
j��

�
�X
i��

w��i�j��pi�j � w����jp��j

�
� �

For A� we have

A� �
X
j
�

X

i

#�
B�
��i�j � jB�

��i�j j
�
qi���j "

�
B�
��i�j " jB�

��i�j j
�
qi�j

$
pi�j

�
X
j
�

X

i

��B��i�j � jB��i�j j	 qi�j " �B��i�j " jB��i�j j	 qi���j � pi�j

and after using partial summation we get ����

A� �
X
j
�

X

i

jB��i� j	j��qi�j��pi�j

"
X
j
�

X

i

B��i�j

�
pi�j��qi�j � qi�j��pi�j

�
"
X
j
�

X

i

�
B�
��i�j �B��i�j

�
qi�jpi�j �

In the same way

B� �
X
j
�

X
i
�

#
v���i�j � v��i�j

$
pi�j �

X
j
�

#
v������j � v�����j

$
p���j

"
X
j
�

X
i
��

jB��i�j j��qi�j��pi�j �
X
j
�

jB�
�����j j �q���j � q���j	 p���j

"
X
j
�

X
i
��

B��i�j

�
pi�j��qi�j � qi�j��pi�j

�
"
X
j
�

B�
�����jq���jp���j

"
X
j
�

X
i
��

�
B�
��i�j �B��i�j

�
qi�jpi�j �



��� Appendix B ��

Using the fact that B�����j � B�
�����j we �nally get

B� �
X
j
�

X
i
�

jB��i�j j��qi�j��pi�j "
X
j
�

X
i
�

B��i�j

�
pi�j��qi�j � qi�j��pi�j

�
"
X
j
�

X
i
��

�
B�
��i�j �B��i�j

�
qi�jpi�j "

X
j
�

v������jp���j �
X
j
�

B�����jq���jp���j �

Expression for C� is derived similarly

C� �
X
j��

X
i��

jB��i�j��qi�j��pi�j "
X
j��

X
i��

B��i�j

�
pi�j��qi�j � qi�j��pi�j

�
"
X
j��

X
i��

�
B�
��i�j �B��i�j

�
qi�jpi�j "

X
j��

�
B�
����jq��jp��j � v����jp��j

�
Summarizing these results and taking into account the equalities

v������j�� � v����j " v����j�� " v����j��

B�
�����j�� � B����j "B����j�� "B����j��

we get the assertion of the lemma�

��	 Appendix B

Here we investigate the local truncation errors ��� �� in the irregular points and prove the

inequality �����	� For the component ���x	 we have

���x	 �

Z x��j��l����
h

x��j��l����
h

b��x��i����� s	u�x��i����� s	 ds �����	

�
�
b��i�����j�lhf

�
� jb��i�����j�ljhf

�

�
ui�j�l

�
�
b��i�����j�lhf

�
"
jb��i�����j�ljhf

�

�
ui���j��

Using the equality�
b��i�����j�l

�
� jb��i�����j�lj

�

�
ui�j�l "

�
b��i�����j�l

�
"
jb��i�����j�lj

�

�
ui���j��

� b��i�����j�l

�
�ui�j�l " ui���j��

�

�
�
�
b��i�����j�l

�
"
jb��i�����j�lj

�

�
��ui�j�l

� b��i�����j�l

�
�ui�j�l " ui���j�l

�

�
" b��i�����j�l

�
ui���j�� � ui���j�l

�

�

�
�
b��i�����j�l

�
"
jb��i�����j�lj

�

�
��ui�j�l

we represent formulae �����	 in the form

���x	 �

�Z x��j��l����
h

x��j��l����
h

b��x��i����� s	u�x��i����� s	 ds �����	

� b��i�����j�lhf

�
�ui�j�l " ui���j�l

�

��

�b��i�����j�lhf
�
ui���j�� � ui���j�l

�

�

"

�
b��i�����j�lhf

�
"
jb��i�����j�ljhf

�

�
��ui�j�l �



�� Local re�nement for FV Problems

Thus yields

j���x	j � jl�b�� u	j" �hf
�
jb��i�����j�ljj��ui�j�lj �����	

"
hf
�
jb��i�����j�lj jui���j�� � ui���j�lj �

where the bilinear functional l�b�� u	 is de�ned by

l�b�� u	 �

Z x��j��l����
h

x��j��l����
h

b��x��i����� s	u�x��i����� s	 ds �����	

�b��x��i����� x��j�l	hf
�
�ui�j�l " ui���j�l

�

�
�

We consider ui�j�l � ui���j�� as a linear functional of u for a �xed x � ��� This functional

is bounded in Hm�e	 � � � m � � and vanishes for all polynomials of zero degree� Therefore�

by the corollary of the Bramble
Hilbert lemma we get

jui�j�l � ui���j��j � C�juj��e " hm��jujm�e	 � � � m � �� �����	

Hence for the second term in the inequality �����	 we get

�hf
�
jb��i�����j�ljj��ui�j�lj � Chjb�j������juj��e " hm��jujm�e	 � � � m � ��

Similarly we estimate the third term in �����	 by

hf
�
jb��i�����j�lj jui���j�� � ui���j�lj
� Chjb�j������juj��e " hm��jujm�e	 � � � m � ��

The functional l�b�� u	 is estimated in the following lemma� proved in Lazarov� Mishev and

Vassilevski �����

Lemma ��� If the solution of problem �	���� is Hm�regular� � � m� then for the bilinear

functional l�b�� u	 de�ned by ���	�� the following estimate is valid�

jl�b�� u	j � Chmkb�k�����kukm�e� � � m � ��

Above remarks give us the upper bound for j���x	j which coincides with the estimates �����	

for the regular points�



CHAPTER VI

FINITE VOLUME ELEMENT METHODS FOR
NONSYMMETRIC PROBLEMS

In this chapter we generalize the results by Cai and McCormick ���� ��� and Jianguo

and Shitong ���� for ��D symmetric problems to ��D���D	 nonsymmetric ones� We prove

the stability and error estimates for both di
usion and convection dominated cases� For the

di
usion dominated case we show that the inf�sup condition is satis�ed� The upwind �nite

volume element method is analyzed in the framework of the theory developed in Chapter IV�

We note that the error estimates for the di
usion dominated case can be proven with the

same technique� but for us the inf�sup condition approach seems more elegant �or at least a

little di
erent	�

Our theory assumes barycentric control volumes� All the necessary notations are intro


duced in Chapter III�

We recall the formulation of the discrete �nite volume element method�

Find uh � Vh� such that� for all vertex�centered control volumes Vi� i � �� � � � � nPZ
�Vi

��Aruh " buh�n	 ds �

Z
Vi

f dx � ����	

or as a Petrov�Galerkin method�

Find uh � Vh� such that

Bh�uh� vh	 � f�vh	 � vh � Wh � ����	

where

f�vh	 �
X
xi�	P

Z
Vi

f dx v�xi	 �

and Bh��� �	� B
��

h ��� �	 and B

��

h ��� �	 are bilinear form in Vh� 
Wh

Bh�u� v	 � B
��

h �u� v	 "B

��

h �u� v	 � ����a	

B
��

h �u� v	 � �

X
xi�	P

Z
�Vi

�Aru�n	 ds v�xi	 � ����b	

B
��

h �u� v	 �

X
xi�	P

Z
�Vi

�b�n	u ds v�xi	 � ����c	

We also need the �nite element bilinear forms in Vh� 
 Vh�
A�u� v	 � A��
�u� v	 " A��
�u� v	 � ����a	

