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ABSTRACT

Optimal Order Preconditioners for Mixed and Nonconforming Finite Element
Approximations of Elliptic Problems with Anisotropy. (May 1996)
Serguei Maliassov, M.S., Moscow Institute of Physics and Technology;
Ph.D., Institute of Numerical Mathematics, Russia
Chair of Advisory Committee: Dr. Raytcho Lazarov

The general area of this thesis is preconditioning techniques for mixed and nonconforming fi-
nite element approximations of elliptic boundary value problems. A special emphasis is placed
on problems in three dimensions with possibly large anisotropy in the coefficients of the PDE’s
along with large jumps in the coefficients across the interfaces separating subregions. The
optimal preconditioners developed exploit the techniques of domain decomposition methods,
algebraic substructuring, and multigrid methods. As a result, the proposed iterative processes
converge with rates independent of the mesh size, the jumps of the coefficients, and the ratio
of anisotropy.

Using an equivalence between nonconforming finite element methods and hybrid-mixed
methods the iterative methods constructed for algebraic systems with symmetric positive
definite matrices are extended to saddle-point problems which arise from mixed finite element
approximations.

A new construction of iterative methods for nonconforming approximations of elliptic
PDE’s on nonmatching grids is proposed. The computational domain is considered as a
union of nonintersecting subdomains. In each subdomain the grid is constructed in accor-
dance with its own coordinate system using the main directions of anisotropy. The original
elliptic problem is posed as a problem with Lagrange multipliers at the interface between
the subdomains, which ensure the continuity conditions of the solution. A mortar finite ele-
ment subspace is constructed in the space of Lagrange multipliers, which results in algebraic
systems of a saddle-point type.

Based on the technique of domain decomposition and fictitious components methods a
construction of block diagonal preconditioners for the algebraic systems arising in the mortar
finite element method is developed. The fictitious components method is used to precondition
subdomain problems, while the interface problems are preconditioned by an inner Chebyshev
iterative procedure. It is shown that the developed preconditioner is spectrally equivalent to
the original saddle-point matrix.

Applications of the newly developed iterative methods and preconditioning techniques are
considered. In particularly, these methods are applied in the simulator of fluid flow in porous
media.
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CHAPTER 1
INTRODUCTION

T All streams flow into the sea yet the sea is never full.
To the place the streams come from, there they return again.
8 All things are wearisome, more than one can say.
The eye never has enough of seeing, nor the ear its fill of hearing.

THE HoLy BIBLE. ECCLESIASTES. CHAPTER 1.

The numerical modeling of physical processes has played an increasing role in solving sci-
entific and engineering problems in recent decades. Numerical methods for large algebraic
systems play an essential role in the construction of efficient codes for modeling in computa-
tional fluid dynamics, elasticity, and other core areas of continuum mechanics. For example,
even moderate resolution requirements for a relatively simple three-dimensional model of
groundwater flow result in algebraic systems with millions of unknowns. Many important
problems in science and engineering will require in the future much higher resolution than
available at the present time. The importance of the algebraic solvers has increased dramat-
ically with the arrival of powerful computing systems. Also, they have become a cornerstone
in high performance computing. Therefore, the development of numerical methods for solving
the resulting very large algebraic systems efficiently and with affordable computational cost
is a challenging problem in numerical mathematics.

Many physical processes are described by elliptic partial differential equations (PDE). A
classical example of such PDE in a bounded domain Q is: —div (KVu)+c-u = f, where ¢, f
are given functions, K(z) = {k;;} is a symmetric and positive definite coefficient matrix, and
the unknown function u is subject to certain boundary conditions.

This problem can be discretized in various ways. Among the most popular and frequently
used methods of approximation are the finite volume method, the Galerkin finite element
method and the mixed finite element method. Each of these methods has its advantages and
disadvantages when applied to particular engineering problems. For example, for petroleum
reservoir simulations in geometrically simple domains and heterogeneous media, the finite
volume method has proven to be reliable, accurate, and mass conserving cell-by-cell. Many
engineering problems, e.g., petroleum recovery, ground-water contamination, seismic explo-
ration, etc., need an accurate flux q = —KVu calculation in the presence of heterogeneities,
anisotropy and large jumps in the coefficient matrix K (z). The mixed finite element method
proposed by Raviart and Thomas in [101] is known for its accurate flux approximation.

The mixed methods for second order elliptic equations have been extensively studied in
the last two decades. The popularity of these methods is due to the advantages they offer in
solving problems from elasticity and fluid flow. Namely, along with the direct approximation
of the flux q the mixed methods conserve mass locally element by element. A large variety
of mixed finite element spaces on triangles, rectangles, prisms, and tetrahedrons has been
proposed [101, 92, 27, 26] and their convergence and superconvergence properties have been
studied [113, 67, 90, 43, 54].



2 Introduction

As shown by Russell and Wheeler in [104], mixed finite element approximations on rect-
angular grids with special quadratures are equivalent to finite volume methods. The super-
convergent velocity calculations for smooth solutions have been established by Weiser and
Wheeler in [118]. Based on that equivalence, Bramble et al. in [21] have developed efficient
multigrid solution procedures for mixed approximations on structured grids. However, in
general the technique of the mixed finite element method leads to an algebraic saddle point
problem that is more difficult and more expensive to solve compared to the problem with a
symmetric and positive definite operator. Although some reliable iterative algorithms for the
saddle point problems have been proposed and studied (see, e.g., [16, 19, 56, 105, 115]), their
efficiency depends strongly on the geometry of the domain, the coefficient matrix K (z), and
the type of finite elements used.

An alternative approach can be taken by developing hybrid-mixed methods. This approach
has been studied in the pioneering work of Arnold and Brezzi [5] where the continuity of the
normal component of the flux vector to the boundary of each element is enforced by Lagrange
multipliers. In general, the Lagrange multipliers on the element boundaries turn out to be
none other than the trace of the primary unknown u(z).

The important discovery of Arnold and Brezzi is that the hybrid-mixed method is equiva-
lent to an approximation of the initial equation by the Galerkin method with nonconforming
finite elements. Namely in [5] it is shown that the lowest-order Raviart-Thomas mixed element
approximations are equivalent to the usual Pj-nonconforming finite element approximations
when the classical Pi-nonconforming space is augmented with Ps-bubbles. Such a relationship
has been studied recently for a large variety of mixed finite element spaces by Brenner, Chen,
Cowsar, Arbogast, and many others (see, e.g., [4, 23, 32]). The importance of this study is
that the algebraic system for the Lagrange multipliers has a symmetric and positive definite
matrix.

Once the discretization method has been chosen, the next problem to address is solving the
corresponding system of linear equations, which in general is very large. Today, in computer
simulation of real-life processes, systems with hundreds of thousands (and even millions) of
unknowns are usual and often encountered. Obviously, direct methods of solving such systems
are not practical even on the most powerful computers. As an alternative to direct methods
one should consider iterative methods.

The term “iterative method” refers to a wide range of techniques that use successive
approximations to obtain more accurate solutions to a linear system at each step. The devel-
opment of efficient iterative methods for systems arising from finite element discretizations
of second-order partial differential equations has been a very active area of research over
the last few decades. The rate at which an iterative method converges depends strongly
on the spectrum of the coefficient matrix. At present, iterative methods usually involve a
second matrix that transforms the coefficient matrix into one with a more favorable spec-
trum [44, 45, 46, 39, 117]. This transformation matrix is called a preconditioner. The use
of a good preconditioner improves the convergence of the iterative method sufficiently to
overcome the extra cost of constructing and applying the preconditioner. Today, the suc-
cess of finite element methods to a large extent is due to the existence of fast and robust
techniques for preconditioning and solving the corresponding discrete problems. Such effi-
cient techniques for symmetric and positive definite matrices are well developed and studied
8,9, 17, 45, 59, 57, 62, 68, 70, 80, 114, 120].

The equivalence between the hybrid-mixed and the nonconforming finite element methods



establishes a framework for preconditioning and/or solving the algebraic problem arising
from the mixed finite element method and for postprocessing the finite element solution.
Schematically this framework includes the following three steps:

(a) forming the reduced algebraic problem for the Lagrange multipliers, which is equivalent
to a nonconforming approximation;

(b) construction and study of efficient methods, based on multigrid, multilevel or domain
decomposition for solving or preconditioning the reduced system;

(c) recovery of the solution u(x) and the flux q from the Lagrange multipliers, which were
already found, by using only element-by-element computations.

The recent progress in each of the steps described above (see, e.g., [5, 116, 107, 22, 37])
gives us an indication that the mixed finite element method can be used as an accurate and
efficient tool for solving general elliptic problems of second order in domains with complicated
geometry.

It follows that the most expensive part in solving the mixed problem numerically is to
find the solution of a Pj-nonconforming problem. Thus, the first main objective of this
dissertation is the development and study of efficient iterative techniques for nonconforming
finite element approximations to boundary value problems of second-order self-adjoint linear
elliptic PDE’s. A special emphasis is placed on problems in three dimensions with a possibly
large anisotropy in the coefficients. There is a variety of engineering applications where these
methods can be very useful. Among them are problems that arise in contaminant transport,
groundwater flow, and oil reservoir simulation. Other important applications are composite
materials, phase transitions, polycrystalline dielectrics, and polyphased fluids.

Although the methods of solving the algebraic systems resulting from the nonconforming
approximations have been extensively studied in the past few years (see, e.g., [5, 15, 20, 22, 35,
107]), their efficiency depends on the coefficient matrix K (z). In the case of strong anisotropy
in the coefficients the question of constructing effective solution techniques is still open.

In this dissertation we propose several preconditioners for Pj-nonconforming finite element
approximations of anisotropic problems using ideas of substructuring proposed by Kuznetsov
in [71]. These ideas make it possible to construct very efficient preconditioning techniques for
problems with a high anisotropic ratio in the coefficients in domains of simple form such as a
parallelepiped or a topological parallelepiped.

To construct the iterative methods for solving the anisotropic problems in domains of
complex geometric shape we consider numerical methods which involve a solution of analogous
problems in domains of relatively simple form. The known methods of such type are the
Schwarz alternating subdomain methods [42, 88, 95, 76], the fictitious components method
[6, 82, 85, 86], and methods based on matrix bordering [48, 40, 89, 94, 93, 100]. The methods
which are based on the partitioning of the initial domain into subdomains are called domain
decomposition methods (DD).

It is believed that the first DD method was proposed by Hermann Schwarz [108]. It was
originally used to show the existence of the solution of an elliptic boundary value problem on
domains that consist of the union of simple overlapping subdomains.

Recently, DD algorithms have become increasingly popular because they take full ad-
vantage of modern parallel computing technology. DD methods make it possible to solve
the subdomain problems independently on different processors while exchanging information
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between them only from time to time. DD methods have an advantage of “natural paral-
lelization” in comparison with any other effective method of solving elliptic boundary value
problems. Exhausting results of the development of DD algorithms in the last decade can be
found in the Proceedings of International Conferences on Domain Decomposition methods,
and also in numerous papers (see, e.g., [14, 29, 49, 82, 86, 93, 111, 120]).

In general, the DD algorithms are based on variational methods for decomposing and
solving elliptic problems. Most of the applications use discretization grids which are defined
globally over the whole domain and then split into subdomains. In mechanics, this results in
a conforming approximation of the primary variable. However, it might be more convenient
and efficient to use approximations which are defined independently on each subdomain.
This allows the user to make local and adaptive changes to the models, the approximation
strategies, or the grids in one subdomain without modifying the other ones. This, off course,
is possible if there is an adequate way of imposing the continuity (possibly in a weak sense)
of both the fluxes and primary variables across such nonconforming interfaces.

In the presence of discontinuities and anisotropies in various subdomains of the compu-
tational domain, from a practical point of view it is attractive to have a local coordinate
system in each particular subdomain with its axes aligned with the main directions of the
anisotropy. However, this will require using different grids in different subdomains which
are defined independently and which do not match at the interfaces. This concept has been
considered in the mortar finite element method (see, e.g., [12, 110]). At present, there are
already several approaches to the iterative solution of finite element systems on nonmatching
grids, presented, for example, in [1, 2, 12, 72, 74]. Thus, the second objective of the disser-
tation is the construction of an iterative method for algebraic systems that occur when using
nonmatching grids. The developed technique combines the ideas of the domain decomposi-
tion method [58, 111, 120] with the algorithms of multilevel and algebraic multigrid methods
[8, 20, 60, 70].

The third objective of this dissertation is conducting numerical experiments to establish
experimentally the conclusions from the theoretical analysis of the algorithms considered and
to assess their effectiveness in terms of error reduction after a fixed number of iterations. Also
the goal is to apply the newly developed iterative methods and preconditioning techniques to
real-life problems such as the simulation of fluid flow in porous media [30].

The dissertation is organized as follows.

In Chapter II we consider a second-order elliptic boundary value problem and its dis-
cretization. It contains basic theoretical results concerning the differential problem and its
finite element approximations. We begin in Section 2.1 with some definitions and results
about Sobolev spaces for scalar and vector functions. In Section 2.2 we introduce a model
elliptic problem and its discretization by the standard Galerkin finite element method. Then,
in Section 2.3 we discuss the lowest order Raviart-Thomas mixed method and provide clas-
sical results concerning error estimates and properties of the discrete operators. Next, in
Section 2.4, we review the Arnold-Brezzi theory which takes advantage of an equivalent hy-
brid formulation of the discrete mixed problem to reduce a symmetric indefinite problem to
a positive definite one. The resulting problem is directly related to the Pj-nonconforming
finite element problem. Finally, in Section 2.5 we outline the classes of problems for which
we develop preconditioned iterative methods in the subsequent chapters.

In Chapter III we outline iterative techniques for solving systems of linear algebraic equa-
tions with both symmetric positive definite and indefinite matrices. For both kinds of systems



in the next two chapters we develop efficient preconditioners. First, we consider some basic
facts of the theory of iterative methods. Next, in Section 3.2 we give the formulae for the
preconditioned Lanczos method [81] as applied to the solution of systems with symmetric
indefinite matrices and discuss the choice of preconditioners for saddle-point matrices. Then,
in Section 3.3 we discuss conjugate gradient type methods. Finally, in Section 3.4 we sketch
the theory of the Chebyshev [57] methods which we use in Chapter V.

The main results of the dissertation are contained in Chapters IV and V.

In Chapter IV we consider two- and three-dimensional anisotropic problems with both
constant and almost constant matrix coefficient K(z) in the domains of a simple shape.
Most of the theory developed in this chapter is based on the results published by the author
in [77], and in joint works with R. Ewing, R. Lazarov, Yu. Kuznetsov, and Z. Chen in
[52, 55, 33, 51, 73].

In the first section 4.1 we describe the idea of algebraic substructuring which we use
to construct preconditioners. In Section 4.2 we consider a two-dimensional problem with
a diagonal matrix coefficient K(z). A detailed description of the algebraic substructuring
preconditioners for three-dimensional problems is given in Sections 4.3 and 4.4. We formulate
the model problem with a diagonal tensor, develop an algebraic substructuring preconditioner
for the resulting linear system, and give an implementation algorithm. In Section 4.3 we define
the partition of the whole domain, subdividing it into topological parallelepipeds and splitting
each parallelepiped into six tetrahedra. The case of splitting each topological parallelepiped
into five tetrahedra when K (x) is a diagonal tensor is considered in Section 4.4. In Section
4.5 we consider the case of full tensor function K(z) and domain 2 being a topological
parallelepiped and develop a variant of the fictitious components method for anisotropic
problems.

In Chapter V we present a construction of a domain decomposition method for solving
systems of grid equations approximating boundary value problems for second order elliptic
problems with anisotropic coefficients. We consider problems for which the computational

domain €2 is a union of nonoverlapping subdomains = '61 Q; such that inside each ;
=

the equation coefficients vary insignificantly. We develop two different methods for the non-
conforming approximations of anisotropic problems. This chapter is based on the results
published in [78, 79].

In Section 5.2 we consider a variant of the block bordering method [89, 94] for the
anisotropic problem. This algorithm uses the preconditioner developed in Chapter IV for
the problems in subdomains. For the interface problems we construct a preconditioner in the
form of an inner Chebyshev iterative procedure. More precisely, this is a preconditioner for
the Schur complement of the original symmetric positive definite matrix, which is obtained
after eliminating the block corresponding to the unknowns in the subdomains.

This approach combines the ideas of domain decomposition methods [14, 18, 29, 111, 120]
and the algorithms of multilevel and algebraic multigrid methods [8, 20, 60, 70], with the
bordering method for solving systems of mesh equations.

In Section 5.3 we propose iterative methods for solving systems of linear equations which
arise in nonconforming finite element approximations of elliptic PDE’s on nonmatching grids.
More precisely, we use the technique of mortar finite elements (see, e.g., [1, 2, 12, 72, 109, 110]).
The mortar element method is an optimal nonconforming domain decomposition method for
the discretization of partial differential equations which provides for a maximum of mesh,
refinement, and resolution flexibility while simultaneously preserving locality and elemental
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structure.

Using the results of Section 4.5, in each subdomain we construct its own coordinate system
and grid (triangular in 2-D and tetrahedral in 3-D) in accordance with the main directions
of anisotropy, so that the coefficient matrix is diagonal in the local coordinates. The original
elliptic problem is posed as a problem with Lagrange multipliers at the interfaces between
subdomains. A mortar finite element subspace is constructed in the space of Lagrange multi-
pliers. The resulting algebraic systems have the form of a saddle-point problem. The iterative
method involves a block diagonal preconditioner with the inner Chebyshev iterative procedure
and the preconditioned Lanczos method as an outer iterative procedure.

Chapter VI is devoted to the applications of the theory developed in Chapters IV and
V. We present the results from numerical experiments that illustrate this theory and apply
it to the real-life problem of modeling fluid flow in porous media. In Section 6.1 we provide
experiments for substructuring methods and the fictitious component method developed in
Chapter IV. In Section 6.2 we consider experiments with the domain decomposition method
on matching and nonmatching grids illustrating the theory of Chapter V. Finally, in Section
6.3 we consider an application of the Lagrange multiplier approach described in Chapter II
to modeling the fluid flow in porous media.

In Chapter VII we summarize the results of the research presented for the defense.



CHAPTER II

DIFFERENTIAL AND FINITE ELEMENT PROBLEMS

In this chapter we consider a second-order elliptic boundary value problem and its dis-
cretization. It contains basic theoretical results concerning differential problems and finite
element approximations.

The chapter is organized as follows. We begin in Section 2.1 with some basic definitions
and useful results about Sobolev spaces for scalar and vector functions. In Section 2.2 we in-
troduce the elliptic model problem and the corresponding discrete system using the standard
Galerkin finite element method. Then, in Section 2.3 we discuss the lowest-order Raviart-
Thomas mixed method and provide classical results concerning error estimates and properties
of discrete operators. This formulation is useful in applications for which accurate approxi-
mation to the flux variable of the elliptic problem is required and where the solution (of the
elliptic problem) is not sufficiently smooth. This is the case where there are highly discon-
tinuous or anisotropic coefficients. Next, in Section 2.4, we review the Arnold-Brezzi theory
which takes advantage of an equivalent hybrid formulation of the discrete mixed problem to
reduce a symmetric indefinite problem to a positive definite one. The resulting problem is
directly related to the nonconforming P, finite element problem. Finally, in Section 2.5 we
formulate algebraic problems for which we develop preconditioned iterative methods in the
subsequent chapters.

2.1 Sobolev spaces

Sobolev spaces play a fundamental role in studying partial differential equations. These spaces
are very natural and often are used in analysis of scientific and engineering problems because
norms in some such spaces have a sense of the energy of considered systems. Also, the exis-
tence of generalized solutions for many elliptic boundary problems is easily established using
variational principles in some Sobolev spaces. The existence of classical solutions is accord-
ingly transformed into the question of regularity of generalized solutions under appropriate
boundary conditions. In the last decades Sobolev spaces have become very important in nu-
merical analysis. They are used to answer questions related to the well-posedness of discrete
systems and approximation properties of discrete solutions, or how close the discrete solution
is to that of the continuous problem. In this dissertation the main use of Sobolev space theory
is to analyze preconditioners for discrete systems.

Many elliptic boundary value problems arising in practice are formulated in domains,
which are simple but not smooth. In finite element analysis, for instance, domains are very
often composed of polyhedra. In domain decomposition methods we also encounter polyhedral
substructures. Thus, it is natural to introduce Sobolev spaces for the class of Lipschitz
domains.

Let D denote a domain, i.e. an open connected set, in IR?, d = 2,3. In later chapters D
can be the whole region €2, a substructure €;, or a finite element 7.
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Definition 2.1 (Lipschitz domain) Let D be an open subset of RY. D is a Lipschitz do-
main if for every x € OD there exist a neighborhood © C IR? of x and a map 1 from O onto
an open unit cube C = {|&;| < 1,i=1,...,d} such that

(A) 1 is injective;

(B) 4 together with ¢)~" (defined on C) is Lipschitz continuous;

(C) DNO ={yeD:& = (¢¥(y))a <0}, where (Y(y))q denotes the d-th component of (y).
A consequence of (C) is that the boundary 0D is defined locally by the equation (1 (y))q = 0.

We remark that if D is a bounded Lipschitz domain, we can select a finite number of pairs
(Oi,;), 1 =1,..., M, to cover a neighborhood of 9D.

Definition 2.2 (L?(D)) Let u be a Lebesque measurable function and let D be a domain in
IR?. The Hilbert space L*(D) is defined by the norm

||U||%2(D) = /U2 dx.

D

Definition 2.3 (H!(D)) Let D be a domain in RY. The Sobolev space H'(D) is defined by
the seminorm

|u|%[1(p) = /Vu - Vu dz,

and the norm

2 2 2
lullzr (o) = Tl o) + 2z lullz2(p)
D
where Rp is a diameter of D. Here Vu has to be understood in the distributional sense.

The scale factor Rp is obtained by a change of variables beginning with the standard
definition of the norm for a domain with unit diameter.

Definition 2.4 (H*(D), 0 < s < 1) Let D be a domain in R?. The fractional order Sobolev
space H%(D), 0 < s < 1, is defined as the space of all u € L?(D) such that

u(z
|u|%ls //| y|d+25 dw dy < o0 (2.1)

with the norm

[ullFrs (py = lulFrs (py + 535 1ull 72y

R—%s
For a bounded Lipschitz domain D it can be shown [3, 61, 91] that the space H*(D) is a
completion of the space C°(D) (or C*(D)) with respect to the norm || - || grs(py. The space
C>°(D) consists of the infinitely continuously differentiable functions defined in D The space
C>®(D) € C*®(D) is the restriction of C*®(IR?) into D.
For a domain D the space H§(D) € H*(D) is defined as the completion of C§°(D) with
respect to || - ||gs(p). Here the space C§°(D) is the subspace of C°°(D) of functions with
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compact support in D. For a bounded Lipschitz domain it can be shown [61] that H*(D) =
H§(D), for 0 < s < 1/2.

Next, we state a lemma which makes it possible to extend results from a d-dimensional
cube or a smooth domain to a bounded Lipschitz domain.

I:emma 2.1 Let Dy and Do be bounded domains, and let 4 be a bi-Lipschitz map from D; to
Dy. Then, for u € H*(Ds), 0 < s <1,

colu o plgs(pyy < |ulps(pyy < ciluo|gs(p,)-

The proof of this lemma for s = 0,1 can be found in [91]. For an intermediate s it can be
proved using explicit presentation (2.1) (see, e.g., [61]).

We shall need Sobolev spaces on manifolds such as D or an open subset I' € 9D. Let
D be a bounded Lipschitz domain in IR?. Then an outward vector normal to 9D is defined
almost everywhere with respect to a hypersurface measure dS [61]. This measure is uniquely
defined in terms of the d-dimensional Lebesque measure dx and dD. For domains with a
piecewise smooth boundary dS coincides with the standard notion of surface area.

Definition 2.5 (||ullz2ry) Let D be a bounded Lipschitz domain and T' be an open subset of
OD. Let u be a measurable function with respect to the hypersurface measure dS. The Hilbert
space L?(T") is defined by the norm

2oy = /u2 ds. (2.2)
r

We introduce now the concept of trace maps. We have an obvious definition of boundary
values, or trace on 9D, for functions in C°°(D). These maps can be generalized to functions
in H'(D) for a bounded Lipschitz region D [75, 91].

Lemma 2.2 (Trace and Extension theorem) Let D be a bounded Lipschitz domain. The
trace map 7y : u — ulsp, defined for C*°(D), has a unique continuous extension from H'(D)
onto H'/?2(dD). This operator has a right continuous inverse.

Using this definition of the map  we can introduce a seminorm for the space H'/2(9D).

Definition 2.6 (H'/%(I")) Let D be a bounded Lipschitz domain in RY. Let u be a square
integrable function with respect to the hypersurface measure dS. We define the norm and
seminorm for the space H'/2(0D) by

|ul 172 9p) = UeHl(iDn)f . V] a1 (D), (2.3)
and
Julagomy = lelorsom) + g N30y (2.4)
respectively.

We now introduce spaces that are used in the mixed formulation of elliptic problems.
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Definition 2.7 (H'/2(0D)) The dual space of H/?(9D) is denoted by H=/2(dD) and is
a Hilbert space with the norm

<u, v >gp
lullg-1r29py = sup =,
veH/2(8D) HUHH1/2(aD)

where < -,- >gp is the duality pairing between HY?(8D) and H—1/2(9D).

Definition 2.8 (H(div;D)) The space H(div;D) is defined by
d
H(diviD) = {p = (), € (I2D)" s divp € L2(D)}

and is a Hilbert space with the usual graph norm

d
12111 aivipy = D IIPill 720y + 1div PlIZ2(p)-
i1

Since for a Lipschitz domain the unit normal n to the boundary 9D is defined almost
everywhere, for a smooth vector function p in D the normal component p-n is defined almost
everywhere on 0D. The following lemma extends the notion of the normal component to
functions in H(div;D).

Lemma 2.3 (Trace and Extension theorem for H(div;D)) Let D be a bounded Lips-

chitz domain. The trace map v, : p — Plap, defined a priori from (Hl(Q))d into L?(0D),
has a unique continuous extension from H(div;D) onto H='/2(dD). As a consequence, the
following characterization of the norm for functions u € H_I/Q(BD) 1s valid:

_ = inf D) 2.5
]l g 1/2(9D) peH(divl;%)’ pn—p “pHH(d ;D) (2.5)

A demonstration of the first part of this theorem can be found in [112]. The character-
ization of the norm was given in [113]. To avoid, whenever possible, working in this space
H~'/2(9D) which contains all the functions of L2(9D), we define, with the aid of Lemma 2.3,
the space

H(div; D) = {p € H(div; D) : p-n € L*(9D)}, (2.6)

which is a Hilbert space with norm

2 2 2
Hp“’H(div;D) = Hp“H(div;D) +lp- n“L?(aD)'

Then, we have Green’s formula.

Lemma 2.4 (Green’s Formula) Let D be a bounded Lipschitz domain. Let p € H(div;D).
Then,

/(Vv-p+vdivp) dx = /v (p-n)dsS, Vv € H(D). (2.7)
D oD

The following abstract lemma [36, 61] allows us to show well-posedness of certain elliptic
problems.
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Lemma 2.5 (Lax-Milgram Lemma) Let B be a bilinear form on a Hilbert space H. As-
sume that B is bounded

Bw,v)| < C- ol - ol Vo € M
and coercive, i.e. there exists a v > 0 such that
B(v,v) > v|v|)3, Vv e H.
Then, for every bounded functional f € H* there exists a unique element uy € H such that
B(uyf,v) = f(v), Vv e H,

and

1
<
gl < -

The counterpart of the Lax-Milgram Lemma for certain saddle-point problems is given by
(cf. Brezzi and Fortin [25])

Lemma 2.6 (Babuska-Brezzi Lemma) Let V and Q be Hilbert spaces with the norms
|-l and |||, respectively. Let a(-,-) be a continuous bilinear form on V xV and b(-,-) be a
continuous bilinear form on 'V x Q. Let us define an operator B : V. — Q' by (Bp,v) = b(p,v)
for allp € V and v € Q, and assume that the range of B is closed in Q', i.e. there exists a
constant cg > 0 such that

b
sup (p,v)
pev Ipllv

aoanQ\KerBT:ao( in Tuv+voug>,v@ecz. (2.8)

vweKer B

Let us also suppose that the operator defined by the bilinear form a(-,-) is elliptic on Ker B,
1.e. there exists a constant oy > 0 such that

inf sup M > aq,
qOeKer BpoeKer B ||q0||V ' ||p0||V (2 9)
£ a(qo, Po) > '
in sup o = O1.
pocKer B g cKer B laollv - [[Pollv
Then the problem: find (p,u) € V x Q such that
a(p,q) +b(q,u) =g(a), Vqev,
{ (0,a) +bla,u) = g(a) 210
b(p,v) =fv), WYweQ,

has a solution (p,u) for any g € V' and for any f € Im B. The first component p is unique
and the second component u is defined up to an element of Ker BT. Furthermore,

ol < —lglhv +— (14 L2 1 2.11)

and

llovicer on < o (14 22 ol + 253 (14 e 1 2.12)

We note that the conditions (2.8) and (2.9) of this Lemma are not only sufficient but also
necessary for the existence of a solution (cf. Brezzi [24]).
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2.2 Elliptic problem

In this section we formulate a model elliptic problem, give its weak formulation, and introduce
the standard Galerkin finite element discretization.

2.2.1 Formulation of the problem

Let Q be a convex bounded domain in IR, d = 2,3, with boundary 9. Consider an elliptic
problem
—div(KVu) = f in Q,
u = 0 on Ty, (2.13)
(KVu,n) = 0 onI'y,

where f(x)_e L?(Q), TouT; =09, TyNT; = 0, and Ty is a nonempty closed subset of 0(,
ie. Tg =Ty # 0. We assume that K(x) is a d X d symmetric, uniformly positive definite
matrix-valued Lebesque measurable function bounded above on 2 such that

0 < Aminlé]? < ETK(X)€ < Amax|€]® VE€R? ae. x € Q. (2.14)

Note that approaches considered in the dissertation are valid also for the case of the
Neumann problem, i.e. Iy = () but for the sake of simplicity are not described here.
Let us consider a space Vp(Q2) = {v € H'(2) : v = 0 on 'y}, and define a bilinear form
a’('a ) by
a(u,v) = (K Vu,Vv), u,v € Vp(Q), (2.15)

where (-,-) denotes the L?(f2) inner product. Then the usual weak formulation of (2.13) in
Vo(Q) is: given f € L?(Q) find u € Vo(Q) such that

a(u,v) = (f,v), Yo € Vp(92). (2.16)

This problem is uniquely solvable. It can be shown by checking the hypothesis of the
Lax-Milgram Lemma with H = V() and || - |3 = || - [ 1)
The boundedness is obtained by

a(w,v) < Amax|w|m1 ()« V] a1 @) < Amax/|wllm1(0) - V] 71 (0)-
The coercivity is obtained by using Friedrich’s inequality for the space V().
a(v,v) > )\min|”|%{1((2) 2 C(Q)Amin“U“%Il(Q) Vo € V().
Hence, the solution u of (2.16) satisfies

1 fll -1 1fllz2(0)

[ull o) < C(Q) < C(9)

(2.17)

>\min >\min

2.2.2 Galerkin finite element method

Now we outline the Galerkin finite element method for problem (2.16). First, we introduce
a conforming quasi-uniform triangulation of € [36] by dividing the domain into simplices

M
{Tz-h}_ E with diameters of order h. In this dissertation we will consider as simplices either
1=
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triangles in IR? or tetrahedra in IR®. We denote this triangulation by 7. The collection of
simplex vertices belonging to Q2 \ I'y we denote by {xl}l]\i1

Let V() be the finite element space of continuous piecewise linear functions defined on
the triangulation 73, and let VJ*(©2) be the subspace of V"(Q) of functions which vanish on
Ty.