A��
�u� v	 �

Z
�

�Aru�rv	 dx � ����b	

A��
�u� v	 � �
Z
�

�b�rv	u dx � ����c	

	�� Di�usion dominated problem

First we elaborate the �nite volume element theory for the compact perturbation of symmetric

problem� We use Theorem ���� to prove uniqueness and existence of the solution of ����	� In



�� Finite Volume Element Methods for Nonsymmetric Problems

order to use Remark ��� we have to show that the following inequalities hold�

�i	 jBh�uh� vh	j �Ckuhk��	P kvhk��B � ����a	

�ii	 jBh�uh� I
c
huh	j ��kuhk��	P kIchuhk��B � ����b	

�iii	 jBh�I
l
huh� uh	j	 � � ����c	

We prove ����	 via comparing with the bilinear forms for the �nite element method ����b	

and ����c	� First we prove some auxiliary results�

Proposition ��� Suppose that the matrix A has piecewise constant entries� Then the fol�

lowing equality holds�

A��
�vh� vh	 � B
��

h �vh� I

c
hvh	 � v � Vh� �

Proof� We have to show

X
xi�	P

Z
�Vi

��Arv�n	 ds v�xi	 �
Z
�

�Arv�rv	 dx �

or

X
xi�	P

vi
X

xj�	P

vj

�Z
�Vi

��Ar�j �n	 ds
�
�

X
xi�	P

vi
X

xj�	P

vj

�Z
�

�Ar�j �r�i	 dx
�
�

����	

where �j and �i are linear basis functions� Hence it su�ces to prove only that

Z
�Vi

��Ar�j �n	 ds �
Z
�

�Ar�j �r�i	 dx �

Consider one tetrahedral �nite element K with vertexes xi� xj � xk and xl and the points

on edges Mij � Mik�Mil and points on the faces Mijk � Mikl� Mijl and the barycenter of the

tetrahedron SK �see Fig� ���	� The equality ����	 will follow from

Z
K��Vi

��Ar�j �n	 ds �
Z
K

�Ar�j �r�i	 dx � ����	

We apply the Green�s formulae for the left integral in ����	 and get

Z
K��Vi

��Ar�j �n	 ds �
Z
K�Vi

�r��Ar�j	 dx

"

Z
Pijk

�Ar�j �n	 ds"
Z
Pikl

�Ar�j �n	 ds"
Z
Pijl

�Ar�j �n	 ds

� meas�Pijk	�Ar�j �nPijk 	 " meas�Pikl	�Ar�j �nPikl	
" meas�Pijl	�Ar�j �nPijl	 �

Here Pijk � xiMijMijkMik� Pikl � xiMikMiklMil and Pijl � xiMijMijlMil� We used that

A is a constant in the �rst line
�R

K�Vi
�r��Ar�j	 dx � �

�
and in the third line of the last

chain of equalities�
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Figure ���� Finite element K
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We now apply Green�s formulae to the right integral in ����	

Z
K

�Ar�j �r�i	 dx �

Z
K

�r��Ar�j	�i dx

"

Z
�K

�Ar�j �n	�i ds

� �Ar�j �nPijk 	
Z
xixjxk

�i ds" �Ar�j �nPikl	
Z
xixkxl

�i ds

" �Ar�j �nPijl	
Z
xixjxl

�i ds" �Ar�j �nPjkl 	
Z
xjxkxl

�i ds

Note that
R
xjxkxl

�i ds � � and

Z
xixjxk

�i ds �
�

�
meas�xixjxk	 � meas�Pijk	 �Z

xixkxl

�i ds �
�

�
meas�xixkxl	 � meas�Pikl	 �Z

xixjxl

�i ds �
�

�
meas�xixjxl	 � meas�Pijl	

since the points Mijk � Mikl and Mijl are barycenters of the corresponding faces� �

The fact that the linear �nite element method and �nite volume element method coincide

for constant coe�cient tensor A was extensively used by Hackbusch �����

For completeness we prove the following lemma due to H� Jianguo and X� Shitong �����

Lemma ��� For every v � Vh� the following estimate holds�

jB��

h �v� Ichv	�A��
�v� v	j � ChkAk�����jvj���� �

Proof� De�ne the L� projection #A of A

#AijjK �
�

meas�K	

Z
K

Aij�x	 dx � � i� j � ��K � Th �

Then

jB��

h �v� Ichv	�A��
�v� v	j �

�����
X
xi�	P

Z
�Vi

��A� #A	rv�n	 ds vi �
Z
�

��A � #A	rv�rv	 dx
�����

�
�����
X
xi�	P

Z
�Vi

��A � #A	rv�n	ds vi
�����"

����
Z
�

��A � #A	rv�rv	dx
����

� I� " I�

For I� we immediately obtain

I� � ChkAk�����jvj���� �



��� Di�usion dominated problem ��

The �rst term is written as follows�

I� �

������
X

xi�	P

X
j���i


Z
�ij

��A� #A	rv�n	 ds vi

������
�

�

�

������
X
xi�	P

X
j���i


�Z
�ij

��A � #A	rv�n	 ds vi "
Z
�ji

��A � #A	rv�n	 ds vj
 ������

�
�

�

������
X
xi�	P

X
j���i


Z
�ij

��A� #A	rv�n	 ds �vi � vj	

������
� �

�

X
xi�	P

X
j���i


Z
�ij

����A� #A	rv
��� ds jvi � vj j �

The integral on �ij is estimated on each �nite element K that has nonempty intersection

with �i�j Z
�ij

����A� #A	rv
��� ds �X

K

Z
�ij�K

����A� #A	rv
��� ds

and Z
�ij�K

����A� #A	rv
��� ds � kA� #Ak�����ij�K

Z
�ij�K

jrvj ds

� C�hKkAk����K�meas��ij �K		���jvj���ij
� C�hkAk�����h

�d��
��
K jvj����K

Since v is a linear polynomial in K we have that jvj����K � jvj��K � Therefore�Z
�ij

����A� #A	rv
��� ds � Ch���kAk�����h

�d��
��jvj��K �

We have used the trace theorem �Theorem ���	 and the fact that meas��ij�K	 � O�h�d��
��	�

Applying Cauchy�Schwartz inequality we get

I� � Ch���kAk�����jvj���

�
� X
xi�	P

hdK
X

j���i


�
vi � vj
hK

��
�
�
���

� C�h
���kAk�����jvj���

�
� X
xi�	P

meas�Vi	
X

j���i


�
vi � vj

dist�xi� xj	

��
�
�
���

� ChkAk�����jvj���jvj��	P �

Now the result follows from Lemma ���� �

We wrote the proof of the last estimate in details in order to point out the importance of

the regularity of the �nite element triangulation� We compare B
��

h �v� Ichv	 and A��
�v� v	 in

the following lemma�

Lemma ��� For every v � Vh� the following estimate holds�

jB��

h �v� Ichv	�A��
�v� v	j � Chkbk�����jvj���� �
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Proof� Consider the contribution of one particular elementK in the computation of B
��

h �v� Ichv	

corresponding to the ith node

Z
�Vi�K

�b�n	v ds vi �

�Z
��Vi�K
�Mi

�b�n	v ds�
Z
Mi

�b�n	v ds

 
vi

�

Z
Vi�K

div�bv	 dx vi �
Z
Mi

�b�n	v ds vi

�

Z
K

div�bv	vi #�i dx�
Z
�K

�b�n	vvi #�i ds �

where Mi � �K � Vi and #�i is a basis function in Wh corresponding to the ith node� Then�

the contribution of the element K is equal to

B
��

h �v� Ichv	jK �

Z
K

div�bv	Ichv dx�
Z
�K

�b�n	vIchv ds

and

B
��

h �v� Ichv	 �

X
K�Th

Z
K

div�bv	Ichv dx �

because the surface integrals vanish� Therefore�

jB��

h �v� Ichv	�A��
�v� v	j �

X
K�Th

����
Z
K

div�bv	�Ichv � v	 dx

����
� kbk�����

X
K�Th

jvj��Kkv � Ichvk��K

� Chkbk�����jvj����
by Corollary ���� �

Using Lemmas ��� and ��� we easily prove the following theorem�

Theorem ��� There exists h� such that for any h � h� the problem ����	 has one and only

one solution and the following stability estimates holds�

juhj��	P � Ckfk���B �

Proof� From the continuity and coercivity of the bilinear form A��� �	 �cf� Chapter II	 and

Lemmas ��� and ��� follows that there exists h� and positive constants C� and C� such that

for h � h� the inequalities hold

C�A�v� v	 � B�v� Ichv	 � C�A�v� v	 �

The continuity of Bh��� �	 ����a	 and inf�sup condition ����b	 are consequence of the equiva


lence of the norms j�j��B and j�j��	P �Lemma ���	 and the fact that j�j��	P coincides with

j�j��� for piecewise linear functions� The inequality ����c	 follows from the observation

Bh�I
l
hvh� vh	 � Bh�I

l
hvh� I

c
h�I

l
hvh		� �

Note that we have shown the inequality

Cjvj���� � Bh�v� I
c
hv	 � v � Vh� � ����	

Now� we are ready to prove our main result�
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Theorem ��� Let u denote the solution of �	���� and uh be the solution of FVE ������ Then

we have the following estimate

ku� uhk��� � Ch�kAk����� " hkbk�����	juj��� �

Proof� First� we establish an a priori estimate

jI lhu� uhj��� � �

C

�
� X
xi�	P

X
j���i


k�i�j
�
lij�I

l
hu� u	

���A
���

� ����	

where

li�j�v	 �

Z
�ij

��Arv " bv	�n ds and k�i�j �
dist�xi� xj	

�

meas�Vi	
�

We estimate w � I lhu� uh� Note that

Bh�u� vh	 � Bh�uh� vh	 � �����	

where u is the solution of �����	 and uh is the solution of ����	 and therefore�

Bh�I
l
hu� u� vh	 � Bh�I

l
hu� uh� vh	 � �����	

Combining ����	 and �����	 we have

Cjwj���� � Bh�w� I
c
hw	 � Bh�I

l
hu� u� Ichw	

�
X
xi�	P

X
j���i


Z
�Vi

��Ar�I lhu� u	 " b�I lhu� u		�n dswi

�
�

�

X
xi�	P

X
j���i


#
lij�I

l
hu� u	wi " lji�I

l
hu� u	wj

$

�
�

�

X
xi�	P

X
j���i


lij�I
l
hu� u	�wi � wj	

� C

�
� X
xi�	P

X
j���i


k�i�j jli�j j�
�
A

����
� X
xi�	P

meas�Vi	
X

j���i


�
wj � wi

dist�xi� xj	

��
�
A

���

�

Now the a priori estimate ����	 follows from the equivalence of j�j��	P and j�j��� for linear

polynomials�

We have to estimate the functional jlij j� De�ne the linear functionals

fa�u	 � �
Z
�ij

Ar�I lhu� u	�n ds �

fb�u	 �

Z
�ij

b�I lhu� u	�n ds �

First� we estimate jfa�	j

jfa�u	j � jf�a�(u	j �

�����
Z
��ij

j det J j
�
(AJ�Tr�I lh(u� (u	�J�T (n

�
d(s

�����
� kAk�����ij �kJ��k��j det J j�j(�ij j�k(uk�� �K
� CkAk�����kJk�kJ��k��j det J j����juj��K
� Chd��kAk�����juj��K �
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Similarly � for jfb�u	j we have

jfb�u	j � jf�b�(u	j �

�����
Z
��ij

j det J j
�
(b�I lh(u� (u	�J�T (n

�
d(s

�����
� kJ��k�j det J j�kbk���� �K �j(�ij j�k(uk�� �K
� CkJk�kJ��kj detJ j���kbk�����juj��K
� Chd����kbk�����juj��K

Taking into account that ki�j � O�h��d	 we �nd that

jI lhu� uhj��	P � C

�
� X
xi�	P

X
j���i


k�i�j jli�j j�
�
A

���

� C�h
��d��hd��

�
� X
xi�	P

X
j���i


kAk������juj���K " h�kbk������juj���K

�
A

���

� Ch�kAk����� " hkbk�����	juj��� �

Finally the result follows from the triangle inequality

ju� uhj��� � ju� I lhuj��� " jI lhu� uhj���
and the estimate �����	 for the linear interpolant� �

	�� Upwind �nite volume element method

In this section we modify the de�nition of Bh��� �	 ����c	 in order to obtain a stable approx


imation� This means that the equality �����	 will not be satis�ed anymore� The upwind

approximation of the convection term can be considered as a quadrature formulae applied to

����c	 and estimated in a similar way as in the paper by Cai ����� We will use the technique

developed in Chapter IV in order to prove stability and convergence estimate�

We rede�ne the problem ����	 into a matrix form

Bhuh � � � �����	

where the entries �i of the right hand side are de�ned by �i � �
meas�Vi


R
Vi
f�x	 dx� The

matrix Bh is de�ned in the following way�

Bh � B��

h " B��


h � �����a	

where

B��

h uh �

�

meas�Vi	

X
j���i


Z
�ij

��Aruh�n	 ds � i � �� � � � � nP �����b	

B��

h uh �

�

meas�Vi	

X
j���i


���ijui " ��ijuj	 � i � �� � � � � nP � �����c	

and the �upwind� approximation are given via

��ij �
�ij " j�ij j

�
� ��ij �

�ij � j�ij j
�

� �����d	
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Let �ij be an approximation of
R
�ij

�b�n	 ds with the properties

�i	 �i�j " �j�i � � � �����a	

�ii	 j�i�j j � C meas��ij	kbkd�������� � �����b	

�iii	

�����
Z
�ij

�b�n	 ds� �i�j

����� � Chd��jbj������� � �����c	

where C is a positive constant and � 	 ��

Remark ��� Note that these are the same conditions as ����	� but on di
erent control

volumes� The approximation of the di
usion term is not changed�

Proposition ��� Let the Assumption ��
 be satis�ed� the upwind FVE method be de�ned

by �����	 and the approximations �i�j ful�ll the conditions �����	� Then the matrix B of the

upwind FVE is a positive real matrix and there exists a constant C such that the following

inequality is true�

�Bhuh� Ichuh	B � CkIchuhk���B � for all uh � Vh� �
The constant C depends only on the matrix A and the vector b�

Proof� We point out that by the construction of the inner product ��� �	B and the matrix

B��

h

�B��

h v� Ichv	B � B

��

h �v� Ichv	 � v � Vh� �

Therefore�

�B��
v� Ichv	B � Cjvj���	P � C�jIchvj��B � v � Vh� �
For the convection term we have

�B��

h uh� v	 �

�

�

X
xi�	P

�
� X
j���i


��ij " j�ij j	ui " ��ij � j�ij j	uj

�
� vi

�
�

�

X
xi�	P

�
� X
j���i


�ij

�
Auivi "

�

�

X
xi�	P

�
� X
j���i


j�ij j�ui � uj	

�
A vi

"
�

�

X
xi�	P

�
� X
j���i


�ijuj

�
A vi

� I� " I� " I� �

We transform the second term

I� �
�

�

X
xi�	P

�
� X
j���i


j�ij j�ui � uj	

�
A vi

�
�

�

X
xi�	P

X
j���i


�j�ij j�ui � uj	vi " j�jij�uj � ui	vj �

�
�

�

X
xi�	P

X
j���i


j�ij j�ui � uj	�vi � vj	 �
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And the third term equals

I� �
�

�

X
xi�	P

X
j���i


�ij �ujvi � uivj � �

Letting v � Ichuh and using the Proposition ���� we obtain the desired estimate� �

In the same way as in Chapter IV we prove the stability estimate�

Corollary ��� For the upwind FVEM the following a priori estimate is valid�

kuhk��� � kfk���	 �

Let z�x	 � uh�x	� u�x	 � x � �P � Substituting uh � z " u in �����	 we obtain

Bhz � ��Bhu � � � �����	

Then using �����	������	 we transform � in the following form

X
j�Pi�i


�
�

meas�Vi	

Z
�ij

��Aru�n	 ds�
Z
�ij

��ArI lhu�n	 ds
 

"
X

j�Pi�i


�
�

meas�Vi	

Z
�ij

�b�n	u ds� #
��i�juh�i " ��uh�j

$ � ���i " ���i � �i �

We de�ne the local truncation error in the following way�

�i�j �
�

meas��ij	

Z
�ij

��A�r�u� I lhu	�n	 ds � �����a	

�i�j �
�

meas��ij	

Z
�ij

�b�n	u ds� meas�Vi	

meas��ij	

#
��i�juh�i " ��uh�j

$
�

�����b	

First we consider the term ���� z	B � By the de�nition of the discrete inner product and ���i
we have

���� z	B �
X
xi�	

meas�Vi	���izi

�
X
xi�	

X
j���i


Z
�ij

��A�r�u� I lhu	�n	 ds zi

� ��

�

X
xi�	

X
j���i


dist�xi� xj	meas��ij	�i�j
�zj � zi�

dist�xi� xj	

� C

�
�X
xi�	

X
j���i


meas�Vi	�
�
i�j

�
A

����
�X
xi�	

X
j���i


meas�Vi	

�
�zj � zi�

dist�xi� xj	

���A
���

� Ck�k	�	kzk��B �
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Likewise

���� z	B �
X
xi�	

meas�Vi	���izi

�
X
xi�	

X
j���i


�Z
�ij

�b�n	u ds�
�
�i�j " j�i�j

�
ui "

�i�j � j�i�j
�

uj

� 
zi

� ��

�

X
xi�	

X
j���i


dist�xi� xj	meas��ij	

�
�

meas��ij	

Z
�ij

�V�n	� meas�Vi	

meas��ij	
vi�j

 
�zj � zi�

dist�xi� xj	

� ��

�

X
xi�	

X
j���i


dist�xi� xj	meas��ij	�i�j
�zj � zi�

dist�xi� xj	

�
�
�X
xi�	

X
j���i


meas�Vi	�
�
i�j

�
A

����
�X
xi�	

X
j���i


meas�Vi	

�
�zj � zi�

dist�xi� xj	

���A
���

� k�k	�	kzk��	 �

Summarizing these results and using Proposition ��� we obtain the following main result�

Lemma ��� Let the Assumptions ��� and ��
 be satis�ed� The error z�x	 � uh�x	�u�x	 � x �
� of the upwind �nite volume element method satis�es the a priori estimate

kzk��B � C �k�k	�	 " k�k	��		 �����	

where the components �i�j and �i�j of the local truncation error are de�ned by ������� The

constant C does not depend on h or z�

In order to use the estimate �����	 of Lemma ��� we have to bound the corresponding norms

of the local truncation error components �i�j and �i�j de�ned by �����	� Note that the �rst

term has been taken care of in the di
usion dominated case� The estimate for �i�j is provided

in the lemma given below� The proof of the lemma is manor modi�cation of the result in

Chapter IV and we skip it�

Lemma ��� Let the solution of the problem �	���� be Hs�regular� �
� � s� and the component

of the local truncation error �i�j be de�ned by �����b�� Then the following estimate holds�

j�i�j j � Ch��d��
#jbj�����juj��eij " hs��kbkd��������kuks�eij

$
�����	

where d
� � s � ��

Theorem ��� If the solution u�x	 of the problem �	���� is Hs�regular� with �
� � s � � and

the Assumptions ��� and ��
 are satis�ed then the upwind �nite volume element method has

at most �rst order of convergence in the H��discrete norm� and

kuh � uk��	 � Chjbj�����juj��� " Chs��
�
� " h��kbkd��������

� kuks���





CHAPTER VII

APPLICATIONS TO GROUNDWATER FLOW MODELS

Groundwater aquifers are one of the basic sources of drinking and industrial water supply�

The quality of the water is of utmost importance for many users� It is very expensive to

monitor the water contamination through physical observations� In many cases computer

simulations are preferable because they can be run many times with di
erent data for a small

portion of the cost of digging and maintaining wells�

Many mathematical models are proposed in the literature for modeling of groundwater

�ow �see ����� ���� ����� ���� ����	� We consider the two phase total velocity�global pressure

model introduced by Chavent and Ja
re ����� The model is described by a nonlinear system

of PDEs�

We concentrate on the equation that governs the saturation of the wetting phase� The

saturation equation is strongly nonlinear and convection dominated� Although many papers

are devoted to construction and study of numerical methods for such problems �see ����� ����	�

a comprehensive theory is still not available�

Our goal is to investigate numerically some linearization techniques for the saturation

equation that utilize ideas of operator splitting introduced by Espedal and Ewing ����� We

consider two stabilization techniques� The �rst one is stabilizing the discrete method by

adding arti�cial di
usion� i�e�� we make the main diagonal of the matrix dominant� This

method is applied for trilinear �nite elements on a distorted cubical mesh� The second

discretization is upwind �nite element methods on tetrahedral meshes�

This chapter is organized as follows� In Section ��� we state the conservation laws and

in Section ��� we outline the constitutive equations� The mathematical model is described

in Section ���� We consider the �rst linearization of the saturation equation and apply the

stabilized with arti�cial di
usion trilinear �nite element discretization in Section ���� In

Section ��� we present an improved linearization and an upwind �nite element method on

tetrahedral meshes�


�� Conservation laws

Let � be a bounded domain in R
� � We consider the displacement of two immiscible com


pressible �uids in �� In particular �uid � is water and �uid � is air� We will call them more

often phases and will use a notation� ��phase� � � water� air�

We consider the following unknowns�

S� � saturation of phase � �

p� � pressure of phase � �

v� � volumetric �ux �or Darcy �ux	 of phase � �
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and the physical parameters

x � coordinates of a given point in �� x � �x�� x�� x�	 �

g � gravity acceleration � g � grz �
� � porosity of the porous media� � � ��x� pa� pw	 �

K � absolute permeability� K �K�x	 �

�� � density of phase �� �� � ���p�	 �

�� � �uid viscosity of phase �� �� � ���p�	 �

kr� � relative permeability of phase �� kr� � kr��Sw� x� p�	 �

F� � source or sink of phase �� F� � F��x� t	 �

The governing equations for �uid �ow motion through porous media are the mass conservation

laws �mass balance equations	 for each phase � ��� ����

�����S�	

�t
"r����v�	 � F� ����	

and Darcy�s law for two phase �ow

v� � �Kkr�
��

�rp� � ��g	 � ����	

We suppose that �uids �ll the volume� i�e�� volume balance equation

Sw " Sa � � �


�� Constitutive equations

In order to get a closed system of equations we need one more equation� the capillary pressure

law

pa � pw � pc�Sw� x	 �

We assume that we can compute the capillary pressure pc as a function only of the saturation

of water Sw and spatial coordinates� which is a very rough approximation� but su�cient for

our model�

For air density we propose the functional relation

�� � ���ref

�
� "

pa
pa�ref

�
�


�� Global pressure � total velocity formulations

Here we brie�y sketch the derivation of global pressure�total velocity�saturation equations�

For the detailed discussion of the notion of total pressure and global velocity we refer the

book by Chavent and Ja
re �����


���� Assumptions for relative permeability and capillary pressure functions

The residual saturation S�r for the �uid � is the value of saturation S� below that the �uid

� cannot be replaced� In general S�r is a function of x and possibly p�� We suppose that

we know the values of residual saturations at a point x� � �� i�e�� Swr�x�	 and Sar�x�	� We
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assume that the relative permeability functions are uniquely determined by the saturation of

the wetting phase Sw� i� e��

krw�x� Sw � pw	 � k�rw�Sw	 � kra�x� Sw � pw	 � k�ra�Sw	 �

For the functions kr� we assume that

krw � � for Sw � ��� Swr� � increasing and smooth �

kra � � for Sw � �Sar� �� � decreasing and smooth �

De�ne the volume factors B� and mobility factors d�

B��pw	 �
���pw	

���ref
� d��pw	 �

B�

��
� � � air� water � ����	

global mobility d and fractional �ow function fw

d�Sw� pw	 � dw�pw	k
�
rw�Sw	 " da�pw	k

�
ra�Sw	 �

fw�Sw� pw	 �
dw�pw	k

�
rw�Sw	

dw�pw	k�rw�Sw	 " da�pw	k�ra�Sw	
�

Clearly� given mobility factors� global mobility and fractional �ow we can �nd relative per


meability functions via

krw � fw�Sw� pw	
d�Sw� pw	

dw�pw	
� kra � ��� fw�Sw� pw		

d�Sw � pw	

da�pw	
� ����	

We suppose that the capillary pressure� as a function of the saturation Sw� is independent

of x up to a scaling factor pCM �x	� i�e�

pc�Sw� x	 � pCM �x	pc�Sw	 � �� � pc�Sw	 � � �

where pc is a decreasing function de�ned in �Swr� Sar� with pc�Sc	 � ��


���� Assumptions for pressure dependent coe�cients

We assume that functions ��x� pw	� ���pw	� B��pw	� ���pw	� kr��x� pw	 vary very slowly with

pw� We replace pw with a some intermediate value p� i�e�� p � �pw� pa�� Then

��x� pw	 � (��x� p	 � ���pw	 � (���p	 � B��pw	 � (B��p	 �

���pw	 � (���p	 � d��pw	 � (d��p	 �

From now on we will work only with functions depending on p and will skip the tilde�


���� Derivation of the equations

We de�ne global pressure by

p �
pw " pa

�
� pCM �x	

Z S

Sc

�
fw�s� p	� �

�

�
dpc�s	

ds
ds� ����	

The de�nition ����	 is meaningful since ����	 de�nes a contraction mapping from �pw� pa� into

itself �����

The total velocity is de�ned by

v � Bwvw "Bava � ����	
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The pressure equation is derived by summing ����	 for � � a� w

�

�t
�� �BwSw "Ba��� Sw			 "r�v �

Fw
�w�ref

"
Fa

�a�ref
� ����	

Denote

� �

Z S

Sc

�
fw � �

�

�
dpc�s	

ds
ds � �� �

Z S

Sc

�fw
�s

pc�s	 ds �

We di
erentiate ����	 and obtain

rp � r
�
pw " pa

�

�
� �rpCM � pCMr�

� r
�
pw " pa

�

�
� �rpCM � pCM

��

�S
rS � pCM

��

�P
rP ��

� " pCM
��

�p

�
rp � r

�
pw " pa

�

�
� �rpCM � pCM

��

�S
rS ����	

� r
�
pw " pa

�

�
� �rpCM � pCM

�
fw � �

�

�
dpc
dS

rS

� r
�
pw " pa

�

�
� �rpCM �

�
fw � �

�

�
�r�pa � pw	� pcrpCM �

� fwrpw " ��� fw	rpa " ��rpCM �

We multiply the �uxes given by the phase Darcy laws with the corresponding volume

factors and using the de�nition of the volume and mobility factors ����	 and the formulas

����	 we get

Bwvw � �Bw
Kkrw
�w

�rpw � �wg	

� �dwKkrw�rpw � �wg	

� �fw �Kd�rpw � �wg	� ����	

and

Bava � �Ba
Kkra
�a

�rpa � �ag	

� �daKkra�rpa � �ag	

� ���� fw	 �Kd�rpa � �ag	� � �����	

Now� for the velocity equation we get from ����	� ����	� ����	 and �����	

v � �Kd

��
� " pCM

��

�p

�
rp� �fw�w " ��� fw	�a�g� ��rpCM

�
�

We can recover the phase pressure from the global pressure by the formulas �

pw � p"

�
��Sw� p	� �

�
pc�Sw	

�
pCM �

pa � p"

�
��Sw� p	 "

�

�
pc�Sw	

�
pCM �
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The relations between total velocity v and and phase velocities va and vw are

vw �
fw
Bw

v"Dw��� fw	pCMrpc �Dw��� fw	��g �����	

�Dw

�
�� " � � �

�
pc

�
rpCM �

va �
�� fw
Ba

v�DafwpCMrpc "Dafw��g

�Da

�
�� " � "

�

�
pc

�
rpCM �

where D� � Kkr���� � kfwd�B�� Change of the variables in the de�nition of the global

pressure ����	 gives

p � pa � pCM �x	

Z S

Sc

fw�s� p	
dpc�s	

ds
ds � pa � pCM �x	

Z pc

�

fw�p
��
c � p	d � �

and therefore
�pa
�t

�
�p

�t
" fwpCM

�pc
�t

�

After substitution of ��a��t � d�a�dpa�pa��t in the pressure equation we get

A�Sw� p� x	
�p

�t
"r�v"