The finite element approximation to the solution u of problem (2.16) is given by: find
ul € VJ(Q) such that

a(u®,v) = (f,v), Yo € V(Q). (2.18)

The well-posedness of problem (2.18) follows directly from the Lax-Milgram Lemma. We
also have a stability result as in (2.17) with a constant independent of the mesh size h.

Let a set of functions {(pz-(x)}f\;l be a nodal basis for V§*(Q2). Then, every function v €
V{(Q) is represented by v(x) = YN, v;pi(x). The choice of the basis in V() induces a
one-to-one correspondence between the functions from VJ*(Q) and the vectors of the linear
space RY. Thus, (2.18) becomes

N
Zuia(%a%’) = (f, (Pj), j=1,...,N,
i=1

or in matrix presentation

Au =f, (2.19)

where A]Z = a’((pia(pj)? f] = (.f’ (p])a ij=1,...,N.
Note, that the symmetric and positive definite matrix A can also be defined by an expres-
sion:

(Au,v) = a(u,v),  Yu,v € VJHQ), (2.20)

where the vectors u and v correspond to the finite element functions v and v, respectively.

2.3 Saddle-point problem

2.3.1 Motivation

Many engineering problems, e.g., petroleum recovery, ground-water contamination, seismic
exploration, etc., need very accurate flux q = —KVu calculation in the presence of hetero-
geneities, anisotropy and large jumps in the coefficient matrix K(x). Here u is the solution
of an elliptic problem with the coefficient K. More accurate and direct approximation of the
velocity can be achieved through the use of the mixed finite element method [101, 25].

First, we introduce a new independent variable q and rewrite problem (2.13) in the form:

q+ KVu = 0 in €,
divg = f in Q,

u = 0 on [, (2.21)
—(q,n) = 0 on I'y.

The mixed finite element method is based on the approximation of the weak form of this
first-order system. Along with the direct approximation of the flux q, mixed methods have
another advantage in comparison with other methods — they conserve mass locally element
by element.
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2.3.2 Mixed method
Assume that f € L2(Q). Tt is easy to see that if u is the solution of (2.16) then
q=—-KVu € H(div;Q). (2.22)

Now we use Green’s formula (2.7) and the argument that H(div;2) is dense in H (div;$) to
see that (q,u) is a solution of the following mixed formulation of (2.16):
find (q,u) € H(div;Q) x L?(Q) such that

/K‘lq-pdm—/udivpdaz = 0, Vp € H(div; ),
@ @ (2.23)
—/v divqdz = —/f vdz, Vv € L*(9).

Q Q

We show the well-posedness for problem (2.23) by checking the hypothesis of Lemma 2.6
with Q = L(Q), V = H(div;Q), and

a(q,p) = /K*Iq - pdz, b(q,v) = —/v divqdz. (2.24)
Q Q

Using the definition of B we have
Ker B = {pg € H(div;) : divpy = 0}. (2.25)

We also have
Im B = L*(Q). (2.26)

To show (2.26) we have to show that for every f € L?(f2) there exists a p € H(div;) such
that Bp = f. Indeed, in the first step we find w € V;(2) such that

/Vw Vipdz = /fz/)dx, Vib € Vo(Q),
Q Q

and then, set p = Vw.
Using (2.26) we easily obtain that Ker BT = 0.
We also obtain ||a|| < 1/Anin since for any p,q € #H(div;2) we have

1
a(p,q) <

- >\min

1
||P||L2(Q)||OI||L2(Q) < b\ Hp“H(div;Q)HQHH(div;Q)-

mn

We obtain an estimation ay > 1/A\pax since

. a(qo,Po) . a(q0,90)
inf sup @ ——————— > inf ——————
aocKer B, cKer B lqollvIIPollv aeKer B [laollvilaollv
_ . a(qo, qo) 1
= inf >

aocKer B ||q0||L2(Q)||q0||L2(Q) ~ Amax
To show that ap > C1(€2) > 0, we first note that

o 220)  BED)
et ol = Tl
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where £ = Vw, and w is the solution of the problem

/Vw-Vd)dac:/—vz/)dx, Vip € Vo ().
Q

Q

From Schwarz and Poincaré inequalities we have
Vw20 < lwllz2@llvll2 @) < Co@ IVl @)llvll2 @)

So, using the estimate ||Vw||p2q) < C2(Q)||v]|L2 (), we obtain

b&v) = [qudivEdz  [ovids Jqv?dz
€l el Vulmave  (Bulag + IVl 2
v2dx v d:1:
- Jo > @42 6y () ol gy

(Ve + IV0lZa )72 = 7 ol

Using the bounds for ||a||, ag, and «; in (2.11) and (2.12), we obtain
Al'l'la,X
lall z(givio) < C3(52) . £l 220, (2.27)
and
[ull (o) < Cal(2 )/\IzmllfllL2 (2.28)

Remark 2.1 Estimate (2.27) can be recovered from (2.17). We only use the fact that the
solution (q,u) of (2.23) is unique and satisfies relation (2.22). We note, however, that we must
use the technique presented above to derive the estimates analogous to (2.27) and (2.28) with
constants independent of A for the discrete mixed problem.

Remark 2.2 Problem (2.23) also can be viewed as the Euler-Lagrange equation of the fol-
lowing saddle-point problem:

inf sup ( /K p- pdx+/fvdx+/vd1vpdx). (2.29)

pEH(div;Q) veL?(Q

2.3.3 Discrete mixed problem

Here we consider a discretization of the mixed problem (2.23) in finite dimensional subspaces of
H (div; Q) x L?(2) belonging to the Raviart-Thomas family of spaces [101]. In this dissertation
we consider only the lowest-order Raviart-Thomas space.

Using the simplicial (triangular or tetrahedral) triangulation introduced in Section 2.2.2,
first, we define the lowest-order Raviart-Thomas velocity space on a single simplex. For
simplicity we consider only the case of a 3-dimensional domain. The definition of a velocity
space in the 2-dimensional case is analogous and much simpler. We use these spaces on each
simplex to define the lowest-order Raviart-Thomas space on the whole domain.
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Let 7 be the unit reference tetrahedron with vertices
a) = (0,0,0), ag = (1,0,0), az = (0,1,0), Gy = (0,0,1).

The lowest-order Raviart-Thomas velocity space on 7 is defined by

az z
RTY () =Sp:p=| b |+d: | 9
Cs 2

Let 75 be a triangulation, as before, of the 3-dimensional domain . For a tetrahedron
T € Ty, with vertices a1, a9, a3, and a4, we define an invertible, affine linear map F, : 7 — T,
such that Fr-(a;) = a;,7=1,...,4. Here, F; = B;Z+b;, where B; is a 3 x 3 invertible matrix
and b, € IR3. For any scalar function © defined on 7 (respectively, on 97), we associate the
function v defined on 7 (respectively, on d7) by

P .
U_UOFT ) v=woF,,

and for any vector-valued function p defined on 7, we associate the function p on 7 by

1
P BrpoF!

- p = det(B,)B " 'po F,. 2.30
et(B,) ~ . p=det(B;)B; 'po (2.30)

The choice of transformation (2.30) is based on the following identities:

/@ divpdi = /v divpdz, Vo€ L*#), Vpe (H'(%))?, (2.31)
and

/@ p-hdS— /u p-ndS, VéeI#), Vpe (H (%) (2.32)

oF or

The space RT°,(7) is defined by

1

RT? (1) = 105

B,RT® (7)o F. 1. (2.33)

It is easy to show that RT°,(7) consists of linear vector functions which have a constant
normal component on the faces of 7.
We introduce the following Raviart-Thomas spaces

R, (Ty) = {p:p € (LX) bl € R (1) V7 € Th},
Vi =RI)(Th) = {p :p € RT",(T3), the normal component of p

is continuous across the interelement boundaries}
Wy =M (T) = {v:vel2(Q),v], =c: V7 €Th}.

(2.34)

Here, ¢, is a constant that depends only on the element 7. It is easy to check that V; =
RT°,(Ty) N H(div; Q) and, consequently, V;, € H(div; Q).
The lowest-order Raviart-Thomas mixed element method is given by:
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find (qpn,up) € Vi x Wy, such that

/K_lqh -prdz — /uh divppdr = 0, Vpy € Vy,
@ @ (2.35)
—/Uh div qj, dx = —/f vpdx, NYv € Wy,

Q Q

Let {®;};_, and {x}]_, be nodal bases of finite element spaces V;, and W}, respectively.
Then every pair (qu,up) € V5, X Wy, can be represented in a form: q, = Y- ¢; ®;, and
up, = E}":l uj xj. The choice of bases in these spaces induces a one-to-one correspondence
between the functions q; € Vy,, up € Wj, and the vectors of linear spaces q € IR"”, u € IR™,
respectively. In this basis the mixed problem (2.35) is represented in the matrix form:

5] [2]-[2)

where Aj, is a symmetric positive definite matrix with (4)ij = [o K~'®; - ®;dz and By, is
an approximation of the divergence map which is given by (By)ij = — [q x;div ®; dz.

System (2.36) is a saddle-point problem. The matrix of this system is symmetric but in-
definite. For this reason many efficient, robust, and fast iterative methods (e.g., the conjugate
gradient method) cannot be used to solve problem (2.36).

We again use Babuska-Brezzi Lemma 2.6 to show well-posedness for the discrete problem
(2.35). We show that stability results (2.11) and (2.12) are uniform in h. The spaces @) and
V are given by QQ = W},, V' = V},, and the bilinear forms a(-,-) and b(-,-) are given by (2.24).

We first note that the discrete divergence-free space Ker By, is divergence-free in the sense
of L2(R), i.e.

Ker By, € Ker B = {pg € H(div;) : divpy = 0}. (2.37)

To show (2.37) we reduce the problem to one on the reference element. Using the structure
of the space W}, it is easy to see that

/vh (divpp)dz =0, Vo, € Wy = M2(Th),
Q

)
/vh (divpy)dz =0, Yo, € MO (1) V7 € Th.

T

Using (2.31) we have for any 7 € Tp,:

/Uh (diV ph) de =0 <<= /’lA)h (diV f)h) dz = 0.

T

We now set 0, = div py, to obtain divpy, = 0 in 7, which implies that divp, = 0 in €.

Using the same ideas as in the continuous case, we have ||a| < 1/Amin.

Using (2.37) and the same ideas as in the continuous case, we obtain a; > 1/Apax.

To show that ag > ¢(2) > 0, with ¢(£2) independent of h, we use the same ideas as the
continuous case and the following lemma:
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Lemma 2.7 For any function vy, € W}, there exists o function py, € Vy, such that divpp = vy,
in 2, and ||ppll r(divio) < C(Q)||lvnll2 (o)

The proof of this lemma is given in Raviart and Thomas [101, 102]. The arguments in [101]
are for the two-dimensional case and they can be extended straightforwardly to the three-
dimensional case.

2.4 Nonconforming formulation

2.4.1 Motivation

The mixed methods for second-order elliptic equations have been extensively studied in the
last two decades. A large variety of mixed finite element spaces on triangles, rectangles,
prisms, and tetrahedrons have been developed [101, 92, 27, 26] and their convergence and
superconvergence properties have been investigated [113, 67, 90, 43, 54]. As shown by Russell
and Wheeler in [104], the mixed finite element approximations with special quadratures on
rectangular grids are equivalent to the finite volume methods. The superconvergent veloc-
ity calculations for smooth solutions has been established by Weiser and Wheeler in [118].
Based on that equivalence, Bramble et al. in [21] have developed efficient multigrid solution
procedures for mixed approximations on structured grids. However, in general the technique
of the mixed finite element method leads to an algebraic saddle-point problem that is more
difficult and more expensive to solve than the problem with a symmetric and positive definite
operator. Although some reliable preconditioning algorithms for these saddle-point problems
have been proposed and studied (see, e.g., [16, 19, 56, 105, 115]), their efficiency depends
strongly on the geometry of the domain, the coefficient matrix K(x), and the type of the
finite elements used.

An alternative approach can be taken by developing hybrid-mixed methods. This approach
has been studied in the pioneering work of Arnold and Brezzi [5] where the continuity of the
normal component of the flux vector to the boundary of each element is enforced by Lagrange
multipliers. In general, the Lagrange multipliers on the element boundaries turn out to be
none other than the trace of the primary unknown u(x).

The important discovery of Arnold and Brezzi is that the hybrid-mixed method is equiv-
alent in application to (2.13), the Galerkin method with nonconforming finite elements.
Namely, in [5] it is shown that the lowest-order Raviart-Thomas mixed finite element ap-
proximations are equivalent to the usual Pj-nonconforming finite element approximations
when the classical Pj-nonconforming space is augmented with P3-bubbles. Such a relation-
ship has been studied recently for a large variety of mixed finite element spaces (see, e.g.,
[4, 23, 32]).

The equivalence between the hybrid-mixed and the nonconforming finite element methods
establishes a framework for preconditioning and/or solving the algebraic problem and for
postprocessing the finite element solution. Schematically this framework includes the following
three steps:

(a) forming the reduced algebraic problem for the Lagrange multipliers, which is equivalent
to a nonconforming approximation;

(b) construction and study of efficient methods, based on multigrid, multilevel or domain
decomposition for solving or preconditioning the reduced system;
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(c) recovery of the solution u(x) and the flux q from the Lagrange multipliers, which were
already found, by using only element-by-element computations.

The recent progress in each of the steps described above (see, e.g., [116, 107, 37]) gives us an
indication that the mixed finite element method can be used as an accurate and efficient tool
for solving general elliptic problems of second-order in domains with complicated geometry.

In this dissertation we use the Arnold-Brezzi [5] theory and construct several precondi-
tioners for nonconforming P; finite element approximations [52, 55, 33, 73, 77, 78] (see also
Chapters IV and V of this dissertation).

2.4.2 Hybrid-mixed formulation

Let Fj, be the set of faces e of simplices 7 € T, and let .7-",? be the set of those faces e which
are on the Dirichlet boundary I'y, 77 = {e € F, : e C I}, and F = Fp, \ FP.

The property V;, C H(div; ) says that the normal components of the members of V}, are
continuous across the interior boundaries in .7-";2 . Following [5], we skip this requirement on
V), by defining V), = RT?,(Ty). Then, to enforce the continuity on the normal components
in V,, we introduce Lagrange multipliers. We define the space of Lagrange multipliers £, =
M2, (F?) as the set of all functions on the union of faces JF, that are constant on each face
e e .7-"}? and vanish on .7-"}?:

Ly, = {,u € L*(Fp) : ple € Vi, - n, for each e € .7:,9} ,

where n is the unit normal vector to the face e.

To establish the relationship between the mixed method and the nonconforming Galerkin
method and to construct efficient preconditioners, following [32], we introduce the projection
of the coefficient matrix K, i.e. Cj, = P,K~', where P, is the L?-projection into W,.

Then the hybrid-mized discrete formulation is given by:

find (qf,uy, \p) € V,, x Wy, x Ly, such that

[Cra - priz— 5 ( Juidivpnds ~ [ (ph-nf)ds> -, py € Vi,
Q T€Th or
- > /vhdivq;‘bdx = —/fvhdac, Yo, € Wy,
TETH
T Q
)y /uh (aj, - ;) ds = 0, Vun € L.
TeTh@T
(2.38)

Note that the last equation in (2.38) enforces the continuity requirement mentioned above,
so in fact q; € Vj,. Also, note that any vector function p;, € Vj, belongs to the space Vj, if
and only if

> /Nh (Pn-n;)ds =0,  Vup € Ly,
7€Th or

Therefore, using element-by-element arguments, it is easy to check for piecewise constant
tensor K that system (2.38) has a unique solution with q; = qp and uj = uy,, where (qp, up)
is the solution of (2.35). The function )\, is uniquely determined from the first equation
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of (2.38). Hence, systems (2.35) and (2.38) are equivalent, and we can therefore drop the
superscript *” in (2.38).
In matrix notation system (2.38) has the form

4h B?; C_'}j; qp 0
Bih 0 0 Up = fh . (2.39)
C, 0 O A 0

Remark 2.3 An advantage of the hybrid-mixed formulation is that matrix A is block di-
agonal, with each block corresponding to a single element. Hence, A can be inverted easily
and in parallel. After eliminating the flux in (2.39), we obtain a symmetric positive definite
system

l ByAT'BI ByAr'CT ] [ uh ]
0

C’hz‘ingg C’h/iglég Ah

~ I l : (2.40)

Remark 2.4 We also note that the weak formulation for q = KVu on a single element
T € Tp, is given by:

/K_lq-pdx—/udivpdw—i—/u(p-nT)ds:0, Vp € H(div; Q). (2.41)
T or

T

Hence, comparing (2.41) with the first equation of (2.38), it is easy to see that the Lagrange
multiplier A\;, can be interpreted as an approximation of the trace of v on the boundaries of
the elements.

2.4.3 Arnold-Brezzi theory

As shown in [5, 4, 32, 83], the solution to (2.38) can be obtained from a certain modified
nonconforming Galerkin method by means of augmenting the latter with bubble functions.
In this subsection, following [32, 33, 34], we show that the linear system generated by (2.38)
can be algebraically condensed to a symmetric, positive definite system for the Lagrange
multiplier A,. Next, we show that this linear system can be obtained from the standard
nonconforming Galerkin method without using any bubbles.

As in the previous subsection the definition and computation are done locally, element-
by-element. The lowest-order Raviart-Thomas space [101, 92] defined over 7 € Ty, is given
by

Vi(r) = R (r)={p:p=(P(r)’® ((5,2) ()},
Wh(T) = PO(T)a
'Ch(e) = PU(e)a

where P;(7) is the restriction of the set of all polynomials of total degree not higher than
1 > 0 to the set 7 € Tj,.
For each 7 in Tp, let
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where |7| denotes the volume of 7 and (-,-), means L2-inner product over 7. Also, set

Ch = (CZ]) and qh|7’ = (q717q727qT3)T = (gT,l + tha gr2 + tTya gr,3 + th)T- Then7 by the
second equation of (2.38), it follows that

tr = f,/3. (2.42)

Now, take p = (1,0,0)” in 7 and p = 0 elsewhere, p = (0,1,0)” in 7 and p = 0 elsewhere,
and p = (0,0,1)7 in 7 and p = 0 elsewhere, respectively, in the first equation of (2.38) to
obtain

3 4 .
(Z Ch,jz' qri, 1> + Z |€7—’i| ns_j,z) . >‘h|@r,i = 0, ] = 1,2,3, (2.43)
i=1 r o i=l
where |e;;| is the area of the face e;;, and n,; = (n(l-) n?) n(?’?) Let U7 = (V7)) =
75t Tt E T4 T T/ - 1)) T

((Ch,ij»1)7)~'. Then (2.43) can be solved for g ;:

grj = _E|e7'z| ( )+\II]2 '(rz)_’_\ll]?)ng'z)) '>‘h|€r,i_
f (2.44)
: (z Wi (Chirz+ Chaoy + Cnis?) 1) . G =123
T
A basis function in £ is defined by taking ¢ = 1 on one face between two elements
and pu = 0 elsewhere. Then, applying (2.42) and (2.43) we see that the contributions of the
tetrahedron 7 to the stiffness matrix and the right-hand side are

J{ n

AT =T, 0T W, FT = _% A (2.45)

? .
€ri

where i, ; = |e.;| - n.; and JI = f.(x,y,2)T /3. Hence we obtain the system for \,:
AN =F. (2.46)

After the computation of \,, we can recover qp via (2.42) and (2.44). Also, if uy is
required, it follows from the first equation of (2.38) that

1
37|

Uy =

((Chqh, z,y, %2 T) + Z Mile,.; - ( z,y,2)", nT,i)Qr,i) , TETh.  (2.47)

The above result is summarized in the following lemma (see also [33]).

Lemma 2.8 Let a bilinear form cy(-,-) and a functional Fy(-) be defined as follows:

ch(Xn, pin) = ET (X, 7)o VU7 (1in, 07 )or, Xh> P € L,
TE
Fh(lj'h) = - ZT I (J 1) (lj’h?nT)aT + ZT (Mth,nr)ar, JS Eha
S TETh

where JI is such that J'|, = J{. Then \, € Ly, satisfies

ch(An, n) = Fu(pn),  Vin € L. (2.48)
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Remark 2.5 Obviously, the algebraic system (2.46) is the matrix representation of equation
(2.48), i.e.

(AN, 1) = cn(An, pon), Vun € Ly,

where A and p are vector representations of the functions Ay, and py, respectively.

Note that there are at most seven nonzero entries per row in the stiffness matrix A. Also,
it is easy to see that matrix A is a symmetric and positive definite matrix; moreover, if the
angles of every 7 in 7Tj are not bigger than m/2, then it is an M-matrix. Finally, (2.46)
corresponds to the Pj-nonconforming finite element method system, as described below. This
equivalence is used to construct preconditioners for A in Chapters IV and V.

Let

Vi = {v € L%2(Q): wv|, € Pi(1), V7 € Ty; v is continuous at the barycenters of

faces from .7-'2 and vanishes at the barycenters of faces on FO}.
(2.49)

Proposition 2.1 ([33]) Let f, = P,f be L%-projection of f into Wy,. Then (2.46) coincides
with the linear system corresponding to the problem: find vy € Vi, such that

a’h(d)ha (P) = (fha (p)a V‘P € Vha (250)

where ap(Yp, @) = > (szlvd)haV‘P)T-

TETH

Proof: From the definition of the nodal basis {¢)?} of V},, for each 7 € T;, we have
h 1 — T .
1/)2' |T = mn‘r,i . (($7y7z) _pl) ) ? 7é la
for some barycenter p;. Then, we see that

(szlvd)?a vz/);b)ﬂ' = ﬁT,quTﬁT,j,

which is A7;. Also, note that for any linear functions 1) and ¢ on a tetrahedron 7 € 7,

4
W $)r = 5 171 Y 9 o)d(m) (251)
i=1

where the p;’s are the barycenters of the faces of 7, so that

I

F = ——(Jf, ﬁr,i)T + (JZ, nm)em = (1,90, + 71/

ler,il

3 (d)zh’l)er,i :fT (l,z/)lh)q_,

which is (fy,9"),. O

Corollary 2.1 The values of the degrees of freedom of the solution " € V}, of problem (2.50)
coincide with the corresponding values of the solution A\, € Ly, of problem (2.48).
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Using this corollary we can define a projection operator P, : Vj, — L}, as follows: for any
up, € Vj,
>\h|e =S Phuh|e = uh(xe), Ve € .7:2, (2.52)

where X, is the barycenter of the face e. That is, the value of the Lagrange multiplier function
An = Pruyp, on a given face e is equal to the value of the function uy in the barycenter of this
face.

Remark 2.6 If the matrix function K (x) is piecewise constant in the domain and the par-
tition 7Ty is chosen in such a way that K(x) is constant in each element 7 € T}, then the
bilinear form in (2.50) coincides with (2.15), i.e.

a'h(d)a (p) = Z (Ch_lvd)a V(p)T = Z (sz/)a v(p)ﬂ'a VT/), p e Vh-

TETH TETH

Remark 2.7 It is well known [36, 121] that for problem (2.13) with K (z) = I the bilinear
form (2.50) satisfies

ch? - (p,0) < anlp,p) <C -(p,0), Vo€ V.

2.5 Nonconforming approximation of elliptic problems with
anisotropy

We conclude this chapter by outlining the problems we are going to consider below. As was
mentioned in the previous section, we consider methods of constructing the preconditioners
for nonconforming P; finite element approximations of (2.13).

Until the end of this chapter we define 7;, as a regular partitioning of Q € IRY, d = 2,3,
into simplices 7 with a mesh size h, the Pj—nonconforming finite element space V() by
(2.49), and a bilinear form ap(-,-) by (2.50). Once a nodal basis {(pi(x)}i]\il for V() is
chosen, (2.50) leads to a system of linear algebraic equations

Au =f, (2.53)

where A is sparse symmetric positive definite matrix and u, f € R".

Although the methods of solving (2.53) have been extensively studied in the past few years
(see, e.g., [5, 15, 20, 22, 35, 107]), their efficiency depends on the coefficient matrix K (x). In
the case of strong anisotropy in the coefficients the question of constructing effective solution
techniques is still open.

In this dissertation we describe and analyze methods of constructing preconditioners
for (2.53) when the tensor K (x) from (2.13) is an anisotropic matrix coefficient. Below we
outline the classes of problems for which we construct the preconditioners.

2.5.1 Method of algebraic substructuring
This method is applied for two types of problems.

(1) The computational domain € is a union of parallelepipeds (rectangles if we consider
the problem in IR?). The tensor K(x) is a smooth matrix function which is a small
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perturbation of a diagonal constant matrix in the entire domain. It means that there
exist a diagonal constant matrix K = diag {ki,...,kq}, d = 2,3, and some positive
constants ¢, ¢, such that

¢tK<K(x)<¢K, VxeQ. (2.54)

We construct the mesh 7y, first, by partitioning the domain €2 into small cubes (squares
in IR?) and, then, by subdividing each cube (square) into tetrahedra (triangles) in a
regular way.

Then we define the auxiliary bilinear form

ap(u,v) = Z (KVu, Vv),, Vu,v € V(). (2.55)
TETH

We construct preconditioners for this auxiliary bilinear form using substructuring in
Chapter IV. Due to inequality (2.54) these preconditioners can be used for initial
problem (2.53).

The tensor K (x) which is a full symmetric matrix and the domain € satisfy the following
assumptions:

(a) There is an orientation-preserving smooth map L of the unit cube (or square if we
consider the problem in IR?) ) onto Q and there are positive constants r and C
(see [47]) such that

VXEQ,
Vx € (Q,

r T ()]

1T @) (2.56)

< G,
< G,
where J(x) is the Jacobian matrix of £ at x and || - || denotes a matrix norm.

(b) The transformed tensor K(x) = ‘dTl(j)'jTK(x)J, x € Q falls into the class of

problems described in item (1).

The definition of the nonconforming finite element space for the domains satisfying
(2.56) is given below. Let C; and T; be the partitions of €2 into cubes and tetrahedra,

respectively, which are associated with the mesh-size h=1 /n, and let V; be the Pj-
nonconforming space associated with 7;, as given in (2.50). Set h =1 - h and define

V(@) ={o=ypoL ' 1y eV}

~

We also introduce the map Z : V(2) — V; (€2) defined by Zv = v o L.

Now we define the stiffness matrix A on domain 2 by
(Au,v)y = ap(u,v), Vu,v € V3,(9), (2.57)
where
ap(u,v) = X /K(x) Vu -V dx =,
TET

(2.58)
= /‘dTl(j)‘jTK(x)jVIu-VIv dx,
7ET; L
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and |det(J)| is the determinant of the Jacobian J(x).

Note that taking into account (2.58), we can treat the bilinear form (2.57) as a form gen-
erated by some elliptic positive definite operator with piecewise smooth 3 x 3 symmetric
matrix-valued function K (x) on the cube €. This function satisfies the uniform positive
definiteness condition. For this reason, below without loss of generality we suppose that
Q = Q is a parallelepiped with the partition into cubes Cj, and into tetrahedra 7;,.

For each cube C' € C;, we introduce the diagonal matrix K¢ =diag{k1,c,ka,c, k3 ,c}
with some as yet unspecified constants k; ¢, ¢ = 1,2,3. Then we define on the reference
parallelepiped Q) a bilinear form

by (u,v) = Y d¢ (Z //ccvu-vv dx> . Vu,veV;, (2.59)

cecy, rec

where the constants Jc are scaling factors. One reasonable choice is to take §o =
(A1,c + Xo,c)/2, where A\ ¢ and Ao are the largest and smallest eigenvalues of the
eigenvalue problem K (xo)v = A\cKcv, v € IR?, where K(x) = WJTK(X)j and
xp € L(C) C Q is some point.

We assume that the matrix function defined above, §¢ /K¢, is a small perturbation of a
diagonal constant matrix in the entire cube €.

Note that assumptions (2.56) imply that there are two constants ¢y and ¢; independent
of r and h such that

coap(u,u) < r-bp(Zu,Zu) < crap(u,u), Yu € Vj,. (2.60)

We choose matrices K¢ in the form: K¢ :diag{K(xo)}, VC € Cp, i.e. the matrix K¢
is the diagonal part of K(x¢) at some point xo € £(C). In this case constants ¢y and

¢1 in (2.60) depend only on the local variation of the coefficients {(K ) kl}. Hence the

problem of defining a preconditioner for ap(-,-) is reduced to the problem of finding a
preconditioner for 7 - by(-,-), which has a diagonal coefficient tensor and is defined on
the unit cube 2. Therefore, all the analysis of the item (1) can be carried out here.

2.5.2 Fictitious components method

For the problem with symmetric full tensor K(x) (like in item (2) of Section 2.5.1) in the
domain € of complex geometric shape we also consider a variant of the fictitious components
method, which can be outlined for the problem in IR? as follows.

Let
K(X) — [ aip a2 ]
az1  a22

be a constant symmetric matrix which has eigenpairs (k1,u1) and (k2, uz), where u; = (o, ),
u; = (—f3,a), a®> + 2 = 1. Let us consider a transformation of the coordinates (£,v) =
F(z,y): {=a-x+ 06 -y, v=—0 2+ «a-y. In the coordinates (£, ) problem (2.50) has the
diagonal matrix coefficient K = diag {ki, k.

Now we construct a rectangle IT in the (¢,v) plane which contains Q = F(Q) and a
uniform triangular mesh in II. Mapping this mesh to the real domain €2 by the transformation
(z,y) = F1(&,v), we define a triangulation of €.
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In the fictitious components method, instead of problem (2.53) we consider a problem
Au =", (2.61)

where a square matrix A of an order M > N is an approximation of the problem on the
extended domain II. We assume that there exists a permutation matrix P such that

5 ApT A A HF f
paor- 4 42) mo[f] o
with some matrices Ajo and Asy. It is obvious that for any solution @ of problem (2.61) the
solution u of problem (2.53) can be found by the formula u = QPu, where Q = [Ix0] is an
N x M projection matrix.

So, instead of initial problem (2.53) we need to solve an algebraic problem corresponding
to (2.50) with diagonal coefficient matrix K. Again, we can use all of the analysis of item
(1) from Section 2.5.1. The analysis of the fictitious components method for an anisotropic
problem is given in Chapter IV.

2.5.3 Domain decomposition method

Here we consider problems for which the computational domain €2 can be represented as a

union of substructures 2 = .@1 2; in such a way that the tensor K (x) is an almost diagonal
1=

constant matrix (in the sense of (2.54)) in each substructure. Then we can use the domain
decomposition method to solve these problems.

The main idea is to use methods described in Section 2.5.1 to solve or precondition the
problems in subdomains. Then, for the problem at the interfaces we construct a precondi-
tioner in the form of an inner Chebyshev iterative procedure. More precisely, we construct a
preconditioner for the Schur complement of the original symmetric positive definite matrix,
which results after eliminating the blocks corresponding to the unknowns in the subdomains.

This analysis is given in Chapter V.

2.5.4 Domain decomposition method on nonmatching grids

This is a generalization of the method considered in Section 2.5.3. We assume that the

computational domain € is represented as a union of substructures Q2 = .@1 Q; and the matrix
1=

K(x) is a full symmetric matrix in each substructure. To solve this problem we use the
domain decomposition method on nonmatching grids (see an example of nonmatching grids
in Figure 2.1).

The computational domain is considered as a union of nonintersecting subdomains. In
each subdomain we construct its own coordinate system and a grid (a triangular one for two-
dimensional equations and a tetrahedral one for three-dimensional equations) in accordance
with the main directions of anisotropy or, in other words, we define local coordinate systems
on eigenvectors of the coefficient matrix K(x). It is easy to see that this matrix is diagonal
in such a local coordinate system. The original elliptic problem is posed as a problem with
Lagrange multipliers at interfaces between subdomains and with the continuity conditions of
the solution (in a weak form) at the same interfaces. A mortar finite element subspace is
constructed in the space of Lagrange multipliers. The resulting algebraic systems have the
form of a saddle-point problem.
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Ql QZ
Figure 2.1: Subdomains with nonmatching grids.

In Chapter V we propose a new construction of block diagonal preconditioners for the
algebraic systems that occur in using the mortar finite element method. This approach
combines the ideas of the domain decomposition method (the substructure method) with the
algorithms of multilevel and algebraic multigrid methods.

Assuming that the grid in each subdomain is the trace of a hierarchical grid we can use
the results described in Sections 2.5.1 and 2.5.2 to construct the preconditioners for problems
in subdomains. Then, for the problem at the interfaces we construct a preconditioner in the
form of an inner Chebyshev iterative procedure. More precisely we construct a preconditioner
for the Schur complement of the original saddle-point matrix. It can be shown that the
constructed preconditioner is spectrally equivalent to the original saddle-point matrix with
equivalence constants independent of the mesh size, the subdomain diameters, and anisotropy
in the coefficients.



CHAPTER III
ITERATIVE METHODS

The term “iterative method” refers to a wide range of techniques that use successive
approximations to obtain more accurate solutions to a linear system at each step. The devel-
opment of efficient iterative methods for solving systems arising from finite element discretiza-
tions of second-order partial differential equations has been a very active area of research over
the last few decades. The rate at which an iterative method converges depends strongly on
the spectrum of the coefficient matrix. At present, iterative methods usually involve a sec-
ond matrix that transforms the coefficient matrix into one with a more favorable spectrum
[44, 45, 46, 39, 117]. The transformation matrix is called a preconditioner. The use of a good
preconditioner improves the convergence of the iterative method, sufficiently to overcome the
extra cost of constructing and applying the preconditioner. Today, the success of finite ele-
ment methods is based to a large extent on the existence of fast and robust techniques for
preconditioning and solving the corresponding discrete problems.

The main goal of this dissertation is the construction of preconditioners for nonconforming
finite element approximations of a second-order elliptic problem. As an example of an iterative
method for this type of problems we choose the conjugate gradient method [65, 81, 80]. In
Chapter V we consider nonconforming approximations of equation (2.13) on nonmatching
grids. The resulting algebraic systems have the form of an algebraic saddle-point problem.
At present there are several approaches to the iterative solution of finite element systems on
nonmatching grids, presented, for example, in [1, 109, 72]. At the same time there is a great
number of papers on iterative methods for solving algebraic systems in the saddle-point form
(see, e.g., [11, 16, 19, 74, 50, 105]). It is obvious that these methods, when appropriately
modified, may be employed for solving the corresponding finite element systems.

In this chapter we outline iterative techniques for solving systems of linear algebraic equa-
tions with both symmetric positive definite and indefinite matrices. In the next chapters we
develop efficient preconditioners for both kinds of systems. The rest of the chapter is orga-
nized as follows. First, we consider some basic facts from the theory of iterative methods.
Next, in Section 3.2 we give formulae for the preconditioned Lanczos method [81] as applied
to the solution of systems with symmetric indefinite matrices as well as the reasons for the
choice of block diagonal preconditioners for saddle-point matrices. Then, in Section 3.3 we
discuss the conjugate gradient type methods. Finally, in Section 3.4 we sketch the theory of
the Chebyshev [57] methods which we use in Chapter V.

3.1 Preconditioned iterative methods

Let A: X — X be a linear symmetric invertible operator on a finite dimensional real space
X = RY with inner product (-,-). Consider an equation

Au = f, (3.1)

where u, f € X. We consider this problem in the context of the operators A induced by
bilinear forms defined on finite element spaces.

28
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To make the main idea of preconditioning clear we consider in this section a modified
method of the simple iteration. Let B : X — X be another linear symmetric invertible
operator on X. Given initial guess ug € X, we define the basic linear iterative method for
solving (3.1) by

Bugyy = Bug —a (Aug — f), k=0,1,..., (3.2)

or in other form
Ug+1 =1 ug + 1,
where T = (I — B 'A) and ¢ = B~ f.
Let u be the solution of (3.1). Then an error ey = u — uy, satisfies the equations

epp1=Tep=T%e_1=...=TFe. (3.3)

A convergence of method (3.2) for a given initial guess depends on the behavior of the
operator T*. Tterations (3.2) converge when T* ey — 0 as k — oo.
From (3.1), (3.2), and (3.3) it follows that

Upyr =TF ug + (I —TF) A7 T, (3.4)

In general, ey is unknown since it involves the unknown exact solution. Hence, it is better to
study the computable quantity — a residue ry, = f — Aug. From (3.3) we have

resi = AT A ry = . = ATF A= 5y, (3.5)

The notion of the spectral radius of the operator plays a very important role in the inves-
tigation of iterative methods.

Definition 3.1 The value u(T) = klim |T%||"% is called the spectral radius of the operator
—00
T.

If 4u(T) # 0 then we have ||T%||*/* = 1u(T) - b(k), where b(k) — 1 as k — co. From (3.3)
we get
llex |l < IT¥|| lleoll = *(T) b* (k) [leo- (3.6)

So, if 0 # u(T') < 1 then to reduce the norm of error ||eg| by a factor of 1/¢ times for small

¢ it is sufficient to make
Ine

In p(T)

k(e) = (3.7)
iterations.

The value of (—Inu(7T)) is known as the asymptotic rate of convergence of the iterative
method.

One of the main problems of iterative methods is in some sense an optimal choice of
operator B. We give the strong mathematical definition of the term optimal preconditioner
later on page 31 after we provide some basic facts from numerical analysis. It is easy to see
that taking B = A in method (3.2) gives us the exact solution for one iteration. Obviously, it
is not an optimal method since it includes the inversion of operator A. Assume that we have
found some operator B such that 0 # u(T) < 1. Let W(B~!) be its implementation cost, i.e. a
number of arithmetic operations required to implement multiplication of a vector by operator
B~!. Since operator A is the finite element approximation of a second-order differential
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operator using a nodal basis, the corresponding matrix is sparse and the computational work
of multiplying a vector by A is on the order of N: W (A) = O(N). Then method (3.2) gives
an e-approximation to the solution of (3.1) for k(e) iterations at a cost of

|1nel, (3.8)

where W (T) = W (B~') + O(N).
Assume now that operators A and B are positive definite. It is well known from linear
algebra [57] that a generalized eigenvalue problem

Ap = ABy (3.9)

has a real and positive spectrum Sp (B~'A) = {\;}¥, and a corresponding complete or-
thonormal set of eigenvectors {p;}Y.,. Obviously, ¢;, i = 1,..., N, are eigenvectors of the
operator T":

T ¢; = vi(a) @i, i=1,...,N, (3.10)

where v;(a) = 1 — a);. Method (3.2) is convergent if and only if

sup 1 —aX <g<Ll (3.11)
AESp (B~1A)

With the well known best choice for & = 2/(Amin + Amax) the spectral radius of operator T is
given by
>\max - >\min
T =—"F"—""-<1,
M( ) >\max + >\min

AmaX/Amin -1
AmaX/Amin + 1 .

or

W(T) = (3.12)
Definition 3.2 The ratio v = Apax/Amin 0f the extremal eigenvalues of problem (3.9) is called
the condition number of matriz B~'A. We denote this number by Cond (B~ 1A).

Obviously, Cond (B~'A) > 1. From (3.12) it is easy to see that u(7") — 1 as Cond (B~ 'A) —
co. That is, the bigger the condition number of matrix B~' A the slower the convergence rate
of method (3.2).

Operator B is often referred to as a preconditioner. Taking into account (3.8) and (3.12),
we would like B to satisfy two properties. First, the solution of the problem

Bv=g (3.13)

for a given g € X should be easy to obtain. And second, B should be spectrally equivalent
to A.

Recall that two N x N symmetric positive definite matrices A and B that result from
the discretization of PDE’s are called spectrally equivalent matrices [59] if there exist positive
constants ¢y and ¢; independent of the grids such that the inequalities

co(By, ) < (Ap, @) < c1(Bey, p)

hold for any vector p € RV,
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These two properties will guarantee, firstly, that the work per iteration step in applying
the preconditioned method will be small, and secondly, that the number of steps to reduce the
error to a given size will also be small and will not depend on mesh size parameter h, so that
an efficient algorithm will result. Now we can give the definition of an optimal preconditioner
as was done by D’yakonov in [49].

Definition 3.3 Operator B is an optimal preconditioner if it is spectrally equivalent to op-
erator A and algorithms with estimate W(B~') = O(N) are established for solving problem
(3.13).

With B being an optimal preconditioner, the computational work (3.8) becomes

Wiz = O(N) - |Ine]. (3.14)

3.2 Iterative method for saddle-point problem

As is shown in Chapter V, the use of a nonconforming finite element method on nonmatching
grids to problem (2.13) results in an algebraic saddle-point problem with nonsingular matrix

A:[’é C;T] (3.15)

where block A is a symmetric and at least positive semidefinite matrix and block C' is a full
rank matrix.

In Chapter V we propose a symmetric and positive definite preconditioner B that is
spectrally equivalent to matrix A. The symmetric matrix A and the symmetric positive
definite matrix B are said to be spectrally equivalent if the spectrum of matrix B~'.4 belongs
to the set [dy,d2] U [d3,d4], di < da < 0 < d3 < dy4, with the boundaries of the segments
independent of the mesh size parameter h.

We propose the preconditioner in the block diagonal form:

| Ba 0
B—[ 0 BC‘|' (3.16)
In order to justify this choice of B we consider the eigenvalue problem
Al“A]:uRl“A] (3.17)
uc uc
with a symmetric positive definite matrix
~ | Ra O
e[ 2] asn

where Ry = A, Rc = C A 1T, and (uff,ul)T € IRM. Obviously, matrices R and A are
positive definite.

Assume in (3.17) that v # 1. Then eliminating the subvector u, from the first equation,
we obtain

1
I/RC uc = ﬁRC uc. (319)
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It leads to the equation 2 — v — 1 = 0, which has two roots: 112 = (1 & +/5)/2. Thus, the
eigenvalues of problem (3.17) belong to the set:

1/6{1_2\/5; 1_2\/5; 1}.

(3.20)

Now let the symmetric positive definite matrix B be spectrally equivalent to matrix R
with the positive constants ¢y and c;:

co(Bu,u) < (Ru,u) < ¢;(Bu,u), Yu e RM.

Then matrix B is spectrally equivalent to matrix A and the spectrum of matrix B! A belongs
to the set
Sp (B1A) € [d1,d2] U [d3, d4], (3.21)

where the constants dy < do < 0 < d3 < d4 depend only on the values of ¢y and ¢;.
Now consider the system of linear algebraic equations in the saddle-point form:

Au=g, (3.22)
where
us g4
u= , = , 3.23
and its preconditioned form
B'Au=B"'g. (3.24)

In order to solve system (3.22) we can use the generalized Lanczos method of minimal
iterations [81]. When applied to system (3.24) the formulae for implementing this method
have the form:

87150, k == 1
pr =14 B~ 'Ap1 — azpi, k=2
-1 (3.25)
B~ Apk-1 — axPr-1 — BkPr—2, k>3
uo € RY, W =Up1 —VkPrs k2>1,
where 51
o = (A - Apkqw‘lpkfl)’ k> 2.
(B1 Api—1, Apg—1)
(B~ Apg—1, Apg-1)
- . k>3, 3.26
%= B Taps, Api) (520
B-
7k — ( 716[6717'/41:)]9)’ k Z 1’
(B~1Apy, Apx)
and £, = Au, — g, k> 0.
The following expressions are introduced:
_ max{dy,|di|} 1=k
T min{ds, ||} 1T T4k
Then for method (3.25) with (3.26) the following estimate holds true [66, 81]:
€kll5-1 < 24" [I€oll5-+, (3.27)

where || - ||g-1 is the norm generated by the symmetric positive definite matrix B!,
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Remark 3.1 Due to property (3.20) the preconditioned Lanczos method with a precondi-
tioner R defined by (3.18) gives the exact solution of system (3.22) in at most six iteration
steps.

This statement has only a theoretical meaning since such convergence can never be reached
practically because of an overly complicated and expensive preconditioner (3.18). But it gives
an idea of how efficient preconditioners can be constructed.

3.3 Preconditioned conjugate gradient method

Now consider problem (3.1)
Au=f

with symmetric and positive definite matrix A and the given vector f € IRY. Assume that
we have constructed a spectrally equivalent preconditioner B such that Cond (B~ 'A4) < v.

Then we can solve system (3.1) by the preconditioned conjugate gradient (PCG) method
in the following form:

. Bilgo, k - 0
PE=\ B¢, + Bipr—1, k>0 (3.28)
up € RY, Uiyl = Uk + agPg, k>0,
where ) )
(B~ &, &) (B~ &k, &)
ap=~—BSk g : 3.29
C= ppn) T T B 6 (329)

and &, = Au, — g, k> 0.

It is well known that for a given accuracy ¢ (¢ < 1) and k. > In(g/2) /In ¢, with ¢ = %:,

the following inequality is valid:
[k +1 — ufla < ellug — uylla, (3.30)

where u, = A7f.
An essential feature of PCG is that an explicit representation of A and B~! are not needed.
In fact, we only need their actions on a given vector.

3.3.1 Estimate for the extremal eigenvalues

In this dissertation we shall study substructuring multilevel and domain decomposition pre-
conditioners. Using this framework, we shall be able to analyze and establish upper bounds for
the condition number of our preconditioned matrices. To see how sharp these upper bounds
are, we may compute Cond (B~'A) approximately by using a generalized Lancsoz procedure
for eigenvalue problems ([59]). We note that the Lanczos algorithm is closely related to the
conjugate gradient method. Both algorithms use Krylov subspaces and three-term recurrent
formulae [59, 99, 98].
We first define the matrix of normalized residual vectors R,, € RV*™ by

_ & Em—l

Rm - LRI ’
1€oll 1€m—1ll
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where the vector £, is the residual vector obtained on the k-th iteration of PCG method

(3.28), (3.29).
It can be shown [59, 99] that a matrix T},, = Rl B~'A R,, is a R™*™ tridiagonal matrix:

i N ]

1
ar T o
VB B + 1 _\/*6_2
Q1 Q1 \/_a2 Q2
_ B2 B 1 ..
T, = - a_z + 5 . . (3.31)
. . _V/Bmfl
am—1
_VBm-1 B +L
L Qm—1 Qm—1 am

Here aj and Gy are the parameters of the PCG algorithm. From the theory of Lanczos methods
[59, 99] it follows that extremal eigenvalues of matrices T}, provide a good approximation of
the extremal eigenvalues of B~'A. Thus, to compute an estimation of the condition number
of matrix (B~'A) it is sufficient to find the condition number of the tridiagonal and relatively
small matrix T},,. Questions related to convergence of the extremal eigenvalues of T}, to those
of (B~!A) are considered in [98].

3.4 Chebyshev iterative method

In Chapter V we shall use some preconditioners in the form of the inner Chebyshev iterative
procedure [8, 18, 70]. We present here the relevant results and constructions for the sake of
completeness.

Again, we assume that B is a symmetric positive definite matrix and that the eigenvalues
of matrix B! A belong to the segment [a, b], where 0 < a < b. Let Py, (t) be a polynomial of
degree m > 1 of least deviation from zero on the segment [a, b] and be normalized by condition
P, (0) =1:

m

Po(t) = TL(L - Bit). (3:32)

i=1
The polynomial P,,(t) with these properties is defined in terms of the Chebyshev polynomials
[114]:
1 b+a—2t
Pot)=—— -Tp | ———— ), 3.33

( ) Tin (6) < b—a ) ( )
where © = (b+a)/(b—a) > 1 and the Chebyshev polynomial of the 1-st kind of degree m is
given by

Ty (t) = cos(m - arccos(t)) = % <(t + V2 — 1)m + (t + Vit — 1)_m> : (3.34)

From (3.32) it follows that ﬂ;l, i = 1,...,m, are the roots of polynomial P, (¢). They
are eagsily defined through the roots of the Chebyshev polynomial T, (¢):

2 — 1\ ,
Bi=2-{b+a—(b—a)cosm 5 , i=1,...,m. (3.35)

m
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Then preconditioner B for matrix A is determined by the formula:
Bl = {I - TIu - ﬂiBlA)} AL, (3.36)
=1

According to (3.3) after using one step of the modified method of simple iteration the
error of the computed solution e, = u — uy, is decreased as follows:

2q™
ekl < Lo ekl (337)

+ q2m

where ¢ = (v —1)/(v + 1) and v = b/a. )
The formulae for calculating the vector w = B~ 1¢ for a given ¢ € R have the form:

wWpo = 0,
w; =wi_1 — 3 B~ (Aw;_; — §), i=1,...,m, (3.38)
W = W,,.

For computational stability, instead of (3.38), we can use the three-term formula [114].



CHAPTER IV

SUBSTRUCTURING PRECONDITIONERS FOR
NONCONFORMING FINITE ELEMENT METHOD

4.1 Introduction

Let Q be a convex bounded domain in IR?, d = 2,3, with boundary 8. Consider an elliptic
problem
—div(K -Vu) = f in Q,
u = 0 on Iy, (4.1)
(KVu,n) = 0 on I'y,

where K(x) is a positive definite, uniformly bounded symmetric tensor, f(x) € L?(Q),
ToUT; = 09, TyNT; = 0. We shall consider the case when I'g = 'y # 0. The pure
Neumann problem (T'y = () can be treated in a similar way but for the sake of simplicity is
not described here.

Let the bilinear form a(-,-) be defined by

a(u,v) = (K - Vu, Vv), u,v € Vo(Q) = {v € H'(Q) : v =0 on Ty},

where (-,-) denotes the inner product in L2(2). Then the usual weak form of (4.1) for the
solution u € V() is
a(u,v) = (f,v), Vo € Vp(2). (4.2)

Let 73, be a regular partitioning of €2 into simplices 7 with mesh-size h and let V}(£2) be
the P—nonconforming finite element space of functions v € L?(€2) [5] such that v|, are linear
for all 7 € Ty, v are continuous at the barycenters of 7 € 7}, and vanish at the barycenters of
the boundary faces on I'g (defined by (2.49)). Note that the space V},(€2) is not a subspace of
H(Q).

Define the bilinear form on V}(2) by

ap(u,v) = Z (KVu,Vov);, Vou,v e Vi(9), (4.3)
TET

where (-, -); is the inner product in L?(7), 7 € Tj,. Then the P—nonconforming finite element
discretization of (4.1) has the form: find uy € V}, such that

ah(uh,U) = (fav)a Vo € Vh(Q) (44)
Once a nodal basis {¢p; (x)}l]\i1 for V;,(€2) is chosen, (4.4) leads to a system of linear algebraic
equations. Write u(x) = S| u;0;(x). Then (4.4) becomes
N
Zuzah((pla(p]):(fa(p])a jzla"'aNa
i=1

36
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or in matrix representation

Au=f, (4.5)

where A]z = ah(‘Pia‘Pj)a f] = (fa (10])7 Za] = ]-7 s 7N'

Although the methods of solving (4.5) have been extensively studied in the past few years
(see, e.g., [, 15, 20, 22, 35]), their efficiency depends on the coefficient matrix K(x), and in
the case of strong anisotropy in the coefficients the question of constructing effective solution
techniques is still open.

In this chapter we will describe and analyze a method of constructing the preconditioner
for (4.5) using an idea of algebraic substructuring which can be described as follows [71].

Let us partition the domain 2 into subdomains €25, s = 1,...,n, such that each € is a
union of simplices 7 € Tp,

n Ns
Q=) 2, Q= {neTh:ncl
s=1 =1

Below these subdomains 2 are called superelements.
Let us introduce local stiffness matrices A; on each superelement 25 as follows:

(Asug, vy) = Z (K (x)Vup, Vop)z, Vup, v, € Vi (Qs).
TICQS

All these matrices are at least positive semidefinite, and the global stiffness matrix is deter-
mined by assembling the local stiffness matrices over all the superelements:

n
(Au,v) = Z(Asus,vs), Yu,v € RY.

s=1

We can symbolically write
A= {Ag};

s=1>
where {-}7_, denotes assembling with respect to the partitioning {Q,}7_; of Q.

In the above notation each superelement matrix Ag can be represented in terms of local
stiffness matrices over simplices 7; from €, l.e. Ay = {Asl}ncﬂs' Note that matrices Ay are
also at least positive semidefinite.

Following [71, 73], let us introduce on each simplex 7 € 77 another matrix Ay which has
the same kernel as AAsl (i.e. Ker Ay = Ker Asl). Define the matrix A, on each superelement

Qg by assembling Ag:
As - {ASZ}TICQS )

Then it can easily be shown that Ker A;, = Ker As and the matrices As are also at least
positive semidefinite.
Now let us define an N x N matrix A by assembling A, over all the superelements
~ ~ n
A={A} .
To obtain an estimate of the condition number of A~ A we use the so-called superelement

analysis which we outline here. Suppose we have two sequences of nonnegative numbers
{a;};—, and {b;};~, such that a; and b;, i = 1,...,n, are simultaneously either positive



38 Substructuring preconditioners

numbers or zeroes. And suppose we seek for estimates of the ratio Y ;' a;/ Y1 b; from
below and from above. The solution of this problem is well-known [64]:

>
a
LG _ = @
min ™ <= < max o
b;#£0 L > b bi#0 ¢
i=1
Then we can formulate the following lemma:
Lemma 4.1 The following relations hold.
(A
us, u
u, _ sgl( st Us) (Asug, uy)
max ————— = max S ————— < max o, (4.6)
B I Ry
s=1
and
i (Asug, uy)
A £~ sHsy YUs A
min 22— gin =l > min M (4.7)

(Auu)0 (Au’ u) (Auu)#0 > (Asumus) (45:1;1.1;;;0 (Asus, 1)
s=1

From Lemma 4.1 it is easy to see that to estimate the extreme eigenvalues of A"TA it is
sufficient to consider the local problems

Asus = M(S)Asus, Ug 1 Ker As,

on all the superelements Q, s = 1,...,n. Thus, the superelement analysis is a very useful
and rather simple tool for estimating the condition numbers of preconditioned matrices (see,
e.g., [7, 70, 53, 73]). It can be shown that to estimate the extreme eigenvalues of A A it is
sufficient to consider the worst cases when the superelements €25 have no common faces with
To.

Thus, if the superelement matrices A, and A, are spectrally equivalent with respect to
Ker A, i.e. there exist constants cy s and c; s such that

coys(Asus,us) < (Asug, ug) < clys(fisus,us), Yu, € IRNS, N = dim 2,

where constants ¢y, c1s do not depend on mesh-size parameter h, then matrices A and A
are also spectrally equivalent, i.e.

~

co(Au,u) < (Au,u) < ¢;(Au,u), Yu e RY,

with ¢p = mincg, and ¢; = maxcy .
S S

Now let us partition all the unknowns in (4.5) into two groups:
u=(ul,ul)7, dim u; = Ny, dimuy = N — Ny,

so that matrix A is represented in a block form:
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such that block Ags is easily invertible. Then introducing the Schur complement S = Ay —
A12A;21A21, we can rewrite matrix A as

~

(4.9)

SA + 14121212_21/121 z‘:hz
Az Az

Following [17, 70, 69], we construct a matrix S which is spectrally equivalent to S, i.e.
dO(SV,V) < (SV,V) Sdl(gvav)a Vv EIRNI,

where constants 0 < dy < d; are independent of mesh-size parameter A. Then the matrix

B= (4.10)

5:4- Ap Ay Agy 412
A Ago
is spectrally equivalent to matrix A, i.e.

ro(Bu,u) < (Au,u) < ri1(Bu,u), Yu e RY,

where g = ¢omin{1;dy}, r1 = ¢y max{1;d;}. To construct such a matrix S, again, we can
use the idea of the algebraic substructuring described above.

Concluding this overview, we can say that the algebraic substructuring procedure consists
of the following main steps:

(A) the reconstruction of the directed graph of matrix A from (4.5) in such a way that
the resulting matrix A has the same kernel and is still positive definite (or positive
semidefinite if matrix A is singular);

(B) the representation of matrix A in 2 x 2 block form (4.8) in such a way that one of the
blocks, A1 or Ags, is easily invertible;

(C) the replacement of the Schur complement S in (4.9) by a spectrally equivalent matrix
S; we can use steps (A) and (B) to construct such a matrix S.

Note that we can first represent matrix A in 2 x 2 block form (4.9) and then use steps
(A)—(C) to construct a preconditioner for the Schur complement S = Aj; — A12A521A21.
Implementing a finite number of these steps, we can get matrix B which is spectrally equivalent
to the given matrix A.

Because of the algebraic nature of such a procedure this approach strongly depends on the
structure of the graph of matrix A and consequently on the type of the nonconforming finite
element space V. In this chapter we consider in a different way two- and three-dimensional
problems with both constant and almost constant matrix coefficient K (x). Most of the theory
developed in this chapter is based on results published by the author in [77, 78], and in joint
works with R. Ewing, R. Lazarov, Yu. Kuznetsov, and Z. Chen in [52, 55, 33, 51, 73].

The outline of the reminder of the chapter is as follows. In Section 4.2 we consider a
two-dimensional problem with diagonal matrix coefficient K(x). A detailed description of
constructing algebraic substructuring preconditioners for three-dimensional problems is given
in Sections 4.3 and 4.4. We consider there a formulation of the model problem with a diagonal
constant tensor, develop an algebraic substructuring preconditioner for the resulting linear
system, and give an implementation algorithm. In Section 4.3 we define partitioning 7T, of the
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whole domain, subdividing it into topological parallelepipeds and splitting each parallelepiped
in turn into six tetrahedra. The case of splitting each topological parallelepiped into five
tetrahedra when K (x) is a diagonal tensor is considered in Section 4.4. In Section 4.5 we
consider the case of full tensor function K (x) and domain € being a topological parallelepiped.
We develop here a variant of the fictitious domain method for anisotropic problems.

4.2 Two-dimensional problem

Consider a model problem on a unit square:

0%u 0%u )
—kxw — ky(? 5 +cou = f, in Q =[0,1)?,

u =0, on 01},

(4.11)

where coefficients k; > 0, k, > 0, and ¢y > 0, are constants in 2. It is clear that a method
developed for this model problem can be easily generalized for the case of rectangular domain
and mixed boundary conditions.

Let C;, = {C(")} be a partition of Q into uniform squares with the length of the side
h =1/n, where (z;,y;) is the lower left corner of the square C(49), We enumerate the squares
in a lexicographical order, first, in the y-direction, then in the z-direction. Next, we divide
each square C("7) into 2 triangles as shown in Figure 4.1a. The partitioning of  into triangles
is denoted by Tp,.

We introduce the set of centers of all the edges of the triangulation of €2, and the set
Qp, of those centers that are not on the Dirichlet boundary I'g = 9 (see Fig. 4.1a). The
Crouzeix-Raviart Pj—nonconforming finite element space V}, is defined by

Vi =1{veL*Q): wv|; € Pi(r), VT € Tp; v is continuous at the points

. . . 4.12
from @}, and vanishes at the middle points of edges on I'y}. ( )
Let the dimension of Vj, be N. Obviously, N ~ 3n?2.
ol @ ol
o o o 2 91 3
5 o )
)
(a) Triangulation of the domain Q. (b) Local enumeration of the degrees of freedom.
Figure 4.1: 2D problem. Triangulation and partition of the degrees of freedom.
Now we define the bilinear form on V), by
ou 0 Ou 0
Z/ ( 8u GZ ky au av + couv> dx, YV u,v € V. (4.13)

T€Th'T
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Thus the nonconforming discretization of problem (4.11) is given by seeking u;, € V}, such
that
ap(up,v) = (f,v), Yo eV, (4.14)

For any function v € V}, we denote by v € IR" its representation with respect to the basis in
Vi.

Let (u,v)y be a standard bilinear form defined on RY by (u,v)y = Yoxeq, w(x)v(x),
Yu,v € Vj,. Then define symmetric and positive definite operator A : RN — IR" by

(Au,v)n = ap(u,v), u,v € V. (4.15)

For each square C' = C(W) € ¢, we denote by th the subspace of the restriction of the
functions from V}, into C. For each v € VhC, we indicate by v, the corresponding vector.
The dimension of th is denoted by N.. Obviously, for a square without faces on I'g we have
N. = 5.

The local stiffness matrix A“ on a square C € Cj, is given by

(A%, v, = 5 (Fe(3Y, 220 + by (2L, 82)r + co(u, )7 ),

TCC (4.16)
Yu,v € VhC.

Note that the matrices A® are positive definite when dC N Ty # 0 and at least semidefinite

otherwise (if co # 0 then all the matrices A® are positive definite). The global stiffness matrix

is determined by assembling the local stiffness matrices:

(Au,v)y = Z (A%u,, ve)n., Vu,v € R". (4.17)
ceCy,

To define the solution procedure we divide all the unknowns in the system into two groups:

1. The first group consists of the unknowns corresponding to the edges of the triangles
that are internal for each square (these are the unknowns corresponding to the nodes
marked by “o” in Fig. 4.1). We denote these unknowns by vc; j, 4,5 =1,...,n.

2. The second group consists of all the unknowns corresponding to the edges of the squares
in partition Cp,, without the faces on I'y (Fig. 4.1, the nodes marked by “x”).

(a) First, we enumerate the unknowns on the edges perpendicular to the z-axis (nodes
2 and 3 in Fig. 4.1b). We denote these unknowns by vz;;, ¢« = 1,...,n—1,
j=1,...,n.

(b) Second, we enumerate the unknowns on the edges perpendicular to the y-axis
(nodes 4 and 5 in Fig. 4.1b). We denote these unknowns by vy; ;, i = 1,...,n,
j=1,....,n—1.