�
B�Sw� p	

��

�t
" C�Sw� p� x	

�Sw
�t

�
�

Fw
�w�ref

"
Fa

�a�ref
�

where

A � �
��� Sw	

�a�ref

d�a
dpa

� B � Sw "
�a

�a�ref
��� Sw	 � C � �

�
�� �a

�a�ref

�
"AfwpCM

dpc
dSw

�


�� Saturation equation� Arti�cial di�usion approach

We replace vw with the right hand side of �����	 in the equation ����	 for � � w �water	

and taking into account that �w does not depend on t �incompressibility of water	 we get the

equation for the saturation of water Sw�

�w�
�Sw
�t

"r��w�fwv" fgg	�r��w��D"D�	rSw	 " �w
��

�t
Sw � Q�x� t	�

�����	

with initial and boundary conditions

Sw�x� �	 � S�
w�x	 � x � � � �����	

Sw�x� t	 � SD�x� t	 � x � +s�� � t 	 � �

�w�fwv " fgg � �D"D�	rSw	�n � gw�x� t	 � x � +s�� � t 	 � �

where

D � �Kdfw��� fw	pCM
dpc
dSw

and fg � �Kdfw��� fw	pCM ��w � �a	 �

Note that we add a new macro
dispersion term D� which is a result of up
scaling of the

saturation equation� The statistical theory for the concentration equation is developed by
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Dagan ����� Macro
dispersion and heterogeneous models are also discussed in ���� and �����

This term is de�ned by

D� �

�
%� d

��

xx d

��

xy d

��

xz

d
��

xy d

��

yy d

��

yz

d
��

xz d

��

yz d

��

zz

�
&� � �����	

where the entries are computed by the formulas

d��
xx � �dlv
�
� " dtrhv

�
� " dtrvv

�
�	�jvj" dm �

d��
xy � �dl � dtrh	v�v��jvj �
d��
xz � �dl � dthv	v�v��jvj �
d��
yy � �dtrhv

�
� " dlv

�
� " dtrvv

�
�	�jvj" dm �

d��
yz � �dtrh � dtrv	v�v��jvj �
d��
zz � �dtrhv

�
� " dtrhv

�
� " dlv

�
�	�jvj" dm �

Here dl is the coe�cient of longitudinal dispersion� dtrh is the coe�cient of transversal hor


izontal dispersion� dtrv is the coe�cient of transversal vertical dispersion� dm is molecular

di
usion and v � �v�� v�� v�	�

The problem �����	� �����	 is nonlinear and convection dominated� Therefore� the most

important decisions are how to resolve the nonlinearity of the convection term and how to

choose stable discretization scheme� The modeled physical process exhibits two separate

regimes�

�i	 build up of the saturation front�

�ii	 movement of the front�

We assume that if the saturation Sw is less than some critical value S� the front is not

established yet� We �nd the maximal value Snw�max of the approximate solution on the nth

time step and compare with S�� If Snw�max � S� we approximate fractional �ow function in

each element by a piecewise linear function

fw�S
n��
w 	 �

�
� � if Sn��w � Swr �

fw�S
n
w	 � �S

n��
w � Swr	��S

n
w � Swr	 � otherwise �

�����	

We time lag di
usion and gravity terms� i�e��

D�Sn��w �vn��	 � D�Snw�v
n��	 � fg�S

n��
w 	g � fg�S

n
w	g� �����	

Because of the property of air�water system we believe that when the saturation front is

established the following simple splitting will produce reasonable results�

fw�S
n��
w 	 �

�
F �Sn��w 	 � if vn���rSnw � � �

fw�S
n
w	 � if vn���rSnw 	 �

� �����	

where F �Sn��w 	 is de�ned by �����	 with Snw replaced by the point S� where F is tangent

to fw� Note that �rst approximation is meaningful if S� is close to �� i�e�� we use fw�S
n
w	

instead of fw�S
n��
w 	 on a small interval� We again time lag for the terms corresponding to

the di
usion and gravity� i�e�� we use the approximation �����	�

The resulting linear equation is�

�
�Sw
�t

"r��w�bvSw	�r��w�  DrSw	 " ��

�t
Sw � F �x� t	� �����	
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with initial and boundary conditions

Sw�x� �	 � S�
w�x	 � x � � �

Sw�x� t	 � SD�x� t	 � x � +s�� � t 	 � � �����	

�w�bvSw �  DrSw	�n � g�x� t	 � x � +s�� � t 	 � �

The coe�cients of �����	� �����	 are connected with the coe�cients of �����	� �����	 by the

relations�

b�x	 � cSn��w �

c �

	

�

f�Snw	�S
n
w if the front is not built up�

f�S�	�S� if there is a front and vn���rSnw � �

� if there is a front and vn���rSnw 	 �

F � Fw �r��wfg�Snw	g �A �

A �

	

�

� if the front is not built up�

� if there is a front and vn���rSnw � �

r��wfw�Snw	vn�� if there is a front and vn���rSnw 	 �

 D � D�Snw�v	 "D��v	 �

The above algorithm is summarized in the following �program� like style�

Given functions �k��rw��S�w�� and �k��ra��S�w�� find S��

do time loop

if �front is already built� then

apply splitting ��� and time lag ���	 �
�

else

if �the front is built on the last time step� then

apply splitting ��� and time lag ���	 �
�

else

in each element approximate

fractional flow function by ���

endif

endif

solve linear elliptic problem

end do


���� Finite element approximation for the linearized equation

We use trilinear �nite element method for the linearized equation� In order to make the

discretization scheme stable we use simple upstream weighting� i�e�� if dxx � dyy and dzz are

the diagonal entries of the matrix D"D� we add arti�cial di
usion by making them bigger�

dxx � max�dxx� dx��	 � dyy � max�dyy� dy��	 � dzz � max�dzz � dz��	 �

A similar approach is described in �����


���� Parallelization

The parallelization of the saturation code for the message passing distributed memory com


puters Intel iPSC���� and PARAGON is based on the parallel �ow code developed by J�E�

Pasciak and A�T� Vassilev ����� We parallelize the most time consuming tasks� matrix as


sembly� operator evaluation and inner products in the conjugate gradient square algorithm�
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Figure ���� Exact solution t � �

For the implementation we used the software developed at Brookhaven National Laboratory

����� which provides the user with tools for remote procedure calls in addition to the standard

message passing libraries provided by Intel� This package helps avoid the inconveniences of

explicit message passing and it also greatly simpli�es the development and the debugging of

rather complex user codes�


���� Numerical experiments

We report the computed results for a simple model problem� The exact solution Sw�x� y� z� t	

is given by

Sw�x� y� z� t	 � f�x� t	f�y� t�	f�z� t�	 � t� � ��� �

and the function f is de�ned via the formulas

z � ��x� g�t		� � � g�t	 �
�

��
t"

�

��
�

f�x� t	 �

	''