Now we consider a square C that has no face on the boundary 02 and enumerate the
edges s;, j = 1,...,5, of the triangles in this square in correspondence with the partitioning
introduced above as is shown in Figure 4.1b. Then the local stiffness matrix for this square
has the following form:

A A
C _ 11,c 12,c
A0 = l Ao Ao ] ' (4.18)

)
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Introducing parameter ¢ = cph?/12 we can write

A1 =4[k + Ky + ], Arge = Ay o = [2ky, —2ky, —2ky, —2k,] (4.19)
2k, 1
B 2y 1
A2276 = 2ky + 2c 1
2k, 1

The splitting of the space IR" induces the presentation of the vectors: v = (vl vD),
where v; € RM, v, € RM?, and vy corresponds to the unknowns of the 2-nd group. Obvi-

ously, N; = n? and Ny = N — n?. Then matrix A can be presented in the following block

form:
A A
A= : 4.20
[ Ay A ] (420)

where Ay : RM? — RN is a diagonal matrix.
Now denote by A1 = Aqq —A12A2_21 Aoy the Schur complement of A obtained by elimination
of the vector vo. Then A1 = A1 + A12A;21A21, so matrix A has the form:

A= (4.21)

A11+A12A§21A21 Ao .
Az Az

To understand the structure of the Schur complement Aq1 let us write explicitly the matrix
equation
Av=g

in terms of the unknowns vc; j, vz; j, and vy; ;. For any square C3) N 9N # 0 we have:
Aky + ky + cJveij — 2ke (vaij + vTiv1 ) — 2ky (VY + vYi 1) = gciy, 6 =1...,m,
4(]@,; + C)Q):Ei,j — 2]@,3(1)01'_1,]' + Q)Ci,j) = 9% j, 1=2,...,n, 5=1,...,n,

4(ky + c)vy; j — 2ky(vei j—1 +veij) = 9yi g, i=1,...,n, j=2,...,n.

After eliminating the unknowns vz; ; and vy; ; we have a 5-point computational scheme for
the unknowns vc; j:

(2a5 + 2ay + b)vc; j — az(vei—1,; +vciy17) — ay(ve;j—1 + veij1) = gc; 4, (4.22)
where
ky k, 1 1
“ ST ek M T Thofky c<+1+dm+1+q@> (4.23)

It is easy to see that matrix Ay can be represented in a tensor product form (according
to the enumeration introduced earlier in this section):

12111 =a;(Az ® Iy) + ay(I:v 02 Ay) +b(I; ® Iy)a (4.24)
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where the matrices I, I, : IR" — IR" are identity ones, and the matrices A;, A4, : R" — IR"
are tridiagonal:

To solve the problem with separable matrix Aq; we can use either the discrete fast Fourier
transform [106] or an algebraic multigrid method (AMG) [8, 20, 70, 120]. When an imple-
mentation cost of the first method is estimated by O(h=21In (h~!)), the AMG methods have
the optimal order of arithmetic complexity O(h~2). Since these methods are well described
in the literature we are not going to discuss them in greater detail.

4.3 3D problem. Partition of cube into 6 tetrahedra

In this section we consider multilevel preconditioners for (4.5) based on the partitioning of
the regular parallelepipeds into tetrahedral substructures, following the ideas in [52, 55]. Here
we treat the case where €2 is a unit cube and K(x) is a diagonal tensor.

4.3.1 Two level preconditioners

Let C, = {C3k)} be a partition of Q into uniform cubes with length h = 1/n, where
(zi,yj,2k) is the right back upper corner of the cube C:3k) - Next, each cube C-7K) ig
divided into two prisms P; = Pl(i’j *) and Py = PQ(i’j *) as shown in Figure 4.2. The resulting
partition of € is denoted by P,. Finally, we divide each prism into three tetrahedra as
illustrated in Figure 4.2 and denote this partition of €2 into tetrahedra by 7j,.

Figure 4.2: The partition of a cube into 2 prisms and 6 tetrahedra.
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Let W, be the space of piecewise constants associated with Cj, and P.j be the L2
projection onto W, . To define our preconditioners, we introduce Cj = P, K ~1in the
hybrid form (2.38) instead of Cj, = P, K !. Obviously, Lemma 2.8 and Proposition 2.1 are
still valid for this modification since 7} is a refinement of Cj,. With this modification, C} !
is a constant on each cube. For notational convenience, we drop the subscript A and simply
write C; ' = diag {k1, k2, k3 }.

Let V}, be the nonconforming finite element space associated with 7, as defined in (2.49),
and let its dimension be N. All the unknowns on the faces of 9Q are excluded. For any
function vy, € Vj, we denote by v € IR" the corresponding vector of its degrees of freedom.
Introduce the inner product

(w,v)n =h* > up(pi)on(pi), un,vn € Vi, (4.26)
Pi€ITy

where the p;’s are the barycenters of the interior faces. The norm induced by (4.26) is
equivalent to the L?-norm on .

For each prism P = P74 ¢ P, denote by VhP the subspace of the restriction of the
functions from V}, into P. For each v € VhP , we indicate by vp its corresponding vector. The
dimension of VhP is denoted by N*. Obviously, for a prism without faces on 9 its dimension
is 10, i.e. NP =10.

The local stiffness matrix A on the prism P € P}, is given by

(APUP,VP)NP = Z(Ch_quh,VUh)T. (4.27)
TCP
Then the global stiffness matrix is determined by assembling the local stiffness matrices:
(Au,v)N = Z (APup,Vp)NP. (4.28)

PePy,

Now we consider a prism P of a cube that has no face on the boundary 92 and enumerate
the faces s;, j = 1,...,10, of the tetrahedra in this prism as shown in Figure 4.3. Then the
local stiffness matrix of this prism has the following form:

3h | A A
qp _3h 11 A 499
2 [ Ay A | (429)

where A11 = diag {kg, kl, kl, kQ, kg, kg} and

0 0 -k O 0 0
R 0 0 —ky O 0
Az = A = —ky O 0 0 —ky 0 |’

0 -k 0 0 0 —ks |
ki + ko 0 —ko 0 ]

A — 0 k1 + ko 0 -k

27k 0 2(ky+ k) —ks
0 —ky —ks 2(ky + k3) J
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Figure 4.3: Local enumeration of faces in prisms.
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Along with matrix A" we also introduce a new matrix BY. The purpose of introducing
BP is to simplify the graph of connectedness in the local stiffness matrix in such a way that
the kernel is preserved and the elimination of the internal for the prism unknowns leads to a
simplier Schur complement. Matrix B” is defined on the same space Vhp by

p_ 3h| A Ap
s [ A A ] | (430)
where
ki+ks+0 —b —ko 0
By — —b ki+ky+0b 0 —kq
2= —ko 0 2ko + k3 0 ’
0 —kq 0 2k + k3

with a parameter b. This parameter will be chosen in such a way that matrix BY is spectrally
equivalent to A" (with respect to the kernel) with a possibly smallest relative condition
number.

Proposition 4.1 It holds that Ker A" = Ker BF.

Proof: It is easy to see from the definitions of A” and BY that Ker A" = Ker BY = {v =
(’01,1)2,...,1)10)T e R0 . v; =1, 1 = 2,,10} a

Remark 4.1 If the prism P € P, has a face on 052, then matrix A" does not have the
rows and columns which correspond to the nodes on that face, and the modification of By is
obvious.

Now we define the V x N matrix B by the following equality:

(Bu,v)y = Y (BPup,vp)yr, Vu,veRN. (4.31)
PePy,

Since matrix B is used for preconditioning the original problem (4.5), it is important to
estimate the condition number of B~'A. Thus, we consider an eigenvalue problem:

Au = pBu. (4.32)

Lemma 4.2 Let up # 0 satisfy the equality

APup = pupBPup, P € Py, up #0. (4.33)
Then we have
(Au,u)n . (Au,u)y .
— < d — > . 4.34
(Blfﬂgi;éo (Bu,u)ny — Igéaﬁ}i ppan (Bur,rllll)r]]\}#o (Bu,u)ny — pep, P (4:34)

Proof: For each P € Py, it follows from (4.33) that

(A"up,up)yr = pp(B up,up)yr.
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Then, from the fact that all the local stiffness matrices are nonnegative it follows that

Y. (ATup,up)yr = Y pup(BTup,up)yr
PEPy, PEPy,
< max pp Y (B"up,up)yr.
PePy, Pep,

Hence, from the definitions of A and B we see that

A < B .
( u’u)N_]géafJ)}iMP( uau)N

Consequently, the first inequality in (4.34) is true. The same argument can be used to show
the second inequality. O

From Lemma 4.2, we see that, to estimate the condition number of B~'A, it suffices
to consider local problems (4.33). Using a superelement analysis [69] to estimate Igé%); p

and }gnl;l wp, it suffices to treat the worst case where the prism P € Py has no face on the
€Ph

boundary 0€2. From (4.29) and (4.30), direct calculations show that the eigenvalues up are
within the interval [pup, 5], where

1 k k k 4k /b

+ 3 3 3 3

bp = = 1+—+—+—> 1+4/1— . 4.35
2 ( k1 ko b < \/ (1+k3/k1+k3/k2+k3/b)2> ( )

Obviously, ,u}i, depends on the parameter b. We shall choose b to minimize the ratio uJIS [t p,
which then gives an upper bound for the condition number Cond (B~ !A).
Until the end of the section we shall use the following assumption.

Assumption 4.1 Assume that the matriz coefficient of equation (4.1) is a diagonal tensor
K (x) = diag {k1, ke, ks}, where k;, i = 1,2,3, are constants on each prism P € Py, and there
exists a parameter k such that

ks ks
—, — > < K. .
lgéaﬁ}i{kl’ kz}_ﬁ (4.36)

Remark 4.2 Generally speaking, we need only the assumption that the coefficient k, in some
direction multiplied by some fixed parameter 1/x is not greater than the coefficients in the
other directions. For the sake of simplicity we assume that this is the “z-direction”.

The optimal choice of b is given in the following theorem.

Theorem 4.1 The eigenvalues of problem (4.32) with the parameter b= = k' + k' + k3!
belong to the interval

2K 2K
1+26) [ 1— 1+26) |1
(+“)( 1+2n)’(+”)(+ 1+2/<;)

and the condition number is then estimated as follows:

)

Cond (B™'A) < 3 + 8k.
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Proof: With the choice b~ ! = kl_l + k2_1 + kg_l, the expression ,ulig can be written as

k k 1

+ 3 ks

- 1+—+—> 1+ f1——— .
Hp ( ki ko < \/ 1+—£i’+—ﬁ;’>

Then we consider the functions

1
fi(x):x<1:|: 1——), z > 1.
x
Note that f, is a nondecreasing function and f_ is a nonincreasing function. Hence, the
desired result follows from the definition of x. O

Remark 4.3 If the parameter b is chosen by the simple relation b = k3, then the eigenvalues
of problem (4.32) belong to the interval

[1+I<&—\/I<&2+2I<&,1+I§+\/I<&2+2I<&:|,

and the condition number is thus estimated by
Cond (B™'A) < 3+ 8k + 4k2.

We stress that the condition number of matrix B~' A is bounded by a constant independent
of the step size of mesh h. Since we introduced a two level subdivision, matrix B can be
referred to as a two level preconditioner.

Remark 4.4 Because the condition number of matrix B~'A depends on the value of the
parameter k it is very important to choose the “z-direction” in the proper way. Note that we
can always rearrange the coordinate axes (make a change of coordinates) to ensure Assumption
4.1.

4.3.2 Three level preconditioners

While preconditioner B has good properties, it is not economical to invert it. In this subsection
we propose a modification of matrix B and consider its properties and computational scheme.
Toward the end of this section, we divide all unknowns in the system into two groups:

1. The first group consists of all the unknowns corresponding to the faces of the prisms in
partition Pj, excluding the faces on 99 (see Figure 4.3).

2. The second group consists of the unknowns corresponding to the faces of the tetrahedra
that are internal for each prism (these are faces sg and sjg in Figure 4.3).

This splitting of the space IRY induces the presentation of the vectors: v = (vI,vIT, where

vi € RM and vy € RM2. Obviously, N; = N — 4n3. Then matrix B can be presented in the
following block form:

Bi1 Bio .
B = , dim By; = N;. 4.37
l By B ] 1 ! (437)
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Now we denote by BH = By — BlgBZ_QIBgl the Schur complement of B obtained by
elimination of vector vo. Then By = By + B12B§21B21, and hence matrix B has the form:

(4.38)

B Bi1 + B1oBy'Byy Bio
By By

Note that for each prism P € P} the unknowns on faces sg and s1¢ (see Figure 4.3) are
connected only with the unknowns associated with this prism and therefore can be eliminated
locally; that is, matrix Bsy is block diagonal with 2 x 2 blocks and can be inverted locally
(prism by prism). Thus, matrix By is easily computable. The proposed modification of
matrix B in (4.38) is of the form

B =
By Bas

By + B12Byy' By1 By ]

where Bg is to be defined later.

4.3.2.1 Group partitioning of grid points

For the sake of simplicity of representation of matrices and computational schemes we intro-
duce the partitioning of all nodes in 07}, into the following three groups. Denote by sf,lfi)
the face of the cube C"/) with vertices 7,1, m (see Figure 4.4).

Figure 4.4: Enumeration of the vertices of a cube C(-F).

1. First, we group the nodes on the faces

Syan and  syE7’, 1,7,k =1,n;

we denote the unknowns at these nodes by VIlgi’j’k), t=1,2,4,5,k =1,n.

2. Second, we number the nodes on the faces perpendicular to z, y, and z axes:

81,2,4 ) 81,3,4 y = 27’”’7 ]7k = 17”7

we denote the unknowns at these nodes by ngi’j ’k), 12

I
—
no
~
I
no
S
b
-
I
—
N

. (i,4,k) ' . A
(i) s135, Ss37, J=2n, i,k=1mn
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we denote the unknowns at these nodes by Vyy’j’k), (=12, 7=2,n,1,k=1,n.
(i) si9d), S99, i j=Tn, k=2Zn;
we denote the unknowns at these nodes by Vzéi’j’k), (=1,2,4,5=1nk=2,n

3. Finally, we number the remaining nodes on the faces

(i,7,k)

(2,4,k) (4,5,k) (4,5,k)
5145 5 53453 Sib6 s 5

5458 i, J, k =1,n;

we denote the unknowns at these nodes by VAEi’j’k), (=1,4,4,5,k=1,n.

4.3.2.2 Definition of the preconditioner

We partition each cube C:3+) into left and right prisms P,Ei’j”“), p = 1,2 (see Fig. 4.2). Below
we skip the indices ‘(4, 7, k)’ and the superscript ‘P’ when no ambiguity occurs.

In the local numeration (see Fig 4.3) matrices By and Bs, corresponding to the left and
right prisms have the form (4.30). We rewrite these matrices in the above group partitioning:

kitkotb —b |—k; 0 0 0 0 0] —ke 0
—b ki+kotb 0 0 0 —ko 0 0 0 -k
—k 0 kR 0O 0 0 0 0| o0 0
0 0 0 kK 0 0 0 0| o0 —k
B - 3h 0 0 0 0 k 0 0 0| —k 0
2 0 — ks 0 0 0 k 0 0| o0 0 ’
0 0 0 0 0 0 ky 0| —ks 0
0 0 0 0 0 0 0 k| o0 —ks
—ky 0 0 0 —ks 0 —k3  0|2kstks 0
0 —k 0 —k1 0 0 0 —ky| 0  2kitks |
R T - 0 0 -k, 0 0 0| —k 0
—b  kytketb| 0 -k, O 0 0O 0| O —ky
0 0 kk 0 0 0 0 0| —k 0
0 —k 0O k 0 0 0 0| o0 0
By — 3h | —ky 0 0 0 k 0 0 0| o0 0
2 0 0 0 0 0 k 0 0| o0 — ks
0 0 0 0 0 0 ky 0| —ks 0
0 0 O 0 0 0 0 k| 0 —ks
—k 0 k0 0 0 —k; 0]|2ktks 0
0 —ky 0 0 0 —k 0 —ky| 0  2kytky |

The partitioning of nodes into the above three groups induces the following block forms
of matrices By, p = 1,2:
B, = [

Bii1y

=1,2,
Baip P

(4.39)

Biay
b)
Bas
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where blocks Bas ;, correspond to the unknowns of the last group and blocks By, correspond

to the unknowns of the first and second groups.

We eliminate the unknowns of the last group from each matrix B, p = 1,2, which is done

locally on each prism. Then we get the matrices

Biip = Bi1p — Bi2,p By, Batp, p=12
where
[ k2 k32 kok T
2k2ik3 1?2 0 1?2 2k2i/€3 0 2k22+?;€3 0
kik
0 2k j—kz 0 2k i—k’x 0 0 0 2/€11+:;€2
0 0 0 0 0 0 0 0
k3 k3 kik
_ 3h 0 L 0 L 0 0 0 —
BioaBypBug =5 | 4 TR Mtk phy e
2ko+k3 0 0 0 2ko+k3 0 2ko+k3 0
0 0 0 0 0 3 0 0
kak kak k3
2k22+?;€3 0 0 0 2k22+?;€3 0 2k2ik3 1?2
kik kik
L 0 2]4)11-1—:;4}3 0 2]4)114363 0 0 0 2]4)1—?—]4}3 _
and a similar expression holds for BIQ’QBZ_QI’ZBQLQ.
Following [52], we introduce on each prism a modification of matrices Bu,p:
[ k1+ko+b+so —b —k1 0 —ko 0 —82/2 —82/2
—b ki+ko+b+s1 0 —kq 0 —ko —81/2 —81/2
—ky 0 k1 0 0 0 0 0
3l 0 —ky 0 k1 0 0 0 0
By = > —ko 0 0 0 ko 0 0 0
0 —ko 0 0 0 ko 0 0
—52/2 —51/2 0o 0 0 0 3“;2 0
—59/2 —51/2 0O 0 0 0 0 81;32

with some parameters s; and so.

Proposition 4.2 Matrices Bn,p, p=1,2, and By have the same kernel, i.e.

Ker Bll,p = Ker B[).

Proof: It can be easily checked that Ker Bn,p = Ker By = {v = (v1, v, ... ,ug)T € R8: v, =

vy,1=2,...,8}, p=12.0
Now we consider the eigenvalue problem

u € R®\ Ker By, (4.40)

Bll,pu = pnBou, p=12,

with the following choices of s1 and ss.
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Proposition 4.3 For the case of s; = 2k;ks/(2k; + k3), i = 1,2, the eigenvalues of problem
(4.40) belong to the interval

(3 + 2K 1 3+ 2k 1]
STy, 2 ).
_4+2/<( \/5)’ 4+2/<( +\/§)_

If we choose s; = max{k;,ks}, i = 1,2, the eigenvalues of problem (4.40) are within the

interval g4 ) 34 L
K K

i A O W A R |

Py Ul Gy Y]

Both cases have the same estimate of the condition number

Cond (By ' B11p) < 2+ V3,

where the condition number is defined as the ratio of the biggest and the smallest nonzero
eigenvalues of problem (4.40).

Proof: A direct calculation shows that p € [, "] where

_ ) k; ks 2k3> k%/(k,sz) + 2k3/8i
= S IR A A N I T
H iril{,%{llki—l-ng ( +ki + S; 1+k3/ki+2k3/8i ’

k; ks 2k3> kZ/(kiSi) + 2k3/8i
+ = — (1= 4= 1 " .
H znlzllé{llki—i-ng ( +ki+ S; ( +\/ 1+k3/ki+2k3/8i

With s; = 2k;ks/(2k; + k3), i = 1,2, and the definition of k, it can be seen as in Theorem 4.1

and

that

S R ]
and

e ]
Note that

2+36/2+K%/2 1
3+ 2k -3
so that the first case follows. The same argument applies to the second case. O
Now we define a new matrix on each prism:

1

-1
Bo + Bi2pBy; yBa1p  Bizp

B, =
p B B
21,p 22,p

] .,  p=12 (4.41)

As we noted in Remark 4.1 on page 46, when the cube C' has nonempty intersection with 0€2,
matrices By, B2y, and By ,, p = 1,2, do not have the rows and columns corresponding to
the nodes on the boundary.

For each prism P € P, we now consider the eigenvalue problem:

BPu = puBfu, (4.42)

where B = B’ is defined in (4.39) and B” = B} in (4.41), p = 1, 2. Below we consider only
the simplest choice: s; = max{k;, ks}, i = 1,2.
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Proposition 4.4 The eigenvalues of problem (4.42) belong to the interval

M( _L) ﬂ(pri
4+ 2k V37 4+ 2k V3

Moreover, on each prism P € Py, the eigenvalues of the problem

)| -

APu = uBPu, (4.43)

are within the interval [p—, uy], where
2K 3+ K 1
=(1+2 1+ 1£+—).
pe = (14 “)( 1+2n)4+2n< \/?_))

Proof: The first statement follows directly from Proposition 4.3, and the second one then
follows from Theorem 4.1. O .
Now we define the symmetric positive-definite N7 X N7 matrix By by

(Bouy,vi) = Y (Bouyp,vip),
PePy,

where vi,u; € ]RNl, and u; p and vy p are their respective restrictions on prism P. As in
(4.38), we introduce the matrix

_ By + B12Byy' By1 By

B 4.44
Ba Baa (4.44)
Using Proposition 4.4 and the same proof as in Theorem 4.1, we have the following theo-

rem.
Theorem 4.2 Matriz B defined in (4.44) is spectrally equivalent to matriz A, i.e.
B < A< p*B.

Moreover, B
Cond (B™'A) <= p*/pse < (34 8K)(2+V3). (4.45)

Instead of matrix B in the form from (4.38) we take matrix B from (4.44) as a precondi-
tioner for matrix A. Because we have introduced a two-level subdivision of matrix By, matrix
B can be considered a three-level preconditioner.

As we noted earlier, matrix Bos is block-diagonal and can be inverted locally on prisms.
So we concentrate on the linear system

Bou = G. (4.46)

In terms of the group partitioning in Section 4.3.2.1, matrix By has the block form:

~ Ci1 Ci2
By = , 4.47
0 l Co Co ] (447)
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where block C corresponds to the nodes from the second group, which are on the faces of
tetrahedra perpendicular to the coordinate axes. From the definition of By, it can be seen
that matrix Cos is diagonal. In the above partitioning, we present u and G in (4.46) in the

form:
. up . G1

Then, after elimination of the second group of unknowns:
uy = Cpy' (G — Coyuy),
we get the system of linear equations
(C11 — C1205'Co1)u; = Gy — C12055' Gy = Gy,

where vector u; and block C; correspond to the unknowns from the first group, which have
only two unknowns per cube. The dimension of vectors u; and G is equal to dim (u;) = 2n3.
The above simplification of (4.46) is carried out in detail in the next subsection.

Remark 4.5 We note that all the estimates in this section depend on parameter  introduced
in Assumption 4.1 (see page 47). Hence, it is very important to arrange the coordinate axes
in such a way that parameter x has the smallest value.

Remark 4.6 Note that the estimate of the condition number of the preconditioned matrix
(4.45) is proportional to the value of parameter . In some sense we benefit from anisotropy.
The smaller the coefficient k3 of matrix K (the coefficient in the “z-direction”) the better the
preconditioner B.

4.3.2.3 Computational scheme

We now consider the computational scheme for (4.46). In terms of the unknowns introduced
in Section 4.3.2.1:

WPV QI P i =12, i k=T,

urd M qeP 1=1,2, i=2m, k=T,
uyy’j’k), Gygi’j’k), t=1,2, j=2n, i,k=1,n,
uzg M, GP 1=12, k=Zn,  ij=Tn

system (4.46) with K(z) = diag {1,1,1} can be written as

11 20 -2 i .
3 l —9 90 ] wlB3k) _ ((1 _ 52.1)@&( 1,5,k ) + (1 =i (4,5,k )
_ ((]_ — 5j1)uy(i7j_1,k) (1 N 5 ,]’ )
111 1 . (4.48)
) [ 11 ] (1 = 0k )uz ™D 4 (1 = o) ’Jk)
2

— 3—hGI(i’j7k)7 iajak = 17”7
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and

Qug i) — 10419 _ g g6ih) = 2 qp6ik) T, jk=Tm,

3h
Yy (iodk) — g, JI+LE) _ ) 7(gk) — (i-5:k) i —Tn—1ik=1
uy U U 3hGy ] 7n 7 IL7 7n7 (4‘49)
o111 . 11 . 2
(i,3k) — Z (1.4 k+1) _ (3k) — 2 5 (60:k)
2uz 2l11]UI 2l1 llul 3hG’z ,

k=1,n—-1,475=1n,

where ¢;; (the Kronecker symbol) is introduced to take into account the Dirichlet boundary

conditions. Eliminating unknowns u:z:y’j ’k), uyy’j ’k), uz ( Lyk) , £ =1,2, from equations (4.48),

we obtain the block “seven-point” scheme with 2 x 2—blocks for the unknowns u/, lS > k), {=1,2,
i, 7,k = 1,n. From (4.49) we have

- 1 . 1 o .
(7’7]7]9) _ — (7'7]’k) — (Z+1’J7k) (Zajzk) y — - > —
UL BhG’:L“ + 3 (uI +ul ) , i=1n—1, 7,k=1n,
- 1 - 1 - o
(6dk) — = g (tadk) o (i,j+1,k) (4,5,k) P — _ k=
uy 3hGy + 5 (u[ +ul ) , j=1Ln—-1, 4k=1n,
s 1 - 111 » » —_
(Za]:k) - (7'7]719) — (Z7J7k+1) (Zﬂvk) — _ —
uz 3th + 1111 ] (u[ +ul ), k=1n-1, 4ij=1,n
(4.50)

Substituting (4.50) into (4.48), we see that

3 [ —2 920 ]“I

1 (1= 630) (w290 g CIR)) (1= 5y, (w FHIR) 4 g G0

)
1—6]1)( JOd=1k) 4 o 7ok )+ (1= 6n) ( ixj+1,k) +u[(i,j,k))) (4.51)
)

1
2
[ 11 ] 1_ 5k1 wIBik=1) 4 o rsds )) + (1 = 6gn) ( JUdk+1) 4o 7(0sdk)

where

k) = Blh{g 0.98) % (1 = 5:)Gali=190) 4 (1 = 6,,)Gali39)
i o o
5 (@ =)@y T 4 (1= 6j) Gy ) (4.52)

L1 ((1 — 61) GBIk (1 5kn)GZ(i,j,k)) }

1
T2l 1

4

To solve system (4.51) we introduce the rotation matrix

1 11
,Uéza]:k))T

and new vectors v(k) = (vgi’j’k) , 1,9,k = 1,n, given by

?

v(B3k) — . [3k) i, 5, k=T1,n. (4.53)
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Then multiplying both sides of matrix equation (4.51) by matrix @ and using the relation

wlGKR) = QT .3k 5 k=T, (4.54)
we obtain the following problem for the unknowns v(@3k):;

6 0 .
(4,3:k)
[0 22/3]"

1
2

—
ja)
'—'le
—
|
=2
=
,_.
<
&
=
—
~—
+
<
&
=z
—
+
—
—
|
=2
=
SN
<
&
=
+
=
+
<
b
=z

It is easy to see that problem (4.55) can be decomposed into the following two independent
problems:

6,051.7].7]{:) (1 _ 67,1) ( (Z 17j7k) + ,l)gZ,]?k)) _ (1 _ 67,n)% (,ng'l'l,]:k) + ’Ugl’],k))

—(1 ) § (oD PR (1) g (oY g (F90) = e,
j

N

N

and
_vgzﬂvk) (1 _ 6Z1)% ( g/ 17]7]9) + Uél’]’k)) _ (1 _ 6m)% (,Ug/‘l'l:],k)

3
—(1—61)3 (Uém'—l,k) +U§i,j,k)) — (1= b)) (Uéi,j+1,k)

Hence, we reduced linear system (4.55) of dimension (2n3) to one linear system of equations
(4.56) of dimension n and n linear systems of equations (4.57) of dimension n?.

Again, for all these problems we can use either the method of separation of variables [106]
or an algebraic multigrid method [8, 20, 70, 120]. An implementation cost of the first method
is estimated by O(h~3In(h~!)). The AMG methods have the optimal order of arithmetic
complexity O(h™3). For completeness we describe below the method of separation of variables.

After we find the solution of problems (4.56) and (4.57) we easily retrieve vectors ul (/)

by using relations (4.54).

4.3.2.4 A method of separation of variables

In this section we consider a method of separation of variables for solving problems (4.56)
and (4.57). Problem (4.56) can be represented in the form:

0(3)1)1 = f]l, U1, f]l S IRnB, (4.58)
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where
C® =CoRI I+ Ih®Co® Iy + Iy ® Iy ® Cy,

Iy is the (n x n)-identity matrix, ® denotes the tensor product of matrices, and C has the
form:

3 —1
. —1 2 —1
Co = 3 . ) (4.59)
-1 2 -1
-1 3
If Cy is factorized by
Co = QoMo @y,

where A is an (n x n)-diagonal matrix and Qg is an (n x n)-orthogonal matrix (Qy* = QF),
then matrix C®) can be rewritten as follows:

c® = Q(3)A(3)Q(3),

where

Q(3) = Qo ® Qo ® Qo,
A =A@+ I @Ay Iy + Iy ® I) @ Ag.

Note that Q©® is an (n3 x n3)-orthogonal matrix and A®) is an (n? x n?)-diagonal matrix.
We can now use the following method to solve system (4.56):

- T
(1) fi= (Q(3)) g1,
(2) A®w = fi, (4.60)
(3) v =Q®w.
The same argument can be exploited to solve (4.57). The problem can be rewritten as
C®vy = Go, w2, Go €R™, (4.61)

where
C? =Ky® I + Iy ® Ko,

and the (n x n)-matrix Kj is given by

19 -3
-3 16 -3

[

Ky T,
-3 16 -3
-3 19

Again, if we write Ky as
Ko = RoDoRg,
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where Dy is an (n x n)-diagonal matrix and Ry is an (n X n)-orthogonal matrix, we can rewrite
matrix C®) as follows:

C®? = QARDQR"

where Q) = Ry ® Ry and A®) = Dy ® Iy + Iy ® Dy. Then system (4.57) can be solved with
the following method:

(1) fo= (Q(z))T§2a
(2) APy = f,, (4.62)
(3) vo = QPw.

4.4 3D problem. Partition of cube into 5 tetrahedra

To explain our approach in this case we again consider the model problem when € is a unit
cube in IR?, T'y is a union of some faces of €2, the boundary conditions are homogeneous, and
K (x) satisfies the following assumption.

Assumption 4.2 Assume that the coefficient matriz of equation (4.1) is a diagonal tensor
K(x) = diag{k1, ko, ks}, where k;, i = 1,2,3, are constants over the cube 2 such that k =
min {k‘g/k‘l,kg/kg} Z 1.

Remark 4.7 In fact, we need only the assumption that coefficient k£, in some direction is
not less then the coefficients in the other directions. For the sake of definiteness we assume
that this is the “z-direction”.

Note that the extension of the method to the case in which €2 is a union of parallelepipeds
is straightforward.

Let C, = {C7F)} be a partition of  into uniform cubes with edge length h = 1/n; here
(%i,yj,2k) is the right back upper corner of cube Ch3k)  Next, we divide each cube C(:7F)
into 5 tetrahedra as shown in Figure 4.5. We denote this partitioning of {2 into tetrahedra
by 5. Note that we have two types of partitioning of cubes C7"F) into tetrahedra, the cube
with one type of partitioning having all the adjacent cubes of another type.

Figure 4.5: Partition of cubes C(»%) into 5 tetrahedra.

We introduce the set of barycenters of all the faces of the tetrahedral partition of {2 and the
set @y, of those barycenters that do not belong to I'y. The Crouzeix-Raviart P;—nonconforming
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finite element space V}, is defined by

Vi, = {v € L?() : w|r € P.(T), VT € Tp; v is continuous at the barycenters (4.63)
from @, and vanishes at the barycenters of faces on Fg}. '

Let its dimension be N. Note that N ~ 10n®. Remember that in the case of splitting each
cube into six tetrahedra the number of degrees of freedom is N ~ 12n3.

Below we use the same notation as in Sections 4.1 and 4.3. For each cube C' = C(47:4) € ¢,
we denote by th the subspace of the restriction of the functions in V}, into C'. For each
vy, € VhC, we indicate by v, the corresponding vector. The dimension of VhC is denoted by
N.. Obviously, for a cube without faces on I'y we have N, = 16.

The local stiffness matrix A for a cube C € Cj, is given by

(A%uc, ve)n, = Y (K (x)Vup, Vop)r, Yup, vy, € ViC. (4.64)
TCC

Note that matrices A® are positive definite when C'NT # 0 and semidefinite otherwise. The
global stiffness matrix is determined by assembling the local stiffness matrices:

(Au,v)y = Y (A%, vo)n,,  Vu,veRV. (4.65)
ceCy,

4.4.1 Algebraic substructuring preconditioner

In this section we construct the algebraic substructuring preconditioner outlined in Introduc-
tion 4.1 of this chapter. Toward the end of the section, we divide all the unknowns in the
system into two groups:

1. The first group consists of the unknowns corresponding to the faces of the tetrahedra
that are internal for each cube (these are the unknowns on faces 1, 2, 3 and 4 in Figure

4.6). We denote these unknowns by VIl(i’j’k), 1=1,2,3,4, 4,5,k =1,n.

2. The second group consists of all the unknowns corresponding to the faces of the cubes
in partition Cp,, without the faces on Iy (Figure 4.6, faces 5,6,...,16).

(a) First, we number the unknowns on the faces perpendicular to the z-axis (faces 5,
8, 11, 14). We denote these unknowns by Va{ " 1 =1,2 i =T,n—1, j,k =T, n.

(b) Second, we number the unknowns on the faces perpendicular to the y-axis (faces 6,
9, 12, 15). We denote these unknowns by Vyl(z’]’k), 1=1,2,5=1,n—1,i,k=1,n.

(c) Finally, we number the unknowns on the faces perpendicular to the z-axis (faces
7, 10, 13, 16). We denote these unknowns by V2" 1 =12 k = Tn—1,
1,7 =1,n.

Now we consider a cube C' that has no face on the boundary 92 and number the faces s,
j =1,...,16, of the tetrahedra in this cube in accordance with the partitioning introduced
above as is shown in Figure 4.6. Then the local stiffness matrix of this cube has the following

form:
3h | A A
AC _ 11,C 12,0 , 466
2 [ Azie A (4.66)
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(b) Cube of type IT

Figure 4.6: Local enumeration of faces in cubes.

where )
Aire= (k1 + ka2 + k3) Ic+§[k1Tl+k2T2+k3T3]v (4.67)
1 -1 -1 1 1 1 -1 -1 1 -1 1 —1
-1 1 1 -1 1 1 -1 -1 -1 1 -1 1
hi=1 1 1 11 B 11 1 1| B= 1 -1 1 —1 |’
1 -1 -1 1 1 -1 1 1 -1 1 -1 1
1 , D 5 ke 0 0
I. = , Aoy = , D=|0 ko 0|,
1 ’ D 0 0 k
1 D 3

—k —ky —ks 0O O O 0O O 0 O 0

Aw | 0O 0 0 —ki ks ks 0 0 0 0 0
2¢=1 9 0o 0 0 0 0 —k —ks —ks 0 0 0
0 0 0 0 0 0 0 0 0 —k —ky —ks
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Along with matrix A® we introduce on each cube C' € Cj, matrix B¢

3h | B 0
C _ ,C 11,c
= A" + > l o o ] , (4.68)

where Bll,c = (k1 + ko)T3. Thus, matrix B can be represented in the form:

BC — 3h [ Biie Aize ]
2

Where Bll,c = (k'l + k‘2 + k‘g) Ill,c + % [kl (T1 + T3) + k‘g(Tg + T3) + k3T3].
Note that Ker A® = Ker B®.
We now define the N x N matrix B by the following equality:

(Bu,v)y = Z (B%u,,ve)yo, Yu,v € R". (4.69)
ceCy,

From Lemma 4.1 we see that to estimate the condition number of B~'A, it is sufficient
to consider the local eigenvalue problems for p. # 0

ACuC = :U‘CBCuCa Uc 75 07 Uc € IRNC-

By direct calculations, from (4.66) and (4.68), we find that the eigenvalues p. belong to the
interval [1/3, 1] provided Assumption 4.2.
Then the inequalities (4.6) and (4.7) yield:

Proposition 4.5 Suppose that the coefficient matriz of equation (4.1) is a diagonal tensor
K(x) = diag{k1,ko,ks}, where ki, i = 1,2,3, are constants over cube @ such that k =
min {kg/kl,k‘g/kQ} Z 1.
Then eigenvalues of the problem
Au = pBu (4.70)

belong to the interval [k/(2 + k), 1] and thus the condition number is estimated by
Cond (B™'A) <1+2/k < 3.

We emphasize that the condition number of matrix B~'A is bounded by a constant inde-
pendent of mesh-size h and the values of coefficients k;, i = 1,2, 3, when k3 > max {k1, k2}.

Splitting the space IR into two groups induces a vector presentation: v = (v, v1),
where vi € RM and v, € RV 2; here vy corresponds to the unknowns of the 2-nd group.
Obviously, N; = 4n3 and Ny = N — 4n?. Then matrices A and B can be represented in the

following block form:

AH A12 Bll A12
A= . B= , 471
l Ag1 Ao ] [ Ay Ay ] (411)

where By : IRNl — IRNI
Now denote by BH = By1 — A12A22 Aoy the Schur complement of B obtained by elimina-
tion of the vector vo. Then By; = By + A12A22 Ay and hence matrix B have the form:

B_ [ B + ApAR Agr Apg ] .

4.72
Ay Ay (4.72)
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Note that for each cube C' € C;, the unknowns of the 2-nd group (unknowns on the faces
5,6,...,16, in the local numbering; see Figure 4.6) are only connected with the unknowns of
the 1-st group, and therefore matrix Ass is diagonal. Thus, matrix By is easily computable.
The important fact which can be established by direct computations is that matrix By can
be obtained by assembling local matrices Bll,c = B, — A12,0A2_217CA21,C:

(Biiuy,vy) = Z (Bu,cul,c,vl,c), Vup, v, € RM
ceCy,

over all cubes. Here u . is a restriction of u; into the nodes of the first group of cube C € C),
and dim uy . = 4.

Remark 4.8 The dimension of matrix By is approximately 2.5 times smaller than the order
of matrix A.

Now we need to develop a preconditioner for matrix Bi;. Below we show that using
algebraic substructuring we can construct a sparse separable matrix B, spectrally equivalent
to Bi1 so that the resulting matrix

_ By + Ap Ayt Agy Ao

B 4.73
Asg A | @)
is spectrally equivalent to initial matrix A. In this case we shall use the method of separation
of variables in order to solve the system of linear equations with matrix B.
First, consider the linear system

Bv=g. (4.74)

Let us write explicitly the elements of Bv for the Dirichlet boundary conditions on the whole
boundary 912 in terms of the unknowns introduced earlier in this section, i.e. in terms of

gisTE VIR 0 =1,2,3,4 i,k =T,n;

(i7]7k) (i7]7k)

gz, , Va7, £=1,2, 1=1,n—1, j,k=1n;

(4.75)
gyélyj’k)a Vyélyj’k)a l = 1727 ] = 17” - ]-7 'Lak = 17”7
R 07 L A Y k=T,n—1, i,j =1Ln.

Below we use the function
S — 1, i=k
* TV 0, i£k
to take into account the Dirichlet boundary conditions and a vector

(i:4:k)

Ty

to denote variables (4.75). )
Note that the technique of constructing a separable matrix Bi; in the case of '] # () when
I’y is the union of entire faces of cube 2, is the same.
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The above equations are different for different types of cubes. For any cube of type I (see
Fig. 4.6) we have

1 .
{(kl + ko + kg)IC + 5 [kl (T1 + T3) + kQ(TQ + T3) + kng]} VI(l’]’k)— (4.76)
0 0 1 0
10 i1 0 0 ¥
—(1 = &;1)ky 01 VxE=Lik) — (1 = §;,)k 0 0 Vx(B3:k)
0 0 0 1
[0 0] 1 0 ]
0 0 i 01 Ny
~(L=dke | | VyGI=bk) (1 — §;,) ks 0 0 Vy k)
0 1] L 0 0]
[0 0] 1 0]
10 — 0 0 ” f(id
_(1 — 6k1)k3 0 0 Vz(%]ak 1) — (1 — 6kn)k3 0 1 Vz(lﬂ,k) — (%) gl( Jak),
| 0 1] | 0 0 |
» 10 00 » 100 -
(4.3,k) _ (4.3,k) _ i+1,5,k) _ l (4.3:k)
2k1 VX kl[ooo I]VI kl[ooo ]VI () gx@®),
» 1 0 00 » 0 010 -
(i.gsk) (i.3ok) LiHLE) — (2 (i,3,k)
2k2Vy k2[0100]w k2[0001]w (h)gy ’
¥ 10 00 ¥ 0100 >
(i.3k) (i.3k) bjk+1) — l (i,3,k)
2k3Vz kglo()lo]w kgloo()llw (Z) gz,

(4.77)
For any cube of type II the entries of the unknowns Vx(7*) are different from the previous
ones:

{(k1 ke + k)L, + [/ﬁ(T1 FTy) 4 BTy +T4) + k3T3]} VIGIH_  (478)
10 0 0
00 -y 10 y
—(1 = &;1)ky 0 0 VxE=LIk) — (1 = §;,)k 01 Vx(B3:k)
0 1 00
[0 0] (1 0]
0 0 . 01 Ny
~(L=dke | | VyGI=bk) (1 — §;,) ks 0 0 Vy k)
(0 1 (0 0
[0 0] (1 0]
10 . 0 0 y oy
_(1 — 6k1)k3 0 0 Vz(%]ak 1) — (1 — 6kn)k3 0 1 Vz(lﬂ,k) — (%) gl( Jak),
0 1] 0 0 |
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gk) _ g | O 1 0 0 b oimy o |01 00 btttk (2 gylivik)
2k Vx kllo Lo | Ve Bilooq olVE = (%) &x
. 1000 . 0010
(4,3,k) _ (4,3,k) _ (4,3+1,k) — (2 (4,3,k)
2k Vy ks Lo o | VI N I]VI (3h)gy
. 1000 y 0100 .
(4:.3.k) _ (6.3:k) _ (6.5,k+1) _ (2 (5,7,k)
2k;3Vz kg,[o 01 ]VI kg,[o 0 0 1]VI (Z) gz,
(4.79)
Note that
1 -1 0 0 1 0 o0 -1
-1 1 0 0 0 1 -1 0
dMAT) = g o 4 | (AT = g 1
0 0 —1 -1 0 0 1

After eliminating the unknowns Vx(5#) Vy(ik)  vz(3k) from equations (4.76) and
(4.78) we have a block “7-point” computational scheme with 4 x 4-blocks for the unknowns

VIEk).

i '7 '7k 1 s
(Buvr)™" = {(kl k)L [ (T +Ty) + I (T +Ty) + kng]} VI

k

~(1= b))

k1

—(1 = 8;)—

( )5

[0 0 0

k1o 0 o0

0 0 0

1.0 0

k1o 10
_(1_53'")? 000
00 0

[0 0 0

k1o 1 0
_(1_5’“1)? 000
000

o O O O o o o oSO O = o O O O

_ o O O

(4.80)
00 0]
00 0]
00 0]
8 8 8 (VI(i,j,k)+VI(i+1,j,k))
00 1|
[0 0 0 0]
(irj’k) 0 0 0 0 (i’jflrk)
VI + 100 0 VI
(010 0]
[0 0 1 0]
gk o | 00 01 (ixj+1,k)
VI + 000 0 VI
00 0 0]
[0 0 0 0]
(i’jrk) 1 0 0 0 (irj’kfl)
VI + 00 0 0 VI
(00 10|
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1000 0100
k3 0000 (i,.k) 0 00O (i,5,k+1)
(1= 0kn)5 001 0|V o001 |V ’
0000 0000

g k=1,...,n.

Along with the Schur matrix BH we define matrix BH in the form:

- (i::k) 1 1 y
(BnVI) = {(lﬁ + ko4 Sha) e+ 5 [k (Ty+ Ts) + ko (To + T3) + kng]} VIGGk)

(4.81)
—(1— 5i1)ﬁVI(i—1,J,k) —(1— 5in)ﬁVI(i+1,j,k)
2 2
[0 0 1 0] 0010
B[00 0 1| g k2[00 0 1| g
~U=%)5 1 g g 0| VE =05 g g o | VE
|0 1.0 OJ 01 00
[0 0 0 0] 0100
k3|1 0 00 (3,5, k—1) k3|0 0 0 0 (4,4, k+1)
=05 g g 0 o | VT A=) g 9o 1 | VT :
1 00 1 0 | 00 00
1,7, k=1,...,n.
Let us consider an eigenvalue problem
Buu = )\Buu, uec ]RNI. (4.82)

Proposition 4.6 The eigenvalues of problem (4.82) belong to the interval [1/6,1].

Proof: Note first that matrices BH and BH may be represented in the form:

Bu = kBY 4+ kyB® 4 b, BO),

4.83
Biy = B + by BO 4 ks B, (4.83)

where matrices B®, i = 1,2,3, and BU), j = 1,2, do not depend on the coefficients of the
problem, ki, ko, k3.

Since all the components on the right-hand sides are nonnegative we can estimate eigen-
values A of problem (4.82) by inequalities

min {1} <a< max {nihi 1}, (4.84)

()

where p;’ are the extremal eigenvalues of the auxiliary problems

By =,0B0y,  j=1,2.

Direct calculations show that p(Y) € [1/6,1]. Taking into account inequalities (4.84) we get
the above proposition. O

Using Propositions 4.5 and 4.6, and Lemma 4.1 we have the following theorem.
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Theorem 4.3 Suppose that the coefficient matriz of equation (4.1) is a diagonal tensor
K(x) = diag{k1, ko, ks}, where k;, i = 1,2,3, are constants over cube  such that k =
min {kg/kl,kg/kg} Z 1.
Then matriz B defined in (4.73) with block By; defined in (4.81) is spectrally equivalent
to matriz A. Moreover,
N*B <AL N*Ba

where p, = k/6(2 + k) and p* =1, hence
Cond (B™"A) <Ti = p*/p. < 6(1 4 2/K) < 18. (4.85)

Instead of matrix B in the form of (4.72) we take matrix B from (4.73) with block By
in the form of (4.81) as a preconditioner for matrix A. As we noted above, matrix Asy is
block-diagonal and can be inverted locally face-by-face.

Remark 4.9 Again, we note that the condition number depends neither on mesh-size h nor
on the value of the coefficients when k3 > max {ki,ks}. Because the condition number of
matrix B 1A depends on the value of parameter s it is very important to choose the “z-
direction” in the proper way. If, for example, we have the problem in which coefficient k;
is greater than coefficients ko and k3, we rearrange the variables so that the new variable z
coincides with the old variable x. It means that we simply rename the axes of the coordinate
system.

From representations (4.81), (4.83) it is easy to see that matrix By is separable. It is also
separable for I’y # 0 when I’y is a union of some faces of cube 2. To solve the system of linear
equations with matrix Bj; from (4.81) we use the method of separation of variables which is
described in the next subsection.

4.4.2 Implementation of the method of separation of variables

Since matrix By is separable, we can use the method of separation of variables to solve the
problem

Buw =g, w,g € RM. (4.86)
Matrix B’H can be represented in the form:
Bi1 = k1B + k2 By + k3B, (4.87)
B, =L®IL,® (I, ®D+ K, ®I), By=1,® (I, ® I, ® Dy + K, ® I, ® Dy) ,

Bz:Iz®Iy®Ix®D3+Klz®Iy®Im®D3l+Kuz®Iy®Ix®D3U7

where Iy, D, are 4 x 4-matrices, I, I, I,, K, are n x n-matrices,

1 -1 0 0 2 0 -1 —1 00 1 0
1 1 0 0 0 2 -1 -1 000 1
Dy = 000 1-1]" P2= 19 2 ol Po=]1 000/
0 0 -1 1 1 -1 0 2 010 0
2 -1 1 -1 000 0 0100
1| -1 2 -1 1 100 0 10000
D3_§ 121 21" Pa=3510 00 0] D3“_§ 000 1]/
1 1 -1 2 00 1 0 0000



4.4 3D problem. Partition of cube into 5 tetrahedra 67

2 -1
-1 2 -1 0
1 T -1 0

Km:Ky:§ ) K, =K,, =

12 o
We represent matrices K, Ky, D1, D2, Dy, D3 in the form:

Ko = QaAoQT, o=z,
a = Qalaly Yy (4.88)

K =QoAsQf,  $=0,1,2,3,

[ 2 T .
Q:I: :Qy: {qz'j}zj'zla qij = TL—H sin <n+1 -7,-]>’

where

1 1 1 1
111 1 -1 -1

Q=511 1 1 _1]|
1 -1 -1 1

and Az, Ay are (n x n)-diagonal matrices, and Ag, A1, A9, A3 are 4 x 4-diagonal matrices.
Define a matrix @ as

Q =I,® Qy ® Qm ® QO- (489)

Note that @ is an (4n3 x 4n3)-orthogonal matrix.
Then matrix Bi; can be represented in the form:

By = QAQT, (4.90)
where A = QTB11Q =
kil @I, @ (I @ A+ Ay @ Ip) + ko, @ (I @ I ® Ay + Ay @ I @ Ag) +

by (L@ I, ® L ® As + Ki. © I, © I, ® (QF D3uQo) + Kz ® I, ® I ® (QF DsuQu))

(4.91)
1 0 1 0 10 -1 0
1 0 1 0 1 1101 0 -1
T _z r =Z
0 -1 0 -1 01 0 -1
Now we can use the following method to solve system (4.86):
1) &=0Q"s
(2) Aw=g, (4.92)
3) v=0Qw

We note that due to the form (4.91) of matrix A, the solution procedure of stage (2) is
equivalent to solving 2n? independent tridiagonal linear systems of the order 2n x 2n.

Fast Fourier transform implementation of (4.92) will yield a number of arithmetic opera-
tions proportional to Ny In(/N7) or N In(0.4N), where the constants of proportionality do not
depend on the number of unknowns N and on coefficients ki, ks, and k3.
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4.5 Fictitious components method for model problem

Now we consider an elliptic boundary value problem in a domain €2 of general geometric shape
(see, e.g., Figure 4.7). Suppose that Q can be embedded in a larger domain IT (Q C II) which
has relatively simple form (e.g., a rectangle) so we can effectively solve corresponding grid
systems for problems in II. IT is called a fictitious domain (see Figure 4.7). It is attractive
to replace the solution of the original grid systems for 2 by suitable problems in II. The
introduction of such a fictitious domain II for the approximate solution of elliptic boundary
value problems associated with 2 has been used in the method of fictitious domains and
its most effective matrix modification, the fictitious components method. As an iterative
process for solving systems of mesh equations the latter method was proposed and studied,
for example, in [6, 82, 85, 84, 86].

Figure 4.7: Real domain §) embedded in fictitious domain II.

In the fictitious components method, instead of problem (4.5) with N x N symmetric
matrix A, an extended problem is considered:

Au = f, (4.93)

where a square matrix A is of order M > N. We assume that there exists a permutation

matrix P such that
S A 0 ~ f
T _ _
PAP—[0 0], Pf—[ol. (4.94)

It is obvious that for any solution @ of problem (4.93) solution u of problem (4.5) can be
found by the formula u = QPu, where Q = [In0] is an N x M projection matrix.

The main ingredient of the method is the construction of a preconditioning M x M matrix
B for extended system (4.93).

In this section we propose a variant of the fictitious components method for nonconforming
approximations of anisotropic elliptic problems. The method is described in Section 4.5.1.
Although this method can be formulated for problems in general domains, here we discuss
only a model problem in a unit square. Some generalizations are suggested in the remarks
at the end of this section. The proof of optimality of the method considered is based on
the theory of the extension of mesh functions from the original domain 2 into the fictitious
domain IT [85, 86, 96]. A variant of the extension theorem for nonconforming finite element
spaces is given in Section 4.5.2.
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4.5.1 Formulation of the method
Consider the model problem in Q = [0, 1]*:

—div(KVu)+cu = f, in Q,

(KVu,n) = 0, on 012, (4.95)

where ¢ > 0 is a constant and K is a full symmetric matrix in 2. Let (k1,u;) and (k2,ug)
be the eigenpairs of K with u; = (a,f), us = (—8,a), o® + 2 = 1. Then consider a
transformation of the coordinates (§,v) = F(z,y): E =a-z2+ 0 -y,v=—F -z+a-y. In
coordinates (£, ) problem (4.95) has the diagonal matrix coefficient K = diag {k1, k2} and is
represented in the form:

~kjuge — kouyy +cu = f  inQ=F(Q),

@ =0 on I' = 09).
on

(4.96)

Now construct a closed rectangle I in the (¢, v)-plane which contains Q in such a way
that diam (II) ~ diam (). First, we define a uniform triangular mesh in II, and then, locally
modify it to fit the boundaries of Q. Denote this mesh by 7 m and its trace in the domain Q
by 771,(2' The triangulation 7}, of  is defined by the inverse transformation (z,y) = F~1(¢,v)

of mesh 7, 4.

Since problems (4.95) in Q and (4.96) in Q are equivalent, below we consider only problem
(4.96).

We use the nonconforming finite element space V;,(Q) introduced in Section 4.1. Define

the bilinear form on V() by

ag(u,v) = Z / (krugve + kouyv, + c uv) d€ dv, Y u,v € V(). (4.97)

TE’Th,ﬁ T

Then the P;—nonconforming finite element discretization of (4.96) has the form: find u;, €

Vi(Q) such that

a}é(uh,v) = (f,v), Vv € V(). (4.98)

Once a nodal basis {Lpi(x)}fil for V;,(Q) has been chosen, equation (4.98) yields a system of
linear algebraic equations (see Section 4.1):

Au=f, (4.99)

with NV X N symmetric positive definite matrix A.
Along with problem (4.96) we consider the same problem in rectangle IT with homogeneous
Neumann boundary conditions on 9II. First, we define the bilinear form on V}(II) by

al (u,v) = Z / (krugve + kauyv, + cuv) d€ dv, YV u,v € Vy(II). (4.100)
TETL, T T

Then the symmetric positive definite M x M matrix B is defined as follows:
(Bu,v) = al(u,v), u,v € Vi (II), (4.101)

where M is the dimension of V;(IT) and u, v € IRM are vector representations of functions
u, v corresponding to the nodal basis {(pz-(x)}f\il of Vi (II).
We partition all degrees of freedom in II into three groups:
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1. The first group consists of the unknowns corresponding to the degrees of freedom in
Q\T.

2. The second group consists of the unknowns on the boundary I' of the domain Q.
3. Finally, we enumerate the unknowns corresponding to the degrees of freedom in IT \ Q.

Then matrices A, fl, and B can be represented in block form:

1L 4 ~ A, A O A, Agr O
A= [ 1 ! A“ ] , A=| An Ar 0|, B=| An Br Br |, (4.102)
reAr 0 0 0 0 By B

where blocks Ay, Ar, and By correspond to the unknowns of the first, second, and third
groups, respectively.
We note that matrix Br can be represented as a sum Br = Bﬁl) + BI(?), where Bl(}) = Ar,

and the matrix

(2)
Br™ Bra (4.103)
Bor  Bo

corresponds to the nonconformal discretization of equation (4.96) in the domain IT\ € with
the homogeneous Neumann boundary conditions.
Since (Au, u) < (Bu, u) for any u € RM, an eigenvalue problem

Au=ABu, uclmB, (4.104)

has Apax < 1. To estimate the minimal eigenvalue A\, of problem (4.104) we need the
following assumption.

Assumption 4.3 For any function u € Vi(Q) there ezists a function @ € V,(II) such that
u(x) = u(x) for any x € Q and

afy (@, @) < Cy - al(u,u), (4.105)
where a positive constant Cy > 1 is not dependent on mesh-size parameter h.

This assumption is very important and is connected with the theory of the extension of
mesh functions. Proof of the proposition given below is completely dependent on the state-
ment of the assumption. For the case of conforming finite element spaces the questions of the
extension of mesh functions is considered in [87, 86, 96, 93, 119]. For the case of nonconform-
ing finite element spaces we provide the foundation of this assumption and respective theory
in the next subsection 4.5.2.

Using this assumption we have the following result.

Proposition 4.7 The minimal eigenvalue of problem (4.104) satisfies the inequality Amin >
1/Cy and, hence,
vV = Amax/Amin < Co. (4.106)
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Proof: Consider an equality

N = min flv,v) B (flu,u)
i velm B (Bv, V) (Bu,u)

Z (klug + kQU,% + CU2) dx (4107)

(u,u) €T,/

(u,u) Z / (klug + kou? + cu2) dx

T€7—h,n pa

where u = (uf, uf,ul)” € Im B is the eigenvector of problem (4.104) corresponding to Amin

such that Borup + Bouy = 0, and u € V;(I1) is its corresponding finite element functiop.
Note that for any finite element function v € Vj(II) such that v(x) = u(x), x € Q, we
have an equality

a}ﬁ\ﬁ(v, v) = aﬁ\ﬁ(v —u,v —u) + a’rl[\ﬁ(u, u), (4.108)
where a’ﬁ\ﬁ(u,v) = alt (u,v) — a’é(u,v) for any u,v € Vj,(II). Choosing as a function v the
extension 4 of the function u (which exists according to Assumption 4.3) we get

a’ﬁ\ﬁ(u,u) < a’ﬁ\ﬂ(ﬂ,ﬂ). (4.109)
Using (4.109) and (4.105) we get
al(u,u) = X / (klug + kou2 + cu2) dx = a%(u,u) + a}ﬁ\ﬁ(u,u)
T J (4.110)
< a’é(u,u) + a'ﬁ\ﬁ(ﬂ,ﬂ) = al(4,7) < Cy a’é(u,u).

From (4.110) and (4.107) it follows that Amin > 1/Cy, which completes the proof. O

From Proposition 4.7 and estimate (3.30) it follows that the rate of convergence of the
conjugate gradient method in subspace Im B does not depend on mesh-size parameter h. At
each step of the conjugate gradient method we need to solve a linear problem with matrix B.
For a two-dimensional model problem we can use the method described in Section 4.2. The

AMG implementation of the described method has an optimal order of arithmetic complexity
O(h~?).

Remark 4.10 The fictitious components method can be developed also when the homoge-
neous Dirichlet boundary condition is posed on some part of the boundary 902. However,
this case requires more careful consideration of the extension theorem for nonconforming
approximations and is not considered here.

Remark 4.11 The described fictitious domain method can also be used for three-dimensional
model problems provided that Assumption 4.3 holds. To solve the problem with matrix B we
can use modifications of the methods described in Sections 4.3 and 4.4. Using the AMG as an

internal solver (see Section 4.3), the method has an optimal order of arithmetic complexity
O(h=3).

Remark 4.12 The analysis provided in this section can be applied also to the case of ¢ =0
in (4.95). To do this we can use, for example, the technique of [95] and analog of Assumption
4.3 for seminorms (see Remark 4.13).
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4.5.2 Extension theorem for anisotropic elliptic problems

To justify Assumption 4.3 we consider a model problem in IR?. Let IT = [0,1]? be the unit
square and © C II be a convex Lipshitz domain in IR? such that diam (II) =~ diam () (see
Fig. 4.8a).

Consider a problem

Lu=—uze —kuyy +u = f, in ,
4.111
o _ o (@.11)
on

where k > 1. Obviously, after appropriate scaling problem (4.96) can be described by (4.111).
First, we make a transformation of the coordinates in (4.111) by (¢,v) = F(z,y) = (=, ey),
where ¢ = 1/v/k. Then (4.111) becomes

—Uge —Upy + U = 1, in Q= F(Q),

Ou = 0, on I = 99,
on

(4.112)

and T1 = F(IT) = [0,1] x [0,€] (see Fig. 4.8b).

)

(a) Real domain . (b) Transformed domain 2.
Figure 4.8: Transformation of the real and fictitious domains.

Next, we define the triangulations 7, 7 of II and T, ¢ of Q as is described in the previous

section. On these triangulations we define the nonconforming finite element spaces Vj,(II) and

V1 (2) (see Section 4.1) and their norms:

Wy = 2 I, e € Va(@),
h,Q2
, i (4.113)
By = S Tt Vat € Vi)
h,IT
Here || - ||v; (-) means the usual norm in H'(7):

a1y = [ (90 +u?) ax

T

The main result of this section is the following proposition:
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Proposition 4.8 (Extension Theorem) Let Q C II be a conver Lipshitz domain. Then
for any function u" € Vj,(Q) there exists a function @ € V(1) such that i"(x) = ul(x) for
any X € Q and

||ﬂh“Vh(ﬁ) < Co ||Uh“Vh(§z)a (4.114)

where positive constant Cy > 1 does not depend on mesh-size parameter h and the value of €.

The results analogous to those of Proposition 4.8 for conforming finite element subspaces
of Sobolev spaces are well known (see, e.g., [87, 85, 86, 96]). Since we can not directly apply
these results for nonconforming spaces, we need a special construction which is based on an
isomorphism between the nonconforming and conforming finite element spaces [37, 38, 107].

Namely, we use the following scheme to prove the proposition:

(A) First, we define an equivalence map I; between the nonconforming space V() and
some Galerkin space of continuous piecewise linear functions H; /Z(Q).

(B) Then, for a given function u € V},(2) we apply the theory of extensions of mesh functions
in HA/Z(Q) for the function Iyu to get the extension v" € HA/Z(H).

(C) Finally, using the same equivalence between finite element spaces we define a noncon-
forming function @ € V;,(II) = P,v" with an operator P, which is conjugate to the
operator I;. The function @ defined by this algorithm satisfies the statement of Propo-
sition 4.8.

The rest of the section is divided onto three parts. First, we define an isomorphism between
conforming and nonconforming finite element spaces introduced and used in [37, 38, 107].
Then, we provide some necessary facts from the theory of extensions of functions from finite
element subspaces of Sobolev spaces (see, e.g., [87, 85, 86, 96]). Finally, we combine these
facts to prove Proposition 4.8.