''�

� � � � x � ���� �

�z " �	���z� � �z " �	 � ���� " g�t	 � x � ��� " g�t	 �

��� z	���z� " �z " �	 � ��� " g�t	 � x � ���� " g�t	 �

� � ���� � x � � �

Notice that the �bell� moves only in x�direction� The projection z � ��� of the exact solution

is plotted on Fig� ��� and Fig� ����

Relative permeability functions of water krw and air kra are �see Fig� ���	

krw�s	 �

�
� � � � s � ��� �

����s� ���	� � ��� � s � � �

kr�s	 � ����s� " ��s� � �s� " �	��� s	���s� " �s" �	 �
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Figure ���� Fractional �ow function and its approximation

Fractional �ow function fw is plotted on Fig� ����

Capillary pressure is de�ned by �see Fig� ���	

pc�s	 �

�
��p� " z � ��� � s � ��� �p
�� z � � � ��� � s � � �

z �
��

�
s� �

�
�

We neglect gravity� For viscosity we choose �a � �� and �w � ������ We assume that

pCM � � and ��
�p � �� The constitutive law for air density �a is

�a � �a�ref

�
� "

p

pref

�
�

where pref � �� �a�ref � ������ The global pressure is given by

p � �� x��� t	

�
�

Then for the component of the total velocity we have

v� �
K���� t	

�
� v� � � � v� �K��fw " ��� fw	�a� �

where

� �
krw
�w

"
kra
�a

�

Numerical results reported in Tables ������� show that the linearization technique is reli


able for the whole range of the di
usion coe�cient� We also observe that upstream weighting

introduce signi�cant smearing for small �� The �nite element method is not conservative and

occasionally we compute negative saturations�
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Table ���� Problem �� � � �����

��h ��)t L� error max� error

� �� ������� �������

� �� ������� �������

�� �� ������� �������

�� �� ������� �������


�� Saturation equation� Upwind discretization

In this section we consider an alternative global pressure�total velocity mathematical model

based on two phase incompressible �uid �ow in porous media� The compressibility of the

air is introduced via the compressibility coe�cient Ca �see �����		� For this model we apply

an improved linearization and an upwind �nite element method based on tetrahedral linear

elements� For the full description we refer to User�s Guide to GCT ������


���� Alternative global pressure � total velocity formulation

We introduce the phase mobilities �� and the total mobility �

�� �
kr�
��

� � � air� water � � � �a " �w �

The global pressure is de�ned by

p �
�

�
�pa " pw	 "

�

�

Z s

sc

�a � �w
�

dpc
d�

d� �

and the total velocity satis�es the equations

v � va " vw � �����	

v � �K��rp�G�Sw� p		 �

where�

G�Sw� p	 �
�a�a " �w�w

�
g � �����	

Note that the de�nitions of the total velocities in the two models ����	 and �����	 correspond


ingly are di
erent� The �incompressible� approach leads to many new terms in the right hand

side �����	�

In a similar way as in Section ��� we derive the equations of the model�

C�p� Sw	
�p

�t
"r�u � f�p� Sw	 �

u � �K��rp�G�Sw� p		 �

����wSw	

�t
"r��w�fwu" fgg	�r���D�Sw	 "D��v		rSw	 � Fw �

Here

fw �
�w
�

� fg � �K�fw��a � �w	 �

C�p� Sw	 � �SwCa � Ca �
�

�a

d�a
dpa

� D�Sw	 � �K�afw
dpc
dSw

� �����	
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Ca is called compressibility� The term D� is de�ned by �����	�

The right hand side is given by

f�p� Sw	 �

�
Fa � ua�r�a � ���� Sw	

��a
�t

�
��a

"

�
Fw � uw�r�w � �Sw

��w
�t

�
��w �����	

To close the model we need two more constitutive laws�

�a � ��a

�
� "

pa
p�a

�
and pc � pc�Sw	 �

��a is the air density at reference pressure p�a�


���� Linearization

The linearization in this section is an extension and re�nement of the procedure described

in Section ���� In each time step we apply inner iteration in order to resolve the nonlinear

convection term� We denote the current solution by Si and set

S� � Snw � Sn��w � Slast �

We assume that the nonlinearities at gravity and di
usion terms are non
crucial and we time

lag them� i�e��

D�Si�vn��	 � D�Si���vn��	 � fg�S
i	 � fg�S

i��	 �

First� we compute the shock saturation S� for the Riemann problem as an asymptotic

guide� S� is the solution of the equation

f
�

w�S�	 �
fw�S�	

S�

We assume that if the maximal value Snw�max of the approximate solution on the nth time step

is less than S�� then the saturation front is not established yet� We split fw in the following

way

fw�S	v �  fw�S	v " b�S�v	S �

with function  fw�S	 de�ned by

 fw�S	 �

	'

'�

� � if S � Swr �

fw�Smax	 �
�S�Swr


�Smax�Swr

� if Swr � S � Smax �

fw�S	 � otherwise

Note that  fw�S	 is still a nonlinear function because we do not know Smax� We approximate
 fw�S	 with a piecewise linear function (fw�S	

(fw�S
i	 �

	'

'�

� � if Si�� � Swr �

fw�S
i��	 � �Si�Swr


�Si��max�Swr

� if Swr � Si�� � Si��max �

fw�S
i��
max	 � otherwise �

When the front is established we use the same splitting� but now we try to predict the

movement of the front by using the shock velocity vf de�ned by

vf �
fw�S�	

S� � Swr
v �
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The �rst term in the splitting is given by

 fw�S	v �

	

�

� � if S � Swr �

vf �S � Swr	 � if Swr � S � S� �

fw�S	v � if S� � S � � �

This is still a nonlinear function and we approximate it with

(fw�S
i	vn�� �

	

�

� � if Si�� � Swr �

vf �S
i � Swr	 � if Swr � Si�� � S� �

fw�S
i��	vn�� � if S� � Si�� � �

The described algorithm is implemented as follows�

�i	 Predict S�� �S� � Snw or use an explicit scheme	�

If �nofront	 predict S�
max�

�ii	 for�i � �� i � imax� i""	

Solve implicitly for Si

��x� p	
�Si

�t
"r�

�
(fw�S

i	vn��
�
�r��D�Si���vn��	rSi	 " ��

�t
Si

� Q�x� t	�r� �b�Si���vn��	Si�� " fg�S
i��	�Krz	� � �����	

If kSi � Si��k� � �
Sn��w � Si�
Exit the loop�

else
Si�� � Si�
goto �i	�


���� Upwind 	nite element method

We suppose that in the domain � � R
d is introduced structured grid with elements distorted

cubes� We devide each cube into �ve tetrahedra� In order to get a conforming �nite element

triagulation we have to devide the cubes in some order �see Fig� ��� and refer for details to

�����	�

Figure ���� Partition of odd and even cells into �ve tetrahedra

We discretize the linear equation �����	 using backward Euler scheme for the time deriva


tive and trilinear �nite elements on tetrahedral mesh�
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xi

Figure ���� Baricentric region Vi

We develop an upwind approximation of the convection term
R
�r��buh	v dx using the