4.5.2.1 Isomorphism between conforming and nonconforming spaces

Let H ,1 /2(9) be the conforming space of piecewise linear functions on the triangulation 7} 3 o,
where the h/2-mesh is obtained by joining midpoints of the edges of elements of 7, q.

A vertex of 75 is called primary if it is a nodal point corresponding to a degree of
freedom of nonconforming space V},(€2); otherwise the vertex is called secondary. We say that
two vertices of triangulation 7y, /9 o are adjacent if there exists an edge of 7j/5 o connecting
the vertices. An example of the triangulations 7p, o and 7j /2 o with corresponding degrees of
freedom in the two-dimensional case is shown in Figure 4.9.

We define the equivalence map I, : V,(2) — HA/Z(Q) for any function u € Vj,(Q2) as
follows:

u(x), if x is a primary vertex in ;

The average of all adjacent primary vertices on the
boundary of €2, if x is a secondary vertex on 0f2;

(Ipu)(x) = The average of all adjacent primary vertices, if x is a (4.115)

secondary vertex in 2;

The continuous piecewise linear interpolant of the
( above vertex values if x is not a vertex of 7}/ .
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(a) Fragment of triangulation Tp, o (b) Fragment of triangulation T /2.
and degrees of freedom of V(). and degrees of freedom of H}L/Q(Q).
“0” denote primary vertices. “e” denote secondary vertices.

Figure 4.9: Fragments of the meshes Tp, o and Tj,2,0-

It can be shown [37, 107] that there exist constants ¢ and ¢ independent of A such that
for any function u € V},(12) the following inequalities hold true:

& Nl < Mnedliy oy < & lv o) (4.116)

Also we introduce a projection operator P, : H,%/Q(Q) — V3(Q) for any function v" €
Hi/Q(Q) as follows:

(Inu, v™) @ = Py, Yu € V(). (4.117)
From (4.116) it is easy to see that the norm of operator P, is bounded by || P,|| < é.
4.5.2.2 Some results for extensions of mesh functions in conforming finite ele-
ment spaces
First, we state a lemma which makes it possible to extend the function u € H'(2) to the

space H'(IRY), d = 2, 3.

Lemma 4.3 Let Q2 be a Lipshitz domain. Then there exists a positive constant Cy such that
for any function v € HY(Q) there exists a function @ € H'(IRY) such that i(x) = u(x) a.e.
i 0 and

%l g1 (rey < Ch [Jull () (4.118)

The proof of this lemma can be found in [13, 3].
For the functions ¢ € H'/2(99) instead of (2.4) we introduce the norm

1120 = 19128720 + - 101 oy (4.119)
Then, the following lemma is valid due to [13, 96]:

Lemma 4.4 Let Q be a Lipshitz domain. Then there exists a positive constant CYy independent
of € such that

ol 17200y < C Nlull o (4.120)
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for any function u € HY(Q), where ¢ € H'/2(0Q) is the trace of u on the boundary €.
Conversely, there exists a positive constant C4 independent of € such that for any function
@ € H'/2(0Q) there erists a function u € H'(Q) such that u(x) = ¢(x) a.e. on O, and

lull ) < Cs llellg1/2(a0)- (4.121)

Let Q" be a regular triangulation [36] of Q and the nodes of the triangulation be denoted
by z;, i =1,...,N. Denote by H }L(Qh) the space of real-valued continuous functions v which

are linear on the triangles 7; of the triangulation Q" and by H flb/ 2(Fh) the space of traces of
functions from H}(Q") at the boundary I'" = 00"

H, (0" = {": " = ulpn,ul € HE(QM)] .

To each node z; € T'® let us put into correspondence the number h; = |z; — 2|, where 2} € T
is a node neighboring z;, and set

2 > T
H1/2(Fh) . |z; — zj|d i J
2 4 4.122
[y = & 5 (o) W (4.122)
z; €T
_ 2
ey = 19" oy + 19" By

As follows from [96, 93, 41] the norm || - is equivalent to norm (4.119) in the

“ H}IL/2 (Fh)
subspace H;/2(Fh).

The next lemma is the mesh counterpart of Lemma 4.4.

Lemma 4.5 Let Q be a Lipshitz domain and Q" be its reqular triangulation. Then there
exists a positive constant Cy independent of Q" and ¢ such that

1" 111720y < Co "l any (4.123)

for any function uh € H}(Q"), where o € H}t/Q(Fh) is the trace of u" at the boundary T".
Conversely, there exists a positive constant Cs independent of Q" and € such that for any
function " € Hflb/2(Fh) there exists a function u" € Hi(Q") such that u"(x) = ¢"(x) for any
x eI’ and
h h
sy < s Nl g gy (1.124)

4.5.2.3 Proof of the proposition
Now we prove Proposition 4.8.

Proof: Given u € V},(Q2) consider its map Iu € H}L/Q(Q). According to Lemma 4.5 for the
trace ¢ of Iu on the boundary 09 we have

||<Ph||H}1£(3Q) < Cy ||IhU||H}11/2(Q)- (4.125)
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Now we use the second part of Lemma 4.5 and define a" € Hi/z(Q) such that @"(x) =
©"(x) for any x € 9Q, and

—h h
[z “H}L/Z(Q) < Csllp “Hig(aﬂ)' (4.126)

Obviously, " € H'(2). By Lemma 4.3 we can construct function v € H'(R?) as an extension
of the function @" to R? such that v(x) = @"(x) a.e. in Q and

V]l 1 r2y < Ch ||ﬂh||H1(Q)- (4.127)

Then, define a continuous piecewise linear function v € H/ /Z(H) through its values in
the nodes of triangulation 7, /2 o as follows:

Zh(x) = (Iw)(x), Vxeq, (4.128)

hix) = (Sh)(x), Vx eI\ Q,

where S” is an operator of the Steklov averaging of the function v € H'(IR?). Using the
technique described in [96] we get the following inequalities:

h h
1ol ey < Ca el o0y < O Mntllm ) (4.129)

Now we define a nonconforming function @& = Pyv”". From (4.116) and (4.117) it follows
that

1313, 0y = (Pav”s Pao™)v;, me) = (Ihphvhavh)H}Ln(H\Q) < (e)? ||Uh||fqi/2(n\g)- (4.130)
From (4.129) and (4.130) we get
|Gl%;, m ey < Cs “IhuH?{}ll/Z(Q) < C7 |lull?; - (4.131)
The result of the proposition follows from this inequality. O

Remark 4.13 Under the conditions of Proposition 4.8 we can state a similar extension result
for seminorms in V},(€2) and V},(IT). The proof of the corresponding inequalities for seminorms
is analogous to the proof of Proposition 4.8 and is based on the analog of Lemma 4.5 for the

seminorms in H} ().

Remark 4.14 The proof of Proposition 4.8 does not depend on the dimension of the space
IR¢, and therefore holds true for both two- and three-dimensional problems.

Remark 4.15 We stress the fact that Proposition 4.8 is valid only for convex domain €.
This follows from the remarks made by Nepomnyaschikh in [97] that Lemma 4.5 has various
restrictions.



CHAPTER V

DOMAIN DECOMPOSITION PRECONDITIONERS FOR
NONCONFORMING APPROXIMATIONS

5.1 Introduction

In the last two decades a lot of interest has been devoted to numerical methods for solving
second-order boundary value problems in domains of complex geometric shape which involve
a solution of analogous problems in domains of relatively simple form. The known methods
of this type are the Schwarz alternating subdomain methods [42, 88, 95, 76], the fictitious
components method [6, 82, 85, 86], and methods based on matrix bordering [48, 40, 89, 94,
93, 100]. Methods which are based on the partitioning of the initial domain into subdomains
are called domain decomposition methods (DD).

It is believed that the first DD method was proposed by Hermann Schwarz [108]. It was
originally used to show the existence of the solution of an elliptic boundary value problem on
domains that consist of the union of simple overlapping subdomains.

Recently, DD algorithms have become increasingly popular because they take full advan-
tage of modern parallel computing technology. DD methods make it possible to solve the
subdomain problems independently on different processors while exchanging information be-
tween them only time to time. DD methods have an advantage of “natural parallelization”
in comparison with any other effective method of solving an elliptic boundary value problem.
Exhaustive results of the development of DD algorithms in the last decade can be found in
the Proceedings of International Conferences on Domain Decomposition methods, and also
in numerous papers (see, e.g., [14, 29, 49, 82, 86, 93, 111, 120]).

In general, DD algorithms are based on variational methods for decomposing and solving
elliptic problems. Most of the applications use discretization grids which are defined globally
over the whole domain and then split into subdomains. In mechanics, this results in an overall
conforming approximation of the primary variable field. However, it might be more convenient
and efficient to use approximations which are defined independently on each subdomain and
which do not match at the interfaces. This allows the user to make local and adaptive changes
to the models, the approximation strategies, or the grids in one subdomain without modifying
the other ones. This of course is possible if there is an adequate way of imposing the continuity
(possibly in a weak sense) of both the fluxes and primary variables across such nonconforming
interfaces.

In this chapter we present a construction of the domain decomposition method for solving
systems of grid equations approximating boundary value problems for second-order elliptic
problems with anisotropic coefficients. We consider problems for which the computational

domain €2 can be represented as a union of nonoverlapping subdomains €2 = U Q; inside

which the equation coefficients vary insignificantly. We develop two different methods for the
nonconforming approximations of the anisotropic problems:

77
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(A) In Section 5.2 we consider a variant of the block bordering method [89, 94] for the
anisotropic problem. This algorithm uses the preconditioner developed in Chapter IV
for problems in subdomains. For the problem at the interfaces we construct a precon-
ditioner in the form of the inner Chebyshev iterative procedure. More precisely, this is
a preconditioner for the Schur complement of the original symmetric positive definite
matrix, which results after eliminating the block corresponding to the unknowns in the
subdomains.

This approach combines the ideas of domain decomposition methods [14, 18, 29, 111,
120] and the algorithms of multilevel and algebraic multigrid methods [8, 20, 60, 70]
with the bordering method for solving systems of mesh equations.

(B) In Section 5.3 we propose iterative methods for solving systems of linear equations which
arise under the nonconforming finite element approximation of elliptic PDE’s on non-
matching grids. More precisely, we use the technique of mortar finite elements which has
been proposed recently (see, e.g., [1, 2, 12, 72, 109, 110]). The mortar element method
is an optimal nonconforming domain decomposition method for the discretization of
partial differential equations which provides for a maximum of mesh, refinement, and
resolution flexibility while simultaneously preserving locality and elemental structure.

Using the results of Section 4.5, in each subdomain we construct its own coordinate
system and a grid (triangular one for two-dimensional equations and tetrahedral one
for three-dimensional equations) in accordance with the main directions of anisotropy,
so that the coefficient matrix is diagonal in the local coordinates. The original elliptic
problem is posed as a problem with Lagrange multipliers at the interfaces between
subdomains and with the continuity conditions of the solution (in a weak form) at
the same interfaces. A mortar finite element subspace is constructed in the space of
Lagrange multipliers. The resulting algebraic systems have the form of a saddle-point
problem.

The main part of this chapter is based on the results published in [78, 79].

5.2 Block bordering method for anisotropic problem

The outline of this section is as follows. In Subsection 5.2.1 we formulate the problem,
present its nonconforming finite element discretization, and outline the construction of a
block diagonal preconditioner for the algebraic system. It is shown that for the subdomain
problems we can use the method described in Section 4.2. Subsection 5.2.2 is subdivided into
three parts. In the first part we construct a preconditioner for the problem at the interface in
the form of an inner iterative procedure considering the union of two rectangular subdomains.
The second part describes an algorithm for implementing the interface preconditioner. In the
third part we construct the interface preconditioner for domains composed of rectangles.

The arithmetic cost of solving the system with the proposed preconditioner is proportional
to the number of the unknowns of the original algebraic system, i.e. the preconditioner
constructed is of the optimal order of the arithmetical complexity.
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5.2.1 Problem formulation

Let  be a bounded domain on a plane IR?, which is composed of open rectangles €; whose

m
sides are parallel to the coordinate axes Q2 = |J €2;. Consider an elliptic problem

=1
—div(KVu) + ¢ -u=f in Q,
u=0 on Iy, (5.1)
(KVu,n) =0 on I'y,

where K (x) is a positive definite symmetric coefficient matrix, & (x) is a nonnegative bounded
function, f(x) € L?(Q) is a given function, Tg UT; = 9Q, o NT'; = (). We consider the case
of Iy =Ty # 0. The pure Neumann problem (I'g = () can be treated in a similar way but for
the sake of simplicity is not described here.

Assume that the interior of each side of the rectangles €2; either entirely belongs to I'y or
'y, or lies inside 2. Also assume that €;, i = 1,...,m, can have either a common side or only a
common vertex, or they do not overlap. It is obvious that any domain composed of rectangles
can be partitioned by additional lines into subdomains §2; satisfying this assumption.

Let the bilinear form a(-,-) be defined by

a(u,v) = (KVu, Vo) + (¢ - u,v), u,v € Vo(R) = {v € H'(Q) : v =0 on Ty},
where (-,-) denotes the inner product in L?(Q).

Assumption 5.1 There exist o diagonal coefficient matriz K(x) = diag {k;(x), ky(x)} and
a piecewise constant function co(x) such that

kyp(x) = kgiy  ky(x) =kys, co(x) = coy, x €, 1==1,...,m,
with constants ky; >0, ky; >0, co; > 0, satisfying inequalities
ayg ((KVu,Vu) + (co - u,u)) < alu,u) <ay (KVu,Vu) + (co - u,u)), Yu € Vp(Q), (5.2)
with some positive constants ag, .

The standard weak form of (5.1) is: find u € Vu(Q2) such that
a(u,v) = (f,v), Yo € V(). (5.3)

Let Cj, be a rectangular mesh in 2. Assume that in each rectangle €; the mesh steps A ;,
hyi, i =1,...,m, are constant in each direction, and the boundaries 0€; of the rectangles
belong to the mesh lines. Also assume that there exist constants cy and c¢; independent of h
such that

coh < min {hg;, hy;} < max {hg; hy;} < ch.
i=1,....,m i=1,...,m
Here h = 1/v/M, where M is the number of mesh nodes belonging to € \ Ty.

Let T, be a regular partitioning of Cj, into triangles 7 [36] and let V},(2) be the P—
nonconforming finite element space of functions v € L%(Q) [5]: that is v|, are linear for all
T € Tp, v are continuous at the middle points of the sides of 7 € T, and vanish at the middle
points of the sides of triangles on I'y (see (4.12)). Note that the space V}(2) is not a subspace
of H(9).
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Define the bilinear forms on V,(Q2) by

fy (u,v) = ) (KVu, Vo), + (& - 4,0)r, Y u,v € Vi(),
TE

ag(u,v) = ET (KVu,Vv); + (co - u,v)r, YV u,v € V3 (2),
TE

(5.4)

where (-, -), is the inner product in L?(T), 7 € Tj,. Then the P;-nonconforming finite element
discretization of (5.1) is: find uy, € V}, such that

ap (up,v) = (f,v), Yo € V,(Q). (5.5)

Once a nodal basis {goi(x)}i]\il for V() is chosen, where N = dim V,(€2), then (5.5)
yields the system of linear algebraic equations (see (4.5)):

Au =f, (5.6)

where Aji = a’glz(‘Pia‘Pj)a fj = (fa (pj)a iuj = lAa s aN
In the same way we define matrix A by A;; = ap (i, ©;), 1,7 =1,...,N. Then from (5.2)
it follows that

ao(Au,u) < (Au,u) < o (Au, u), Yu € RY, (5.7)

i.e. matrices A and A are spectrally equivalent.

The underlying method to solve (5.6) is a preconditioned iterative method. Inequalities
(5.7) suggest considering matrix A as a preconditioner to A. Therefore, we need to find an
efficient method for solving the problem

Av =g. (5.8)

Let u® and v(¥ denote the vectors corresponding to the finite element functions v and v
from V},(€;). Let A® denote the local stiffness matrix arising from ol ():

(ADuD vy = ol (u,0),  Vu,v € Vi (). (5.9)

For each subdomain €;, i = 1,...,m, we can partition the degrees of freedom u® into two
sets. The first set includes the degrees of freedom at the nodes in the interior of subdomain
Q;, denoted u(IZ), and the second set corresponds to the degrees of freedom at the nodes on the

boundary 0€2; \ I'g, denoted u{j ). Such a partitioning induces the partitioning of A given by

(ADu® () — q AEIZI; A%) ] l “g; ] , l "%Z; D (5.10)
Arr App up vr

(1 2(1
Ao AW e

g ‘ — | , (5.11)
A N

A
A(pll) A(p";) AI‘F vr gr
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with block App defined by

m . . .
(Arpur, vr) = 3" (Afuf, vi?). (5.12)
i=1
Note that blocks /Algzl), 1 =1,...,m, correspond to the boundary value problems in rectangles
Qi
agi(uh,v) = G(v), Yo € Vi (), i=1,....m, (5.13)

with homogeneous Dirichlet boundary conditions imposed on the boundaries 9€2;. Denote the
number of degrees of freedom in €;, 9€; \ T, _@1 Q; and _@1 0Q; \ T'y by Nl(l), lel), Ny and
= =

Nr, i =1,...,m, respectively.
(4)

Eliminating the unknowns v;”, i = 1,...,m, in (5.11), we obtain the following Schur
system:
AFVF = GF, (514)
where

. L A v T 11
Ar=Apr = Y AL [AT)] AR, Gr=gr - Y AN [AT)] 8. (5.15)
i=1 i=1
Thus, the solution to system (5.11) can be reduced to the construction of an efficient
algorithm for solving systems (5.13) in subdomains and the Schur complement system (5.14).

(i)

The algorithm for solving subdomain problems with matrices A 17 1s considered in Section
4.2. It is shown that these problems can be solved very efficiently.

The main goal of this section is to construct an easily invertible matrix B which is spec-
trally equivalent to matrix Ar:

C()(BFVF,VF) < (AFVF,VF) <c (BFVF,VF), VVI‘ S IRNF,

where constants ¢y and ¢; are independent of mesh size parameter h, the subdomain diameters,
and value of the coefficients. This issue is discussed in detail in the next subsection.

5.2.2 Preconditioner for interface problems

In this subsection we construct a preconditioner for the problem at the interface in the form
of an inner iterative procedure. More precisely, we construct a preconditioner for the Schur
complement of the original matrix.

5.2.2.1 Model problem
For the sake of simplicity, let us consider the model problem

0%u 9%u

g gy

+ cou = f, in Q,
u =0, on 012,

where () is rectangle composed of two squares Q = Q; UQy, ' = Q; N Qy (see Fig. 5.1):

Q={(r,y):0<zr<2,0<y <1}

. . . (5.16)
Qi ={(z,y):i—1<z<i,0<y<l}, i=1,2.
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Assume that coefficients k5, ky, cg are constants in Q;, ¢ = 1,2, i.e.
ky = kg ; = const > 0, ky = ky; = const > 0, co = cp,; = const > 0.

Let T, be a regular triangulation of domain © with mesh-size h (as described in Section
4.2). In this case (5.11) has the form:

1 1
Ao AT ()
2 _ 2
01 AI{ A v =g |- (5.17)
AY) Al ape | Lve gr

Note that blocks A(Iil), i = 1,2, correspond to the boundary value problems in subdomains €;
and block Arpr is a diagonal matrix.

e e e e e e
e e rd rd e rd
o’ o’ o’ o’ o’ o’ o o o o o o
e e 7 e e e
7 o e rd e e
e e e e e e
e e e e e e
7 rd rd e rd e
)4 )t y.4 )4 o )4 o o o o o o
e Ve 0 Ve Ve Ve Qo Ve Q4 Qo
e e e e e e
// // // // // //
o o o o o o o o o o o o
e e e e e e
& & & r r r
- - - - - -
r r
(a) Triangulation of the domain Q. (b) The degrees of freedom of the reduced problem.

Figure 5.1: Degrees of freedom of real and reduced problems.

Eliminating the unknowns vz; ; and vy; ; in each subdomain as is discussed in Section 4.2
we get the problem

A o [0 e
o AR A | v | =] & | (518
AN AR A vr 8r

where blocks Agzl), 1 = 1,2, are separable matrices, and vectors vgi), 1 = 1,2, consist of the
unknowns vc; ; in each subdomain. In Figure 5.1b, the nodes corresponding to these unknowns
are marked by

Matrix Arr is defined by equality (5.12)

]
o,

2 . . .
(Arrur, vr) = Z(A(rl%u(rl)av(rl))-
i—1

Introducing the subdomain Schur complements
. . o N —1 s
T — 19

Schur complement (5.15) can be rewritten in the form:

2
TORROI 0
Ar = Arp — 30 4G [AQ] ™ AR = AD 4 2D (5.20)
i=1
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Preconditioner Br for Ar is constructed by defining preconditioners Bl(}) and Bl(?) for Alg)
and A(F2), respectively, and setting

Br=BY + BY. (5.21)

Let us consider subdomain €, matrices Alg) and Al(}ll, and omit the index “(1)” for
simplicity. Boundary nodes belonging to I' (marked by “¢”) and internal nodes (marked by

“0”) are schematically shown in Figure 5.2.

The following lemma is valid.

Lemma 5.1 There exists an h-independent constant o such that

a-h (Appup, ur) < (Apup, ur) < (AFFHF, ur), Yur € IRNF. (5.22)

Proof: Consider an eigenvalue problem
AFU.F = NAITuI‘a ur € IRNF. (523)

Since the symmetric matrices Ap and Apr are positive definite problem (5.23) has Nr positive
eigenvalues.

o o o

o o o N
Q

o o o

Figure 5.2: Degrees of freedom of the model subdomain problem.

It is obvious that eigenvalues u;, i = 1,..., Np, of problem (5.23) can be found from the
system of equations

Arrur + Arur =0,
) (5.24)
Arrur + Arrur = pArrur.

Here matrix A;; is defined by (4.24). The Ny x Nt matrix Ajr has the form:

0 0
A]F = : = : X Iy,
0 0
—2k,1, 2k,

and the diagonal Nr x Nr matrix Arr is defined by Arr = 2(k; + ¢)Iy.
Define by £; € IR" an eigenvector of nxn matrix A, (4.25) corresponding to the eigenvalue
DVH
Aygl = )\lgl? [ = 1,...,n. (525)
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Note that we explicitly know the eigenvalues and eigenvectors of matrix A,:

2 —1)\"
A = 4Sin2%, ¢ = {sin%}iﬂ, I=1,...,n. (5.26)
Fix some [ € [1,n], and define a vector
ur | _ | v
up & |’

with some vector v € IR" and substitute it in system (5.24). From the second equation of
(5.24) it follows that eigenvalues of problem (5.23) are defined by the expressions

w=1-— , I=1,...,n, (5.27)

(1)

where a parameter vy’ is the n-th component of vector v(¥ from the system
An(vV @ g) = —Ang,
or, using expressions (4.23),
0 T
(a0 Ay + (Nay + D) L) v =2k, [0 ... 0 1] (5.28)

Introducing notations:

b %,
dl:AlZ—y+—, e:—z2<1+i>, (5.29)

T Gy Gy

system (5.28) can be rewritten in the form:

3+d, -1 [ v 0
~1 2+4d -1 0 o) 0
-1 2+d, -1 v
0 —1 3+ d; U(l)
n .
Set z; =1+ %dl and consider the following recurrent sequence:
(&%) =1
ap = 2x;+1 (5.31)
41 = 2(1)[041'—041'_1, izl,...,n—l.

It is easy to see that
ai:Ui(xl)+Ui—1(xl)a 1=1,...,n,

where U, (z) is the Chebyshev polynomial of the 2-nd kind of degree m:

(Vo =1)"" = (a4 VaT—1) ™).

1
Un(r) = 22 — 1
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By induction it can be shown that

o — . =t Up—1(1) + Un—2(21)
ap—1 + Qap Un(ml) + 2Un—1($l) + Un—?(xl) )

(5.32)

n
Since z; > 1 then v,(zl) > 1 for any [ = 1,...,n. From (5.27) it follows that the maximal
eigenvalue of problem (5.23) is bounded from above by pimax < 1.
Now we have to estimate the minimal eigenvalue pmin, of problem (5.23) from below.
Taking into account that U, (x;) = 2x;U,—1(x;) — Up—2(x;) we get

W _ (2:51 + I)Un_l((I)l) — Un(xl) e 2+ 1 Un((L‘l)
v, =e- =—- — . (5.33)
(2:51 + 2)Un_1(fL‘l) 2 z;+1 ((I,‘l + I)Un_l((I)l)
Since
Un(z)  (z+ Va2 =) — (z+ V22— 1)~
Up—1(z) (x+ V2?2 —-1)" - (z + Va2 —1)™"
2
= z+Va2-1(1+ ,
v ( <x+¢x2——1>2n—1>

from (5.27), (5.29), and (5.33) it follows that

z—1 2

r+1 (xl+ /—x?—l)n—l

_ d; L4 2

4+ d; (1+%dl+m)2n—l

To estimate expression (5.34) from below we consider two cases:

1. y= (%dl +4/d; + idl?) > 1/2n. It means that d; ++/d;(4 + d;) > 1/n, or d; > m

Then we have
d; 1 1 h
My = > = > —.
4+ dy 1+8n(2n+1) 4n+1 75

2. y < 1/2n. In this case d; < m So, (5.34) is estimated from below as follows

= @ (4 2 > i(HL)
e 4+d (1+y)2n_1 V444 e2ny — 1

d; <1 n > d; 1+ny
4 +d (e—1)2ny/) — \4+d, 2ny
- o (E+i(d+vaGEEa)\  i+5(d+vaGTa)
4+d dy + /di(4 + dy) 44 (di+ VAT @)

- {1_1}>h
= WYy =y
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From these estimates it follows that u; > h/5 for any [ = 1,...,n. Thus, the minimal
eigenvalue of problem (5.23) is bounded from below by pmin > h/5 and we have

h

g (A%II)‘HF,HF) < (A%I)HF,U.F) < (A%II)‘HF,HF), VU.F S IRNF.
Analogously, we have the same estimates for matrices A%ZIE and A%Z), which completes the

proof. O

Remark 5.1 Lemma 5.1 holds true if on some of the other edges of the rectangular subdo-
main €2 a homogeneous Neumann boundary condition is imposed.

Remark 5.2 If a homogeneous Neumann boundary condition is imposed on the whole re-
maining part of the boundary of subdomain 9€2; \ I' then inequalities (5.22) of Lemma 5.1
should be replaced by:

a-h (Arrur,ur) < (Arur,ur) < (Arrup, ur),

5.35
Vur € RVT \ Ker (Ar), (5.35)

where constant a does not depend on mesh size parameter h and coefficients of the subdomain
problems.

Next, we proceed with the construction of preconditioner Br. We define it in the form of
an inner Chebyshev iterative procedure [8, 18, 63, 70]. From Lemma 5.1 we know that the
eigenvalues of matrix Ap:Ar belong to segment [1/5,1]. Let Pr(y) be the polynomial of least
deviation from zero on this segment and that satisfies the condition Pp,(0) = 1. Denote by £,
I =1,...,L, the inverses of the roots of the polynomial Pr,(y). The formulae for Pr(y) and
its roots 1/0;, l = 1,..., L, are given in Section 3.4. Then preconditioner Br for matrix Ap
is determined by:

L
Brl = {[F ~II (& - BiAGiAr) } ATl (5.36)
=1
The procedure for calculating the vector wp = By lgp for given gr € IR™M has the form:
Wl(ﬂo) = 0,
wl = wi gt (arw Y —gr), 1=1,.. L, (5.37)
we = wib)
N WI‘ .

For computational stability, instead of (5.37), we can use the three-term recurrence relation
[114]. We return to the realization of the iterative procedure (5.37) in the next subsection.
Lemma 5.1 and the theory of Chebyshev iterative methods imply the following basic result.

Theorem 5.1 Let L > (5/h)1/2. Then matriz By in (5.36) is spectrally equivalent to matriz
Ar with constants of equivalence independent of mesh size parameter h and the value of
coefficients kg i, ky i, coi, @ = 1,2, in the subdomains.

Remark 5.3 Clearly, in the theory L is chosen to be of the order (5/h)1/ 2. In practice
it is calculated explicitly after the boundaries of the spectrum of matrix AEFIAF have been
calculated by an appropriate iterative procedure [62].
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Remark 5.4 If we replace Ar in (5.36) by a spectrally equivalent matrix we can introduce
another preconditioner Br for Ar by

L
Bil = {Ip ~II (- - iARtsy) } St (5.38)

=1

This matrix also will be spectrally equivalent to Ar with constants of equivalence independent
of mesh size parameter h and the value of coefficients k. ;, ky ;, co i, © = 1,2, in the subdomains.

5.2.2.2 Arithmetical complexity of the interface preconditioner

In order to estimate the arithmetic complexity of multiplying a vector by matrix By Uit is
sufficient to estimate the arithmetic complexity of multiplying a vector by matrix Ar because
we know that matrix Apr is diagonal and the number of iterations L in the inner Chebyshev
iterative procedure (5.37) is of the order (5n)'/2.

The procedure of finding the product Arug is based on a partial solution technique [9, 10,
68, 103], which we outline here. We consider the terms A(Fl)up and A(FQ)up in the expression
vr = Ag)up + A(F2)up separately. Below we define the multiplication procedure only for the
first term Ag)up. The second term is treated in the same manner. Again, we skip the index
“(1)” for simplicity.

First, vector vip = Apup = Apprur — 121{‘ 1121[_11121 mur is rewritten as

vr = Arrur + Arpuy, (5.39)
where vector uy is defined from the system of equations

0

Apuy = —Aprur = 0 ; (5.40)

Qkxur

with matrix A;; defined by (4.24).
Next, we denote by W, an orthogonal n x n matrix of eigenvectors of problem (5.25) and
by L, a diagonal n x n matrix of the eigenvalues of matrix A, (5.26):

Wy:{gla"'agn}a Ly:dla‘g{Al,,An}

Then we define an Ny x Ny orthogonal matrix @ = I, ® W,. Introducing a vector
v = QTur and multiplying both parts of equation (5.40) by matrix Q7 we get the following
maftrix equation:

QT AQvr = (a:(Az ® L) + ay(I; ® Ly) + b(I, @ 1)) vi = 2k, 6 ) (5.41)

WyT ur



88

Domain decomposition preconditioners

Note that this system can be decoupled into n independent linear systems:

(2 0

(azAz + (b+ Nay)Iy) (l:) = (‘) . 1=1,...,n, (5.42)
Un=—1
Q)g) 2kxwl

where the component w; is the [-th component of the backward Fourier transform w = Wg ur

of vector ur.
As soon as we find vector v; from systems (5.42) we compute the product

(1)

Un,
AF]u] = AF[QV] =S —2k$Wy . (543)
(n)

Un

From (5.43) it follows that to define product Arur we need to know only the last compo-

(

nents Unl), I =1,...,n, of the solution vectors v(!) from systems (5.42).
Now we define the partial solution algorithm:

(0)

(3)

(4)

On the initial step we solve n systems with three-diagonal n x n matrices:

:chl) 0
(a:vA:v + (b + Alay)lx) (l) = : 3
T 0
n—1
xg) 1
and store the last components of vectors x(¥), i.e. parameters :ch(f), I =1,....,n. Tt

requires O(n?) operations and O(n) elements of memory.

Given vector ur we use the discrete fast Fourier transform algorithm to compute a
vector w = Qkag ur for only O(nlnn) operations.

Then, we compute a vector v = [u,&”, e ,117(1")] from (5.43) by the formulae u,(f) = wl-mg),
I=1,...,n.

Again, we use the discrete fast Fourier transform algorithm to compute a vector p =
2k, Wyv.

Finally, we compute the vector vir = Arrur + p.

As a result of this algorithm the procedure of multiplying a vector by matrix B ! can be
implemented for O(n? + n3/21n n) operations. Note that this estimate does not depend on
the coefficients of the problem.

Remark 5.5 We provided computations of the complexity for so-called “parallel” partial
solutions, that is, when the grid line where we need to find a solution is parallel to the
grid line where the right-hand side is nonzero. For the case of so-called “perpendicular”
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partial solutions, when the grid line where we need the solution is perpendicular to the grid
line with the nonzero right-hand side we can use an algorithm of the approximate partial
solution [9, 68, 103]. Instead of computing the exact value of vp = Arup, we calculate the
approximation v%g) = Al(f)up. It can be shown [9, 103] that taking the accuracy parameter

g€ ~ hP, p > 2, the matrix A%E) is spectrally equivalent to Ar.

As a consequence one can develop the partial solution algorithm for the general case when
we need to find the partial solution on the entire boundary of the rectangular subdomain.
Using the results of [9, 68] the partial solution on the boundary 02; of the rectangular
subdomain €; can be found for O(n? 4+ pnIn? (n)), where the first term of this estimate
corresponds to the initial step and can be obtained before starting the iterative process. If we
use the algorithm of the approximate partial solution developed in [103] we have an estimate
of computational cost O(n? 4 pn®/2In (n)).

Therefore, the algorithm of multiplying a vector by matrix By ! can be implemented for
O(n? + pn®/21n% (n)) operations. This estimate does not depend on the coefficients of the
problem.

5.2.2.3 Interface preconditioner for general problem

m

Let us now consider problem (5.1) in the domain Q = J €;, being a union of m rectangles
i=1

Q;,2=1,...,m, as is described in Section 5.2.1.

Using the same arguments as in Subsection 5.2.2.1 it is easy to show that the statement
of Lemma 5.1 holds true even for a general domain {2 composed of rectangles. Since pre-
conditioner Br is constructed by defining subdomain preconditioners Bﬁz) it is sufficient to
consider only the model problem in the rectangular subdomain €2; with homogeneous Neu-
4

mann boundary condition on the whole boundary 02 = I' = | I';, The boundary nodes
i=1

belonging to I' (“¢”) and the internal nodes (“o”) are schematically shown in Figure 5.3.

Iy

[e] [e] [e]

I's o o o Iy

Iy
Figure 5.3: Degrees of freedom of the Neumann subdomain problem.

Denote by ur and by ur,, ¢« = 1,...,4, the vectors of the degrees of freedom on the
boundaries I" and I';, i = 1,...,4, respectively. Following [89], one can show that for any
vector v € IR such that vp L Ker (Ar) the following is valid:

(Apvp,vp) = inf  Bh(0",0") > inf bR (wl, wl) = (Ap,vr,,vr,), 1=1,...,4,
vhevy (@) wh eV, (@)
Uh‘F:U}FL wlhh—\l:'ugl

(5.44)
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where u’li, u’ﬁi, 1 = 1,...,4, are piecewise constant functions defined on I', I';, ¢ = 1,...,4,
and generated by vectors ur, ur,, ¢ =1,...,4, respectively.

From (5.21), (5.35), and (5.44) it follows that for any vector vp € R such that vp L
Ker (Ar) we have

4
(Arrur, ur) > (Apur,ur) >+ 5 (Ar,urp,, ur,) >
A =1 (5.45)
> ah - .X:I(AFiFquiv U.FZ.) > ah - (AI‘I‘U-I‘, U.F).
i=

Thus, we can define preconditioner Br for the Schur complement (5.15) in the form (5.36).
By Theorem 5.1 matrix Br is spectrally equivalent to matrix Ar provided that the degree L
of the matrix polynomial (5.36) is chosen to be O(h~1/2).

Using the partial solution technique described in Subsection 5.2.2.2 and Remark 5.5 one
can show that the procedure of multiplying a vector by matrix B ! can be implemented for
O(h=2 + h=3/21In% (h~1)).

Now assume that we use the AMG methods to solve the subdomain problems. Then
problem (5.8) with matrix A can be solved for O(h=2 4+ h=3/2In? (b)) operations. As was
mentioned in Section 5.2.1 we use matrix A as the preconditioner in a preconditioned iterative
method to solve problem (5.6).

Summarizing the results of Sections 5.2.1 and 5.2.2 we can formulate the following propo-
sition.

Proposition 5.1 Under the above assumptions the arithmetic complexity of the proposed
algorithm for solving problem (5.6) is estimated from above by

C-(h2+h32m? (YY),

where constant C is independent of mesh size parameter h and coefficients of the problem,
K(x) and ao(x).

5.3 Domain decomposition method on nonmatching grids

In this section we describe an algorithm for solving systems of linear algebraic equations arising
from nonconforming finite element approximations of the anisotropic diffusion equations on
nonmatching grids. We stress that the corresponding matrix is symmetric but indefinite. The
iterative method to be considered involves a block diagonal preconditioner with the inner
Chebyshev iterative procedure and the preconditioned Lanczos method as an outer iterative
procedure.

First, the original differential problem is represented in the hybrid-mixed form using the
Arnold-Brezzi formulation (see Section 2.4) via nonoverlapping domain decomposition using
additional Lagrange multipliers to enforce the necessary continuity of the solution on the inter-
faces between subdomains [28, 58, 74]. Next, using the equivalence between hybrid-mixed and
nonconforming finite element methods we replace the original three-field formulation in each
subdomain with the simple nonconforming one. The original elliptic problem is thus imposed
as a nonconforming discrete problem with Lagrange multipliers at the interfaces between
the subdomains, into which the original domain is decomposed. At these interfaces certain
continuity conditions on the solution are imposed. This construction is done to inherit the
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properties of the Lagrange multiplier space defined on the interfaces between the subdomains.
The Dirichlet boundary conditions, if any, are also given by the Lagrange multipliers.

In each subdomain we introduce its own grid, namely, a triangular one in two dimensions
and a tetrahedral one in three dimensions (see an example in Figure 5.4), and corresponding
P;-nonconforming finite element space. A mortar finite element space is constructed in the
space of the Lagrange multipliers. The error analysis of this finite element approximation is
not discussed in the dissertation.

Ql Qz Ql Q?
(a) Matching grids (b) Nonmatching grids

Figure 5.4: Example of matching and nonmatching grids.

The section is logically divided into two subsections. In the first subsection we formulate
the problem, present its discretization using nonoverlapping domain decomposition, and give
the algebraic formulation of the finite element problem in a saddle-point form.

In the second subsection we construct the block-diagonal preconditioner, analyze its prop-
erties, and discuss the implementation costs. The motivation for such a choice for the pre-
conditioner is given in Section 3.2. It is shown that for subdomains we can choose the pre-
conditioners constructed in Chapter IV. For the problem on the interfaces the preconditioner
is introduced in the form of the inner Chebyshev procedure for the matrix which is spectrally
equivalent to the Schur complement. The construction and the analysis of this preconditioner
is based on the new approach recently developed in [72] for solving finite element problems
on nonmatching grids with Lagrange multipliers on the interfaces between the subdomains.

It is shown that the proposed block-diagonal preconditioner is spectrally equivalent to the
original saddle-point matrix (in the sense of the definition given in Section 3.2) with constants
independent of mesh-size parameter and coefficients of the problem.

5.3.1 Mortar finite element method with Lagrange multipliers

Let © be a bounded domain in the space IR?, d = 2,3, with boundary 9. We consider the
problem:

—div(KVu)+c-u=f in Q,
u=0 on Iy, (5.46)
(KVu,n) =0 on I'y,

where K (x) is a positive definite symmetric coefficient matrix, ¢ is a nonnegative bounded
function, and f € L?(f)) is a given function. Here 'y is a closed subset of dQ and I'; is
another subset of 9Q such that Ty Uy = (), and 'y UT; = 09.

Let the bilinear form a(-,-) be defined by

a(u,v) = (KVu,Vv) + (c- u,v), u,v € Vo() = {v € H'(Q) : v =0 on Ty},
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where (-, -) denotes the inner product in L?(Q).
Assume that domain 2 is partitioned into the nonoverlapping simply connected subdo-

mains: ) = _rL,In1 Q;. The sets T'y; = Q. Ny, [Tyl # 0, are called the interfaces between
1

the subdomains Q. and ;. For convenience, we consider here only a model problem with
additional assumptions.

Assumption 5.2 The partitioning of 2 into polygonal subdomains Qy, is quasiuniform, with
a diameter of the subdomains being v ~ (1/m)Y/%. Each of the interfaces Ty is a simply
connected set. The interior of each side of the subdomains ); either entirely belongs to I'g or
I'v, or lies inside Q.

Assumption 5.3 Assume that there exist a piecewise constant function ¢(x) = D, x ey,
l=1,...,m and a symmetric coefficient matriz

with piecewise constant functions

13
satisfying the inequalities
ag a(u,u) < (KVu, Vu) + (- u,u) < o alu,u), Yu € Vp(9), (5.47)
with some positive constants oy, aq.

These assumptions are made in order to obtain complete theoretical results for the pro-
posed subdomain and interface preconditioners.

Thus, below without loss of generality we assume that function ¢(x) is piecewise constant
and entries k;j(x), i,j = 1,...,d, of the coefficient matrix K(x) = {k;; (x)};ij:1 are constants
in each subdomain.

Let Ty be a triangular (d = 2) or tetrahedral (d = 3) partitioning of Qy [36], i.e. Ty =
{Ti}i]\i’i, where 7; is a triangle (d = 2) or a tetrahedron (d = 3) that is called a grid cell. We
denote by Fyp, the set of faces e of the grid cells 7 € Ty, k = 1,...,m. Note that the traces
of grids Tip and T, at the interface I'y;, generally speaking, do not coincide. These grids are
called nonmatching grids.

In each subdomain Q, k = 1,...,m, we introduce the following Raviart-Thomas spaces
(see Section 2.3.3):

Vin = RT°, (Tia)

{p:p € (L)), plr € RT,(7) V7 € Tan },

(5.48)
Win = M2 (Tin) = {v:v € LX), vl = er ¥7 € Tan
and the spaces of Lagrange multipliers (see Section 2.4.2):
Lyn = M (Fin) = {1 € L*(Frn) : pile = ce for each e € Fip |, (5.49)

that is space L} consists of piecewise smooth functions which are constant on each face e.
Note that v - n., v € Vi, is constant on each face of a grid cell 7.
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Note that the well known hybrid-mixed formulation of (5.46) in the case of matching grids
is defined by (see (2.38)): find (q},u}, An) € Vi, x Wy, x Ly, such that

a’(q;k;aph) _b(u;kuph) +l(>‘haph) = 03
—b(vn,qp) — (¢~ up,vn) = —f(vn), (5.50)
l(lj'haq;k),) = 03

for any (Pn,vn, n) € Vi, x Wy, x Ly,. Here

m m m
Vi = [[ Vin, Wi = [ Win, Ly =[] Len (5.51)
k=1 k=1 k=1
and .
a(q,p) = X ar(qk, Pk), ak(Qk,Pr) = Y [ K 'ag - prdz,
k=1 TeTkhT
b(u,P) = > br(ug, Pr)s bi(uk, Pr) = > /deink dx,
k=1 TeTkhT
m (5.52)
A P) = > (A, Pr), (Mg pr) = X /Ak (pr - n;)ds,
k=1 TETkh
m or
flv) = kzlfk(vk)a fr(vg) = /f vy, dz.

In the case of nonmatching grids we have to impose additionally the continuity of the
unknowns on the interfaces between subdomains. Using [28, 74], we introduce a four field
formulation of problem (5.46). First, we define the spaces:

m m
A =] A, A= ] Aws o= [ @u (5.53)
k=1 =1 1<I<k<m
Tk 170

where Ay are the subspaces of Lgp, K =1,...,m, defined by

A ={p € Lip : pre = 0,6 € Ty}, (5.54)

and Py, is the dual space of Ay;. Following [74] we associate ®; with one of the subdomains
Q or ;. Note that in the case of matching grids, i.e. when Tiyl|r,, = Tinlr,,, we have
Ay = Ay,. However, here we include also the case Ag; # Ay.

We also specify the sets I'yg = Qrp N Ty, |Tko| # 0, & = 1,...,m. These grid sets are
called the interfaces between the subdomains and the set I'g, where the Dirichlet boundary
conditions are imposed. Following [72] we associate spaces ®yo with subdomains .

Now we define new bilinear forms:

m

d(p, ) = Y di (@, k) di (@, i) = 121 At (Pris 1k

) It 170 (5.55)
A1 (Prt, k) = _/‘Pkl g ds.
INY]

Here pur € Lin, 0r1 € Pri, and g = —p for I >k, k,l=1,...,m.
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The new hybrid-mixed formulation of (5.46) on nonmatching grids is defined as follows:
find (q,u, \, ) € Vi, x Wp, X L, x ® such that

a(qa p) - b(’U,,p) + Z(Aap) = 03
—b(’U,q) - (C : ’LL,U) = _f(v)a

(5.56)

(i, q) +dlp,p) = 0,

d(l/), >\) = 07

for any (p,v, p,) € Vi x Wy, x Ly, X ®.
It is easy to see that
Hp, @) +d(o i) =D | ek ae) + Y dri(oriy k) (5.57)
k=1 =1

|Tg1#0

=> 1> /Mk(Qk'nT)der Z /Mk((Qk'nk)_‘Pkl)ds

=1 =
F €Tk o\, T 120 Lkt

Note that the unknowns (qg,ug, A\x) in each subdomain Qj are connected with the un-
knowns in the other subdomains only through the interface elements ;. Thus, the system of
equations for (qx,uk, A\;) in each subdomain corresponds to a homogeneous Neumann prob-
lem. Using the results of Section 2.4 (see Lemma 2.8, Proposition 2.1, and Corollary 2.1) we
can replace the hybrid-mixed formulation for the triple (qg, ug, A\x) in each subdomain with
the nonconforming formulation for the unknown uy € Vi, where Vi, = Vi, (Qg) is the Py
nonconforming space defined on the domain 2.

m
After defining the nonconforming space Vi, = [] Vi, problem (5.56) is replaced by the
k=1
following problem: find (u, ) € Vi x ® such that

ah(u,v) —|—d((,0,’l)) = Q(U),
i (5.58)
d(l/),’u,) - 0,

for any (v,v) € Vj, x .
Here the bilinear form ay(-,-) is given (similarly to (2.50)) by:

ap(u,v) = Zakh(uk,vk), agp (U, vg) = Z (KVug, Vog)r + (¢ ug, vg)r, (5.59)
k=1 TETkR

and the bilinear form d(-,-) is given on V; x & by:
d(p,v) =d(¥, Pw), Ve, VeV, (5.60)

where d(-,-) is defined by (5.55). Here the projection operator P, : V;, — L}, is defined by
(2.52).
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In the operator form the finite element problem (5.58) can be represented as follows:

Apup + Dl o = agn,
(5.61)
Dpuyp, = 0,
or, equivalently,
Agnukn + DL okn = grns k=1,...,m
m (5.62)
> Dipugn = 0,
F=1
where .
Dinokn = Y Diinprin (5.63)
I1=1,1#k
|Tgp|#0

and @gip = —Pikn, k <.

Remark 5.6 When the grids are conforming on the interfaces, i.e. Ay, = Ay the finite
element problem (5.62) can be reduced to the form

A, = Gn, (5.64)

where flh is obtained by assembling operators A, and finite element functions @, and g
are obtained by assembling finite element functions wugy and g, under a continuity condition
on the interfaces. Thus, finite element problem (5.62) can also be obtained from standard
P;-nonconforming finite element approximations of problem (2.50) when the grids match on
the interfaces. It follows that the methods to be considered can also be automatically applied
to solving finite element systems arising from discretization of (2.50).

We divide the degrees of freedom in each subdomain €2 into two groups so that the first
group contains the degrees of freedom from the inner part of €} and the second group contains
the degrees of freedom from 0€2. If the degrees of freedom of the first group carry a subscript
I and those of the second group carry a subscript I', system (5.62) can be represented in a
more detailed form:

At ppur ks + A gaur ks = 8Lkh
T
Arrknarkn + Argntrkn + DEgpkn = 8rkhs k=1,...,m (5.65)
m
Dr gpur gn = 0.
k=1

Here

m
T _ T
DF,kh‘th = Z DI‘,klh Pklh

1=1,1#k
[Tk 170
and again pgi, = —ikn, k <.
The finite element problem (5.61) results in an algebraic system

Ay 0 DT uy g1

A DT fu : L |
PO P A B S I B I R i A
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T T
where x = [uTcpT] ,u= [ulT . u%] , and

Arr  Ampg T 0 ur g1k
Ay = | 4O k| pT— Coup= | MR g = | BIE | (567
k [ AFI,k AF,k k D%:k uy gk ( )

Note that all matrices Ay are at least positive semidefinite.

Proposition 5.2 Assume that Ty # 0. Then, matriz A is nonsingular.

Proof: We consider the equation

[g %T]-[;]:o. (5.68)

T
If we multiply it scalarly by the vector [uTcpT] and take into account the condition Du = 0,

we get
m

(Au,u) = Z(Akuk,uk) =0 (5.69)
k=1
and, hence (Agug,u;) =0, k=1,...,m.

Assume first, that all matrices Ay are positive definite. Then u = 0, and ¢ = 0 according
to equation D" = 0. Thus, matrix A is nonsingular.

Now we consider the case in which matrix A is singular. That is, there is at least one
block Aj which is positive semidefinite. Equality (5.69) in this case holds for the nonzero
vector u if and only if at least one of its subvectors u; € Ker Ay, k € [1,m]. This implies
that each of the components of u; is the same nonzero constant, that is uy = « - e, where
e/ = (1,...,1). On the other hand, equation Du = 0 in the finite element representation
implies that

/ @kin (Phukn — Phup) ds =0, Voup € @pp, 1<k, k=1,...,m. (5.70)
i
Hence, the vector u can be chosen in such a way that u, = e for all k =1,...,m, i.e. each

of the components of u, is unity. Since we assumed that I’y # 0 then there is at least one
subdomain €; for which block A; is positive definite. It means that (A;u;,u;) > 0 which
contradicts (5.69). Thus, u = 0. Then ¢ = 0 according to equation DTy = 0, and hence
(5.68) may hold only for u and ¢ equal to zero. This implies that det A # 0. O

5.3.2 Design and analysis of the preconditioner

Based on the results of Section 3.2 it is sufficient to construct a spectrally equivalent precon-
ditioner B for matrix A in the form of the block diagonal matrix:

B = [ Ba (5.71)

.t
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where
By 0
0 B,
blocks By, k = 1,...,m, are preconditioners for matrices A;, k = 1,...,m, respectively, and

block B, is the preconditioner for the Schur complement S, = DATDT. Here matrix A"
denotes the pseudo-inverse of matrix A [59].

To develop such a preconditioner in each subdomain Q, £ = 1,...,m, we construct a
coordinate system having as axes the eigenvectors of coefficient matrix K}, (see Section 4.5.1
for details). In these coordinates matrix Ay is a Pj-nonconforming approximation of the
problem:

d o2
Y EPES LWy = f iy,
i=1 0x?
i o (5.73)
— =0 0.
on ’ ORI
We also construct rectangles Iy, k = 1,...,m, in the local coordinate systems connected
with subdomains € in such a way that diam (II;) ~ diam (), IIx contains €, and the
boundaries of II; are parallel to the corresponding coordinate axis, k = 1,...,m. Define in
each Il the uniform mesh Trpp, bk =1,...,m.

Assumption 5.4 Assume that mesh Ty, is a trace on Q. of a regular mesh Ty, constructed
in the embedding rectangle Iy, k=1,...,m.

Also we assume that we can construct such an extended grid domain IT; for each sub-
domain Q, £ = 1,...,m, and that the number of degrees of freedom in Il is proportional
to Ng, which denotes the number of degrees of freedom in €. Since the subdomains were
assumed to be quasiregular, the number of degrees of freedom on the boundary of subdo-
main €2 denoted by Np is of order O(N,i/2), k=1,...,m. We also assume that mesh-size
parameter h is of order h ~ NY/? where N is the order of matrix A.

5.3.2.1 Preconditioner for matrix A

This is the simplest task. Using previous assumptions we can apply the fictitious components
method described in Section 4.5.

To solve the problem in the extended subdomains II; we use substructuring methods
which are described in Chapter IV.

Thus, the arithmetic cost of product B uy is O(Ny) in the two-dimensional case and
either O(Ny) (if we use the method described in Section 4.3) or O (N In(Ny)) (if we use the
method described in Section 4.4) in the three-dimensional case.

5.3.2.2 Preconditioner for matrix S,

According to block partitionings (5.65) we have

m m
S, =DAYD" =Y DA D{ = DrStDiy, (5.74)
k=1 k=1
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where Nr ; x Nrj matrices Sty are Schur complements corresponding to the unknowns on
boundaries I'y:
Spyk = AF,k - AFI,kA[_,]{;AIF,ka k= 1, cee M. (575)

Taking into account Remark 5.4 and the results of [72] we can develop a preconditioner
for S, by constructing for each subdomain Q, k = 1,...,m, two matrices:

(1) A diagonal Npj x Nrj matrix Bl’"k such that for each nonzero vector upy € IRk \
Ker (St ) we have inequalities

ag - (h/r) (Brgurk,ur k) < (Srpurg,urg) < op (Brgur g, ar ), (5.76)

where constants ag and «; do not depend on mesh-size parameter h and the coefficients
of the problem.

(2) A matrix S’p,k which is spectrally equivalent to matrix Sr ;. The main requirement is
that the matrix-vector multiplication St ; urj is easier to compute than the expression
Stk ur.

Having constructed these two matrices for each subdomain €2} we define the matrices
Sp =Y DrpStDiy,  By,=Y DriBprDf,. (5.77)
k=1 k=1
Finally, the preconditioner for matrix S, will be defined in the form of a matrix polynomial

L
B} = {Iw ~TI (1, - 4B;'S,) } S (5.78)

=1

5.3.2.2.1 Construction of a diagonal matrix Br,k. For simplicity we consider below one
domain € and skip the index “k” when no ambiguity occurs.
First, we consider a model problem

0%u 0%u .
—kmw—kya—yZ"‘C[]U:f, mn Q,
u =0, on Iy, (5.79)
%:0, onF1:BQ\F0,

where (2 is the square:

and the Neumann boundary is I'y = {(z,y) : y —x =1} (see Figure 5.5a). Assume that
coefficients k;, ky, co are constants in (2.

Let T, be a regular triangulation of Q with mesh-size h (see, e.g., Fig. 5.5a). Following the
construction in Section 4.2 define a Pj-nonconforming finite element space and introduce a
nodal basis in this space. Thus we obtain the following matrix representation of the problem
(see Section 4.2 for details):

Au=g, (5.80)
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(a) Triangulation of the domain Q. (b) The degrees of freedom of the reduced problem.

Figure 5.5: Degrees of freedom of a model problem.

where A is an N x N symmetric at least positive semidefinite matrix and u,g € IR". Here
N ~ h~2. Denote also the number of degrees of freedom on I'; by Nr. Obviously, Np ~ N2,
Eliminating unknowns vz; ; and vy; ; (marked “x” in Fig. 5.5a) we get the problem

Aﬁ:lfh Afrl-l“’]:lgf]. (5.81)
Arr  Ar ur gr
Here subvector ur of vector u corresponds to the unknowns on boundary I'; (nodes marked
“o” in Fig. 5.5b) and subvector u; corresponds to the unknowns in the domain (nodes marked
“o” and “e” in Fig. 5.5b). For more details see Section 4.2.

Now we partition internal nodes into two groups: the first group consists of the nodes
marked by “o” in Figure 5.5b and the second group consists of the nodes marked by “e”. We
enumerate each group of nodes in lexicographic order, first in direction ny = (1,1) and then in

direction ny = (1, —1) (see example in Figure 5.5b). Then problem (5.81) can be represented
in another block form:

A {11 412 0 uy g1
A= | Ay Ay Apr || we | =] 8 |- (5.82)
0 Aro  Ar ur gr

Here vectors u; and g; correspond to nodes of the first group, and vectors us and go corre-
spond to nodes of the second group, respectively.

For the model problem defined on the mesh domain shown in Figure 5.5 these matrices,
for example, are:

Ay = (2a4 + 20y +b) I1, Ay = (2a4 + 20, + b) I, Ar = (ag +ay +b/2) I, (5.83)

fay 0 az 0 0 0]
ar Gy ay az 0 0
0 az 0 ay 0 O
0 0 ay 0 az O
0 0 az ay ay ay
L 0O 0 0 a; 0 ay

z 0
Ay = A5 = (-1) , Agr = Al = (-1) [ G @ ] ,

0 ay ag
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where I, I, € R®*6, and I+ € IR3*3 are identity matrices, and coefficients ag, ay, b are
defined by (4.23).
After eliminating the unknowns of the second group system (5.82) becomes:

| Al - ApAy Ay AR Ayt Agr u || 8

Au = P A P . = | Z . (584)
—AF2A2 Agy Ar — AF2A2 Aor ur gr

To understand the structure of matrix A we consider a little square domain C containing

only one node of the second group (see Figure 5.6). The domain is bounded by the lines
connecting the nodes 1, 2, 3, and 4.

Figure 5.6: Grid subdomain C' of the domain ).

Remark 5.7 The grid domain (2 can be viewed as a union of such subdomains Q = UM, C;.

The submatrix corresponding to a homogeneous Neumann problem on subdomain C which
lies inside 2 has the form:

ag +b/4 —ayg
ay +b/4 —ay
Ac = ay +b/4 —ay . (5.85)
az + b/4 —ag,
—ay —ay —ay —ay ‘ 2a, + 2a, + b

Here the fifth line corresponds to the unknown in node 5. After eliminating unknown 5 we
obtain the matrix

Qg a2 agay, aga, a?
o b I+ ay B 1 Ay y aé aé agay | (5.86)
¢ ay 2a; +2ay +b | azay, ay  ay  agay |
ay a2 agay aga, a2
6ag+ 2a,+ b
! b 2+ Gay+ b
20, +2a,+b |4 2a;+ 6ay,+ b

6.+ 2a,+ b
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2 -1 -1 0 10 0 -1 00 0 O

-1 2 0 -1 210 0 0 0 01 -1 0

Tty o9 2 1| T% o000 0 |T%]0 1 -1 0

0o -1 -1 2 10 0 -1 00 0 O
It is easy to see that after assembling all these local matrices over all squares Cj, i =

1,..., M, we obtain matrix A of the following form:

A—;{bDnL Ay + 62+ Agy + a2+ Ayy | 5.87
© 2a; +2a, + b . Galty * fay T g " Loz 0y " Lyy f > (5:87)

where matrix D is a diagonal one whose diagonal entries are linear combinations of a;, a,, and
b; the entries of matrices Agy, Ayze, and Ay, do not depend on the coefficients of the problem.
Matrix A,y is a separable matrix in the numbering introduced in this section (see Fig. 5.5).
Matrices A;; and Ay, have rather complicated structure in this numbering but they can be
simplified if we introduce another numbering of the nodes. First, let us number the nodes
marked by “o” in Figure 5.5 in the z-direction, and then in the y-direction. Then matrix A,
is block diagonal, where each block corresponds to the unknowns on one grid line in the z-
direction and is an approximation of the one-dimensional Laplace operator in x: L u = —u,y.
If we number nodes, first, in the y-direction then in the z-direction, matrix A, will be block
diagonal where each block corresponds to the unknowns on one grid line in the y-direction
and is an approximation of the one-dimensional Laplace operator in y: L u = —uyy.

Now, using the same arguments as in the proof of Lemma 5.1 we can show that for any
vector ur ¢ Ker (Sr), ur # 0, we have

~

. A : . A~,~
(Srur,ur) _ e AW (Am ) 555
(Arur,ur) = (Apup,ur) —  (Arur,ur) '

1

i 2 2 N~
ﬁﬁflfflr 2“90"‘—2%"‘(’ ((b D+ agay - Agy + ay - Aggp + ay - Ayy )0, u)

(QCLI + 2ay + b) (U.F, up)

min ((b D +agay - Agy + aZ - Agy + az - Ay, ﬁ)

a|r=ur

(4a2 + 4a? + 8agzay + b(4ay + 4ay + b)) (ur,ur)

1 (D, &) (A @) (At @) (Ayyit, @)
> — min ; ; ; y (-
4 ar=ur | (az +ay+0b/4)(ur,ur)’ 2(ur,ur) (ur, ur) (ur,ur)

Direct calculations show that for any vector ur & Ker (Sr), ur # 0, we have an inequality

(Srur, ur)

>(C.N1/2 )
Cirar up) C , (5.89)

where constant C' does not depend on the coefficients of the problem.
Taking into account that
(Srur,ur) < (Arur, ur)

for any up € RT, we show that Lemma 5.1 is valid for the model problem (5.79).
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Now we consider a general problem in the polygonal domain € with homogeneous Neu-
mann boundary conditions on the entire boundary I' = 0€2:

9%u 0%u
_k:L‘— —ky—=— =/ i Qa
02 o T 080“ d " (5.90)
U, on 99,
on

To give the Pj-nonconforming approximation to this problem we introduce a uniform
triangular mesh 7, o in the domain 2 and define nonconforming finite element space V},(€2)
described in Section 4.2. Next, we define the bilinear form corresponding to the operator of
(5.90) on V,(©2) by

a (u,v) = Z / (krugve + kauyvy, + co uv) d€ dv, Vou,v e V(). (5.91)
TETh,Q T

Once a nodal basis {SOi(X)}i]\Ll for V3(£2) has been chosen, then the bilinear form (5.91)
defines the symmetric positive semidefinite (positive definite if ¢ > 0) N x N matrix Ag by

(Agu,v) = al(u,v), u,v € V(92). (5.92)

Here u, v € IR" are the vector representations of functions u, v.

Let the number of the unknowns on boundary I" be Np. Note that by previous assumptions
Nr ~ N /2 Denote by ur and ur the vectors of the unknowns in the interior of €2 and on
boundary I', respectively. Then matrix Aq is represented in the form:

Ar A
Aq = . 5.93
0 [ Ary A® l (5.93)

The Schur complement corresponding to the unknowns on boundary I' = 92 we denote by
S = A _ A A7 Ay (5.94)

Using the results of Subsection 5.2.2.3 and the considerations outlined above we have the
following lemma.

Lemma 5.2 For any vector vp € RNT such that vi L Ker (SIEQ)) the following inequalities
hold true:

a-h- (A%Q)up, up) S (Sng)up, up) S (A%Q)U.F, U.F), (595)

where constant o does not depend on mesh-size parameter h ~ N~Y2 or the coefficients of
the problem.