�nite volume approach� Here uh is the approximate solution of the equation �����	� For

similar approach see works by Baba and Tabata ���� and Ikeda ����� Let �i be the linear basis

function corresponding to the ith node and #�i be a characteristic function of the barycentric

region Vi of xi �see Fig� ���	�

We approximate �i with #�i� i�e��Z
�

r��buh	�i dx �
Z
�

r��buh	 #�i dx �

and using Gauss divergence formulas we getZ
�

r��buh	 #�i dx �

Z
�Vi

�b�n	uh ds �

Let �ij be one of the faces of �Vi� We use the approximationZ
�ij

�b�n	u ds � ��ui " ��uj �

where

�� �
�i�j " j�i�j

�
� �� �

�i�j � j�i�j
�

and �i�j is de�ned by formulas �����	 or ����	� Note that we used the same approach to derive

upwind discretizations in Chapters IV� V and VI�

The method we described in this section still have to be tested numerically�





CHAPTER VIII

CONCLUSIONS

In this dissertation we derived several new �nite volume and �nite volume element meth


ods for nonsymmetric elliptic boundary value problems� We studied theoretically their prop


ertiies and tested computationally their e�ciency on real�life problems� Our new results and

future directions of research are brie�y outlined in this chapter�

In Chapter III we provided a general framework for �nite volume methods and discussed

several ways to construct discretization schemes� This general approach allowed us to for


mulate a novel cell�centered �nite di
erence scheme on Voronoi or circumscribed meshes for

problems with tensor coe�cients� It is an interesting problem to explore the properties of

this method and apply it to mathematical models of physical phenomena of interest� Now it

is well understood how to derive �nite volume schemes from mixed �nite element methods on

uniform meshes for problems with scalar coe�cients� However� there are many open prob


lems when employing these methods on irregular meshes or solving equations with tensor

coe�cients� Construction of stable and accurate mixed �nite element approximations for

convection�di
usion problems is another important and interesting problem�

Stable accurate and locally mass conservative methods for strongly nonsymmetric prob


lems that satisfy the discrete maximum principle on general meshes were discussed in Chapter

IV� We proposed three di
erent cell�centered �nite di
erence schemes� UDS� MUDS and

IDS� and proved that they satisfy the discrete maximum principle on Voronoi or circum


scribed meshes under some conditions that are natural analogs of the conditions for the

di
erential problem� Consequently� the corresponding discrete problems are well de�ned

even for extremely irregular meshes� Such results are not valid for the classical �nite element

methods�

We introduced the so called Finite Volume regular meshes� and for this class of meshes we

showed that the discrete problems were coercive� stable and convergent and derived in discrete

H��norm� We elaborated the discrete Aubin�Nitsche �trick� and proved that under some

conditions the convergence in discrete L��norm is with one order higher than in discrete H��

norm� We speci�ed some geometric assumptions �the symmetry assumptions	 under which we

showed that MUDS and IDS were superconvergent in discrete H��norm� We note that the

symmetry assumptions are only su�cient and conjecture that for all �reasonably� regular

Voronoi meshes such superconvergence estimates in discrete H��norm are valid� Another

possible direction of research is to investigate the superconvergence of �nite di
erence schemes

on Voronoi meshes locally in discrete maximum norm�

It would be an interesting problem to extend our theory for elliptic problems to parabolic

equations� Consistent theory for �nite volume discretization of parabolic problems is still not

available�

We presented extensive numerical experiments of the proposed methods that illustrated

our theoretical estimates� The properties of �nite volume methods on nonregular meshes

have to be investigated numerically�

In Chapter V we studied cell�centered �nite di
erence schemes with local patch re�ne


ment� We investigate two di
erent interpolations along the interface between the coarse and

�ne regions� constant and linear� and constructed two conservative cell�centered �nite dif


ference methods� UDS and MUDS� that employed these interpolations� We proved that

these schemes satisfy the discrete maximum principle and showed that the discrete problems

were coercive� We provided the stability and error estimates in discrete H��norm with loss

of accuracy half of order due to the interface interpolation� It would be an interesting oppor




��� Conclusions

tunity to apply a more general approach� the so called mortar element methods� to the �nite

volume methods and reduce the error along the interface�

A general way for discretization of elliptic boundary value problems in divergence form is

the �nite volume element methods� This methods combines the advantages of both �nite vol


ume and �nite element methods� FVE methods give locally mass conservative discretization�

work for tensor coe�cients without any special modi�cations� and can handle discontinuous

coe�cients similarly to the way the �nite volume methods do� On the other hand in FVE

methods the approximation of the �uxes on the faces of the control volumes is produced

by using speci�ed �nite element spaces� and consequently they have the �exibility of �nite

element methods� We generalized the known results for ��D symmetric problems to ��D

���D	 nonsymmetric ones for barycentric control volumes� We proved the stability and error

estimates for di
usion dominated cases using classical technique from �nite element the


ory for Petrov�Galerkin methods �inf�sup condition	� A new upwind �nite volume element

method was derived for convection dominated problems�The stability and error estimates

were provided with the technique developed in Chapter IV�

We plan to investigate all considered methods on di
erent types of meshes� for example

Voronoi grids� and derive streamline di
usion �nite volume element methods� These dis


cretizations have to be tested numerically� It would be interesting to extend our theory to

discretization of parabolic equations�

In Chapter VII we considered application of �nite volume methods to groundwater �ow

simulations� We stated the conservation laws that govern the �uid �ows in porous media and

augmented them with constitutive relations in order to get a closed system of partial di
er


ential equations� For this mathematical model we discussed two di
erent implementations of

global pressure�total velocity formulations developed by Chavent and Ja
re ����� The �rst

one was based on the two phase compressible �uid �ows� We developed a linearization pro


cedure for the saturation equation and discretized the resulting linear problem with trilinear

�nite elements stabilized by adding arti�cial viscosity� This discretization was numerically

tested and our results showed that the proposed linearization technique is reliable for the

wide range of the di
usion coe�cients� We also observed that arti�cial viscosity stabilization

introduced signi�cant smearing for small di
usion coe�cients� We parallelized our computer

code using the tools developed by Joseph Pasciak and Apostol Vassilev �����

This parallelization was not compatible with the parallelization of the pressure code in

PICS project �for details refer to User�s Guide to GCT �����	� so we implemented tetrahedral

meshes� We considered an alternative global pressure�total velocity formulation based on two

phase incompressible �uid �ow in porous media� The compressibility of the air is introduced

via the compressibility coe�cient� We extended and re�ned the linearization procedure for

the saturation equation� We made it consistent in sense that when the time step goes to zero

or two consecutive approximations get closer� the linear equation converges to the nonlinear

one� Moreover� we developed an inner iteration of Picard type� each step of which includes

solving of the linear problem� We constructed a new upwind �nite element method using the

�nite volume approach to discretize the convection term� This discretization was tested for

linear problems and implemented for the saturation equation� Now we are in a process of

testing our algorithm for various practical problems�

In order to improve the overall performance of the numerical method we plan to concen


trate on the following tasks�

�� Add residual control and eventually time step control in the nonlinear iteration�

�� Consider streamline di
usion FEM and their nonlinear performance�

�� Investigate local mass conservative �streamline	 upwind �nite volume element methods�



���

�� Implement fractional step method with explicit solve for the hyperbolic part of the

saturation equation discretized using Godunov�s methods and implicit solve on the

di
usion part discretized by mixed �nite element methods� This algorithm will be

locally mass conservative�

�� Testing of our upwind discretization for problems with reaction terms�

Extension of the proposed algorithms has to be developed for three phase �uid �ow models�

which will allow modeling of more complex physical processes�
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