Thus, we can choose as a diagonal matrix Bry in (5.76) diagonal matrix Apy, k =
1,....,m.
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Figure 5.7: Polygonal domain §) embedded in rectangle 11.

5.3.2.2.2 Construction of matrix gp,k. The construction of matrix S’p which is spectrally

equivalent to matrix SIQQ) is based on Extension Theorem 4.8 from Section 4.5.2. Consider
domain  embedded in rectangle IT (see Figure 5.7). We denote a uniform triangular mesh
in IT by 7p i and its trace in domain Q by T o.

Along with the bilinear form (5.91) we define a bilinear form in rectangle IT by

at (u,v) = Z / (krugve + kouyvy, + co wv) d€ dv, YV u,v € Vi(II). (5.96)

TETh T T

Let M be the dimension of Vj(IT). Then the symmetric positive semidefinite (positive
definite if ¢y > 0) M x M matrix Ay is defined as follows:

(Aru, v) = al(u,v), u,v € Vi (II). (5.97)

Here u, v € RM are vector representations of functions u, v corresponding to the nodal basis
{(,oi(x)}i]‘i1 of the space V},(II).
Again, as in Section 4.5.1, we partition all the degrees of freedom in II into three groups:

1. The first group consists of the unknowns corresponding to the degrees of freedom in
Q\T.

2. The second group consists of the unknowns on boundary I' of domain €.
3. Finally, we enumerate the unknowns corresponding to the degrees of freedom in IT \ Q.
This partition induces the following block representations of matrices Ag and Ap:

Ar Am O

A A
Ao = [ AI A(IQF) ] o An=| Ay AV Ao | (5.98)
LT 0 Aor Ao

where blocks Ay, Al(ﬂ*), and Ao correspond to the unknowns of the first, second, and third
groups, respectively.
We note that matrix A(FH) can be represented as the sum A%H) = A(FQ) + A%H\Q), and the

matrix ma
Ap 7 Aro (5.99)
Aor Ao
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corresponds to the nonconforming discretization of equation (5.90) in domain IT\ © with
homogeneous Neumann boundary conditions.
For matrix A we introduce the Schur complement corresponding to the unknowns on I':

SV = ARV — Ars A7 Ar — AroAg Aor = SV + AR — AroAg! Ao (5.100)

The following lemma, gives the main result of this section:

Lemma 5.3 Matrices SIEQ) and SIEH) are spectrally equivalent, that is there exists a constant
a independent of mesh-size parameter h and coefficients of the problem, kg, ky, and co, such
that for any vector v € RNT the following inequalities hold true:

- (S%H)up,up) < (S%Q)up,up) < (S%H)up,up). (5.101)

Proof: Since matrix (5.99) is at least positive semidefinite (positive definite if ¢y > 0) then
the matrix

SN — A _ Ar A5 Aor
is also at least positive semidefinite. Thus, the right inequality in (5.101) follows from repre-
sentation (5.100).

By Proposition 4.8 and Remark 4.13 for seminorms, for any function vf € V,(Q) there
exists a function v}, € V;,(IT) such that it coincides with v in Q and the following inequality
holds true:

al (v, ol < Co - alb (vl vd), (5.102)
where constant Cp > 1 does not depend on mesh-size parameter h and the coefficients of the
problem.

Note that since U?l = vﬁ in Q, then U?l = vﬁ on I' = 992.

Using the basis representations of the functions in V},(Q) and V},(II) we can also formulate
a matrix analog of (5.102). Namely, for any vector v € IRY there exists a vector viy € RM
such that it coincides with vq in the nodes of 2 and the following inequality holds true:

(AHVH,VH) S CO . (AQVQ,VQ). (5103)

Following [94] one can show that for any vector vr € IRVT the following equalities for the
corresponding Schur complements on I' are valid:

(S%Q)VIH VF) = }\rfnln (Aﬂvﬂa VQ),
voclR » Velr=vr (5.104)
(SIEH)VF,VF) = min (AHVH,VH)-

M
VHG]R, s VH|F:V[‘

Now fix any vector v of unknowns on boundary I'. Let ug € IRY be such a vector that
satisfies the equality
(Séﬂ)vp, vr) = (Aqug, ug). (5.105)
Denote by ury € IRM the corresponding extension vector. Note that up|r = vp. From (5.103)
it follows that

(Anup, up) < Cp - (Aqug, ug). (5.106)
Taking into account (5.104), (5.106), and (5.105) we get
(58" vr, vr) < (Anum, un) < Co - (Aqug, ug) = Co - (SL"vr, vr). (5.107)

Thus, the left inequality in (5.101) with the constant o = 1/Cj follows from (5.107). O
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5.3.2.2.3 Construction of preconditioner B,. We proceed with the construction of precon-
ditioner B,. We define it in the form of the inner Chebyshev iterative procedure [8, 18, 63, 70].
1)

For each subdomain Qg, k = 1,...,m, we define the matrices Sl(“,k- Using Lemmas 5.2 and

m)

5.3 it is easy to show that the nonzero eigenvalues of matrices Ap iSlg . belong to segment
[ag - h/r,a1], where constants «p and a; do not depend on mesh-size f)arameter h, the size
of subdomain r, and the coefficients of problem (5.46) in the subdomains. Now we define
matrices S, and B, outlined in (5.77):

Sp =3 DralSEV DL, By =" DrgAp)DEy. (5.108)
k=1 k=1

From the previous considerations it follows that the nonzero eigenvalues of matrix BL; 15’@
belong to segment [y, ¢1 - 7/h], where constants ¢y and ¢; do not depend on mesh-size param-
eter h and the coefficients of the problem.

Let Pr(y) be a polynomial of least deviation from zero on this segment that satisfies the
condition Pr(0) = 1. Denote by (3, [ = 1,..., L, the inverses of the roots of the polynomial
Pr,(y). The formulae for Py, (y) and its roots 1/5;, 1 = 1,..., L, are given in Section 3.4. Then
preconditioner B, for matrix S, is determined by the formula:

L
B} = {Lp ~TI (2, - ,BlBngw)} St (5.109)
I=1
The calculation of vector w, = Bc‘; g, given g, € IRY¢ can be reduced to:
Wg]) = 0,
wl = wib)_pB! (S‘wwg*) - gw) . l=1,...,L, (5.110)
w, = wib.

For computational stability, instead of (5.110), we can use the three-term formula [114].
To implement this preconditioner we have to develop for each subdomain an algorithm

that multiplies vector ury € RNk by matrix [SIQHk) It

VIk = [Sp:[k)]—i— ur k- (5111)

We can define the resulting vector vr j as a solution of the problem

SEY Vi = ury, (5.112)
or, equivalently,
Arg Amrgr 0 % 0
Arrk A(FHIE Arog || vrg | = | urg |- (5.113)
0 AOF,k: AO,k * 0
(m

Here we use the block representation of matrix A, corresponding to partition (5.98).
From (5.113) it is easy to see that the procedure of multiplying vector ur by matrix

[Sl(ﬂl}g | can be considered as a partial solution problem when we have the nonzero right-hand
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side urj defined only in the nodes of I'; and we need to find the solution only in these
nodes. To develop an optimal preconditioner for the initial problem we need the partial
solution algorithm for the kind of problem with an implementation cost O(Nt 4 In (Np)).
Unfortunately, there is no such algorithm for the general partial solution problem, although
for some special cases (“parallel” and “perpendicular” cases) this algorithm is outlined in
Section 5.2.2.2 (more information on this issue can be found in [9, 10, 68, 103]). As shown in
[68, 103], instead of developing an exact solver we can use an approximate one. That is we
can use the approximate partial solution algorithm when we solve problem (5.113) with an
accuracy €. In [103] it is shown that the approximate partial solution of problem (5.113) can
be found with accuracy € = ch? for

OP* N (In Np )?) (5.114)

operations. Here ¢ > 0 is a positive constant independent of Ny and p > 2.
Thus, instead of matrix S, defined by (5.108) we define matrix 5’5;5) by

m
89 =3 DralStE DE s (5.115)
k=1

where [Sl(ﬂl}g ]EZ) means the use of the approximate partial solution algorithm. It can be shown

[103] that this matrix is still spectrally equivalent to original matrix S,, so preconditioner
B, . can be defined by

L
B, = {Igo ~TI (2 - ﬁszlSéf))} Sh. (5.116)
=1

Thus, the previous considerations as well as the theory of Chebyshev iterative methods
lead to the important result.

Proposition 5.3 Let L > C - (r/h)'/?, where constant C does not depend on mesh-size
parameter h, size of the subdomains r, and coefficients of the problem K (x) and c¢(x). Then
matriz By in (5.116) with matrices B, and S’g) defined in (5.108) and (5.115), respectively,
is spectrally equivalent to matriz S,.

Remark 5.8 In theory quantity L is chosen to be of order (C - r/ h)l/ 2 In practice it is calcu-
(e)

lated explicitly after the boundaries of the spectrum of matrix BL; 15@ have been calculated
by an appropriate iterative procedure [62].

Thus, we have proved the following theorem

Theorem 5.2 The constructed block diagonal preconditioner B is spectrally equivalent to
matriz A with constants independent of mesh-size parameter h and the coefficients of the
problem.

Recall that the spectral equivalence of B and A means that the eigenvalues of B! A belong
to the union of segments [dy,ds] and [d3,dy] with dy < dy < 0 < d3 < dy, where dy,ds,ds,
and dy are independent of h, K(x), and ¢(x).
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5.3.2.2.4 Arithmetic complexity of preconditioner B. In the two dimensional case the arith-
metic cost of product B/,ju;c is proportional to

O(Ni) ~ O(N/m) ~ O(r—2h™?). (5.117)

Thus the arithmetic complexity of the multiplication of vector u € IRY by matrix B:{ is
proportional to N.

Now consider the implementation of the multiplication of vector u, € IRM¢ by matrix
B:;E. In order to estimate the arithmetic complexity of this multiplication it is sufficient to
estimate the arithmetic complexity of multiplying vector u, by matrix 5’505) and the arithmetic
complexity of solving the system:

Byu, =¢, (5.118)

for a given vector £, € IRN¢. After the estimation of these two operations it is easy to compute

the complexity of matrix B:g, . because we know the order of the number of iterations L in

the inner Chebyshev iterative procedure (5.116): L ~ (C -r/h)Y/2.
Since matrices Ap, are diagonal, problem (5.118) can be solved for

0 (i Np,k> ~0 <m (N/m)> ~O(rtn) (5.119)
k=1

operations.
Taking into account estimate (5.114) of the computational complexity [SIQH,C) ]E;), the mul-
(e)

tiplication of a vector by matrix S’(p is estimated by

m
0 (Z p2N§{,§(1nNF,k)2> ~ O (p*r=2(r/h)*(inr[h)2) ~ O (p*r =120~ (In7/R)?)
k=1
(5.120)
On the basis of the above analysis we can formulate the assertion.

Lemma 5.4 Under the above assumptions the arithmetic complexity of the proposed algo-
rithm for solving the problem with matriz B, is estimated from above by

C- (r72h732 4 pPh72(Inr/h)2) ~ O+ (m! /NP 4 p? N (In N/m)?) (5.121)

where N is the order of matriz A and constant C' does not depend on mesh-size parameter h,
size of subdomains r, and coefficients of the problem K(x) and c(x).

Summarizing the results of Sections 5.3.1 and 5.3.2 we can formulate the following propo-
sition.

Proposition 5.4 Under the above assumptions the arithmetical complexity of the proposed
algorithm. for solving problem (5.46) in two-dimensional domains is estimated from above by

C- (h~2(1n (r/h))2) ~ O(N In? (N/m)),

where constant C is independent of mesh size parameter h, size of subdomains r, and coeffi-
cients of the problem K(x) and c(x).
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Remark 5.9 Along with preconditioner B, for matrix Sy, in the form of the inner Chebyshev
iterations (5.109) we can also consider the multigrid method [20] for the Schur complement
to precondition S,. Although there are some theoretical details which should be addressed
before using this method, not considered in the dissertation, we provide an estimate for the
arithmetical complexity of the multigrid preconditioner:

O(N3/*1n? (N/m)).

Remark 5.10 The approach described above can be developed for three-dimensional prob-
lems provided that we have constructed for each subdomain ; matrices Brj and Srp,
k=1,...,m, introduced at the beginning of Section 5.3.2.2.



CHAPTER VI

APPLICATIONS

This chapter is devoted to the applications of the theory developed in Chapters IV and
V. We present the results from numerical experiments that illustrate this theory and apply
it to the problem of modeling fluid flow in porous media.

To show that the preconditioners developed in the earlier chapters are good and robust we
apply them to various problems in two and three dimensions. Our objectives in conducting
the numerical experiments were to establish experimentally the conclusions from the theoret-
ical analysis of the algorithms considered and to assess their effectiveness in terms of error
reduction after a fixed number of iterations.

The right-hand sides in all model tests have been generated randomly. The condition
numbers of the preconditioned matrices have been calculated from the relation between con-
jugate gradients and the Lanczos algorithm described in Section 3.3. Most of the experiments
have been run on Sun workstations, although a simulator of fluid flow in porous media has
also been developed in a parallel version which has been run on a Paragon supercomputer.

The rest of the chapter is organized as follows. In the first section we present the ex-
periments for the substructuring methods and the fictitious component method developed in
Chapter IV. In the next section we consider experiments with the domain decomposition
method on matching and nonmatching grids which illustrate the theory of Chapter V. Fi-
nally, we consider an application of the Lagrange multiplier approach described in Chapter 1T
to modeling fluid flow in porous media.

6.1 Experiments with substructuring and fictitious compo-
nents methods

6.1.1 3D problem. Partition of cube onto 6 tetrahedra

We present three numerical examples. The method of preconditioning on the basis of multi-
level substructuring as discussed in Section 4.3 was tested first on the model problem

~Au = f, in Q=10,1P Cc R?,

u = 0, on 00N (6.1)

with the nonconforming finite element method of approximation.

The domain was divided into n? cubes (n in each direction) and each cube was partitioned
into 6 tetrahedra. The total dimension of the original algebraic system was N = 12n3 — 6n?.

The original algebraic problem has been solved by the conjugate gradient (CG) method
in the form of (3.28) with the preconditioner in the form of (4.44) with accuracy ¢ = 1075.
For comparison, that problem has been solved by the same method without preconditioning.

These results are summarized in Table 6.1. Here Iter is the number of CG iterations,
Cond is the condition number, and #ime is the computational time needed to achieve the
required accuracy.

109
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Table 6.1: 6 tetrahedra per cube. Experiments with Laplace equation.

CG WITHOUT CG WITH
PRECONDITIONING PRECONDITIONING
time time
n N Iter | Cond (sec) Iter | Cond (sec)
4 672 40 66 0.18 22 9.84 0.22

8 9760 73 265 2.18 24 | 10.7 1.27
16 | 47616 130 | 1062 49.2 24 | 11.94 15.7
32 | 387072 | 200< — 1248 25 | 12.2 163
40 | 758400 25 | 12.26 376
50 | 1485000 25 | 12.33 771

In the second example:

3
_ O (g4, 0uw) _— ]
z; ox; (alaxi) f m Q’ (62)
0 on 0f,

u =

we have considered the dependency of the condition number on the coefficients of the problem.
The coefficients a;, ¢ = 1,2,3, were constants on each cube. The results are summarized in
Table 6.2, where Iter and Cond denote the iteration number and condition number, respec-
tively.

From Table 6.2 we see that the condition number depends on the maximal ratio x =

max {“—3 “—3} The case of kK < 1 has a better convergence than the case of the Poisson

cecy Lo’ az
equation (i.e. a; = ag = a3 = 1) as is predicted by the theory (see estimate (4.45)).

We note that the condition numbers in all experiments depend on parameter « introduced
in Assumption 4.1 (see page 47). Namely, the estimate of the condition number of the
preconditioned matrix (4.45) is proportional to the value of parameter k. Obviously, it is
important to arrange the coordinate axis in such a way that parameter x has the smallest
value. In some sense we can benefit from anisotropy. The smaller coefficient ag (the coefficient
in the “z-direction”) leads to a better preconditioner B.

In the third example we treat the Poisson equation on the domain {2 as shown in Figure
6.1. The domain is subdivided into 90 x 90 x 10 cubes and the number of the unknowns is
then N = 955440. The algebraic problem is solved with accuracy € = 10~5. Twenty iterations
are needed to achieve the desired accuracy; the computed condition number of matrix B~ A
is equal to 10.

6.1.2 3D problem. Partition of cube onto 5 tetrahedra

We present three numerical examples. The preconditioner based on multilevel substructuring
as discussed in Section 4.4 was tested first on the model problem

—div (a(z)Vu) = f, in Q= 10,13

u = 0, on 02 (6.3)

with piecewise constant coefficient.
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Table 6.2: 6 tetrahedra per cube. Dependency on parameter k.

N =47, 616 N =387, 072
ay as as Iter Cond Iter Cond
1 1 1 18 7.5 17 7.6
1 1 0.1 13 3.7 13 3.8
1 1 0.01 10 2.8 11 3.0
10 1 1 16 6 16 6.2
1 10 1

100 1 1 14 4.7 14 5.2
1 100 1
1 1 10 34 41 34 42
1 1 100 75 315 80 328

0.1 1 1 32 30 31 29
1 0.1 1

0.01 1 1 68 198 72 203
1 0.01 1

Again, the domain is divided into M = n3 cubes (n in each direction). Each cube is
partitioned into 5 tetrahedra. The dimension of the original algebraic system is N = 10n3 —
6n2. The right-hand side is generated randomly, and the accuracy parameter is taken as
e = 1075, The coefficient a(z) is piecewise constant and is defined to be

_J a, (z,9,2) €[0.5,1] x [0.5,1] x [0.5,1]
a(@,y,2) = { 1, elsewhere. (6-4)

The computational results are summarized in Table 6.3.

In the second experiment, the method of preconditioning described in Section 4.4 was
used to solve problem (6.3) with constant right-hand-side function f(x) by the mixed finite
element method with function a(z) in the following form (see also Figure 6.2):

4 (

[0.2,0.4] x [0.2,0.4] x [0.2,0.4]U )
[0.6,0.8] % [0.2,0.4] x [0.2,0.4]U
[0.2,0.4] x [0.6,0.8] x [0.2,0.4]U
[0.6,0.8] % [0.6,0.8] x [0.2,0.4]U
a(my, ) =4 P00 @B €9 00 04« 02.04] x [0.6.08U [T (655)

[0.6,0.8] % [0.2,0.4] x [0.6,0.8]U
[0.2,0.4] x [0.6,0.8] x [0.6,0.8]U

| [0.6,0.8] x [0.6,0.8] x [0.6,0.8]

L 1, elsewhere
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Figure 6.1: An example of the grid domain ).

Table 6.3: 5 tetrahedra per cube. Dependency on jump parameter a.

20 x 20 x 20 30 x 30 x 30 40 x 40 x 40 50 x 50 x 50

N = 77600 N =264 600 N =630 400 N =1 235000

a Tter Cond Iter Cond Iter Cond Iter Cond
1 14 5.32 14 5.30 14 5.29 14 5.28
10 17 6.59 17 6.53 16 6.37 16 6.29
100 17 6.94 17 6.90 16 6.89 16 6.88
1000 17 6.98 16 6.96 16 6.95 16 6.93
104 16 6.98 16 6.96 16 5.95 16 6.94
0.1 16 5.97 16 5.96 16 5.96 15 5.94
0.01 16 6.02 16 6.02 16 6.00 15 5.97
0.001 || 16 6.02 16 6.01 16 6.00 15 5.97
1074 16 6.02 16 6.01 16 6.00 15 5.97

Again, the domain Q is the unit cube; the domain is divided into M = 403 = 64000 cubes.
The dimension of the original algebraic system for the Lagrange multipliers is N = 630400.

The preconditioner (4.73) needs niir = 22 iterations to solve (6.3).

In both experiments it takes less then 12 minutes to obtain resulting vectors q and u.
The slices of solution u by planes parallel to the zy—plane are shown in Figure 6.3.

Finally, in this section the method of preconditioning presented in Section 4.4 is tested on
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Figure 6.2: Function a(z) for the model problem (6.3).
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Figure 6.3: Slices of the solution parallel to zy-plane.

the model problem

3

0 ou
_Zza—xz k f

—
1 8%1

in Q=1[0,1?, u=0 on JQ. (6.6)
Again, the domain is divided into n® cubes (n in each direction) and each cube is partitioned
into 5 tetrahedra. The right-hand side is generated randomly, and the accuracy parameter is
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taken as € = 1076, Coefficients k;, i = 1,2,3, are constants on each cube. The results are
summarized in Table 6.4.

Table 6.4: 5 tetrahedra per cube. Dependency on parameter k.

16 x 16 x 16 20 x 20 x 20 30 x 30 x 30

N = 39424 N = 77600 N = 264600

ky ko ks Tter Cond Tter Cond Tter Cond
1 1 1 14 4.87 14 4.93 14 5.03
1 1 10 12 3.72 12 3.94 12 4.28
1 1 100 9 2.28 10 2.55 10 3.00
1 1 1000 8 1.55 8 1.58 8 1.73
1 1 10000 8 1.48 8 1.49 8 1.51
1 1 0.1 31 19.4 31 19.6 31 19.8
1 1 0.01 62 133. 71 149. 82 168.
10 1 1 24 12.0 25 12.1 25 12.1
1 10 1 24 12.1 24 12.1 24 12.0
100 1 1 58 99.3 63 100. 62 100.
1 100 1 62 100. 60 100. 60 99.5
1 10 10 14 4.72 14 4.81 14 4.94
1 10 100 12 3.62 12 3.85 12 4.25
1 10 1000 9 2.14 10 2.42 10 2.92
1 100 10000 9 2.20 10 2.42 10 2.92

From Table 6.4 we see that the condition number depends on the maximal ratio x =

max {%’ % } The numerical results are in full agreement with the theoretical estimates. One

ceCy,
can see that the proposed preconditioner is optimal if x < 1. In the case of k¥ < 1 the method

has a better convergence than in the case of the Poisson equation (i.e. k1 = ko = k3 = 1).
If k > 1, the preconditioner looses its optimal order and the corresponding relative condition
numbers increased strongly with «. It is a rather predictable result since we defined local pre-
conditioning matrices BC in (4.68) on each cube, taking some “additional positiveness” from
the direction with the dominated anisotropy (z-direction) to other directions. Experiments
show that this procedure is “well behaved” if the coefficient in the z-direction (k3) is greater
than coefficients k; and ko. And the method loses its effectiveness if we choose the wrong
direction, i.e. coefficient k3 is small compared with coefficients k; and ko.

Remember that in the method described in Section 4.4 we need only an assumption that
coefficient k, in some direction is not less then the coefficients in the other directions. Thus,
if, for example, we have the problem where coefficient ki is not less than coefficients ko and
ks we can simply rename variables in such a way that a new z variable corresponds to the old
x variable. The results will be the same.
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6.1.3 Fictitious components method

In this section we consider the results of the numerical experiments with the fictitious com-
ponents method for two- and three-dimensional problems.
First, we consider a model problem
—div (KVu) = f in Q = [0, 1)?,
=0

(KVu,n) on 092, (6.7)

where

is a constant symmetric tensor and f(z) € L?(Q).
Let K have eigenpairs (ki,u;) and (kg2, uz), where u; = (o, 3), uz = (-3, a), o®>+ 3% = 1.
Then consider a transformation of the coordinates (¢,v) = F(z,y):

E=a-z+0-y, v=—0-z+a-y.

In coordinates (£,v) problem (6.7) has the form:

—k1 - uge — ko - uy,, = f in €,
_ (6.8)
@ =0 on 0f2.
on

Now construct a rectangle II in the (£, ) plane which contains  and a uniform triangular
mesh in II. Then locally modify the mesh in II to fit the boundaries of 2 (see Figures 6.4,
6.5).

{ L ' L L L ,
0 0.2 0.4 06 08 1 0 0.2 0.4 0.6 0.8 1

(a) Fictitious domain TI (b) Real domain §2

Figure 6.4: Example 1. Triangulations of the fictitious and real domains.

Then consider the Pj-nonconforming approximation of (6.7) as is described in Section 4.2:
Au =f. (6.9)

To precondition A we use the fictitious components method described in Section 4.5. In this
method we have to solve the problem:

—kl-u&—kz-uw,:f inH,

ou_)  on oIl (6.10)
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(a) Fictitious domain II (b) Real domain §2

Figure 6.5: Example 2. Triangulations of the fictitious and real domains.

To solve problem (6.10) we use the substructuring method of Section 4.2.

In all examples below we have used the preconditioned conjugate gradient method to
solve (6.9). The stopping criterion was relative residue < ¢ = 1075. The fictitious domain
was partitioned onto M x M rectangles; N was a dimension of the real triangulation. The
number of PCG iterations Iter and computed condition numbers Cond are shown in Tables
6.5 and 6.6.

In the first example the coefficient matrix and its corresponding eigenpairs were

kr=5 u =-(1,-2
K _ | 401 198 1 1= \(( ), (6.11)
198 104 ky =500, wp = 2=(2,1).

The domain is shown in Figure 6.4, and the results of the experiments are given in Table 6.5.

Table 6.5: Example 1. Results of the experiments.

M N Iter | Cond
16 169 10 | 7.463
32 605 13 | 9.827
64 2377 13 | 10.007
128 | 9245 15 | 14.080
256 | 36809 15 | 14.841
512 | 146205 || 16 | 14.346

In the second example the coefficient matrix and its corresponding eigenpairs were

5(L,—1),

1001 999 ki =2, u =
K = [ ] “1,0) (6.12)

999 1001 ko = 2000, up =

sw

The domain is shown in Figure 6.5, and the results of the experiments are given in Table 6.6.
Finally, we consider a three-dimensional problem

—div (KVu) = f in Q= [0,1]?,
0

(KVu,n) = on 012, (6.13)
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Table 6.6: Example 2. Results of the experiments.

M N Iter | Cond
16 145 7 6.091
32 545 9 7.920
64 2113 9 7.295
128 | 8321 10 | 10.988
256 | 33025 11 | 12.500
512 | 131585 || 10 | 11.206

with a constant symmetric tensor

ail a2 @13
K(z)= | a1 a2 a3
asy Gz a33

We construct the coordinate system on the eigenvectors of matrix K and a parallelepiped
IT embedding domain 2. Then we define a uniform cubic mesh in II and locally modify the
mesh in II to fit the boundaries of Q. We subdivide each cube into 5 tetrahedra and define
the Pj-nonconforming finite element space on this tetrahedral partitioning as is described in
Section 4.4.

Again, we use the fictitious components method to precondition problem (6.9). To solve
the problem in the parallelepiped we use the substructuring method of Section 4.4.

We considered the problem with coefficient matrices

12 —19 10 k=3 w=2(111),
K=|-19 41 -19 |, k2=2,  wp=5(1,0,-1), (6.14)
10 —-19 12 ks =60, u3= %(1, —2,1),
and
102 —199 100 k=3 w=(111),
K=|-199 401 —199 |, k2=2,  wp=_5(1,0,-1), (6.15)
100 —199 102 ks = 600, wuz= %(1, —2,1).

The fictitious domain was partitioned into M x M x M cubes; N was a dimension of
the real problem. In Table 6.7 the number of PCG iterations Iter and computed condition
numbers C'ond are shown for both problems.

Again, from Table 6.7 we see that the numerical results are in full agreement with the
theoretical estimates. The bigger the coefficient k3 the better the rate of convergence.
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Table 6.7: Fictitious components method in 3D.

ks =60 ks = 600

M N Iter | Cond || Iter | Cond
20 77 600 14 | 1291 || 10 | 10.31
30 | 264 600 16 | 15.32 || 11 | 11.44
40 | 630 400 17 | 15.85 || 11 | 11.53
50 | 1235000 || 17 | 15.98 || 12 | 11.80

6.2 Experiments with domain decomposition methods

6.2.1 Domain decomposition for problem with diagonal matrix of coeffi-
cients

In this section the domain decomposition method presented in Section 5.2 is tested on the
model problem in the unit square Q = [0, 1]%:

—kgUzy — kylyy = f, in Q =[0,1)?,

u=0, on 99. (6.16)

Domain € is composed of 4 subdomains as shown in Figure 6.6. Coefficients k; and k, are
constants in each subdomain.

Qs Q4
kr=1 kr =k
y =k ky =
Q Q2
ke =k ke =
y =1 y =k

Figure 6.6: Coefficients in the subdomains for a model problem.

The domain is divided into n? squares (n in each direction) and each square is partitioned
into 2 triangles. The dimension of the original algebraic system is N = 3n? — 2n and the
dimension of the Schur complement after elimination of the subdomain problems is Np = 4n.
The right-hand side is generated randomly, and the accuracy parameter is taken as ¢ = 1076.
The degree of matrix polynomial (5.36) equals L = [\/ 2.5n] +1, where [7] is an integer part of

7. The condition number of matrix A;FI Ar is calculated by the relation between the conjugate
gradient and the Lanczos algorithm [59]. The results are summarized in Table 6.8.



6.2 Fxperiments with domain decomposition methods 119

Table 6.8: Results of experiments with bordering method.

100 x 100 200 x 200 400 x 400
N = 29800 N = 119600 N = 479200
Iter | Cond Iter Cond Iter Cond
1 23 10.7 25 10.9 26 10.9
10 23 9.2 24 9.8 26 10.2
100 20 8.3 19 7.9 20 8.1
1000 12 4.2 14 6.2 14 6.4
10000 6 1.5 7 2.0 7 2.1
100000 3 1.1 4 1.1 4 1.1

6.2.2 Domain decomposition on nonmatching grids

In this section the domain decomposition method on nonmatching grids presented in Section
5.3 is tested on the model problem in unit square Q = [0, 1]2:

o ou : — 2
— —(kiiv—) = f, in Q =[0,1]°,
i,jzzl Bmi( ] 81:]-) f [ ] (617)

u =0, on 0f2.

Domain € is composed of 4 subdomains. The coefficients k;;, 7,5 = 1,2, are constants in each
subdomain. The main directions of the anisotropy in each subdomain and an example of the
grids used in an experiment are shown in Figures 6.7 and 6.8, respectively.

ka=k Qs Q4
klz]- kzzl
ki=k
k,‘z—l{,‘ k2:k
Ql Q2
ki=1 ki=1

Figure 6.7: Main directions of the anisotropy in the subdomains.

Each subdomain € is embedded in a rectangle II; constructed in the local coordinate
system as described in Section 5.3. Each rectangle ITj, is divided into n? squares (n in each
direction) and each square is partitioned into 2 triangles. The dimension of the original
algebraic system is N and the dimension of the Schur complement after elimination of the
subdomain problems is Np. The right-hand side is generated randomly, and the accuracy
parameter is taken as € = 1075, The degree of the matrix polynomial (5.116) equals L =
[v/n] + 1, where [n] is an integer part of 7.

The condition number of matrix B:,"gS(p is calculated by the relation between the conjugate
gradient and the Lanczos algorithm [59]. The results are summarized in Table 6.9. Here Iter
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Figure 6.8: Nonmatching grids.

denotes the number of iterations of the generalized Lanczos method and Cond denotes the
condition number of matrix B _S,.

Table 6.9: Results of experiments with nonmatching grids.

n = 100 n = 200 n = 400
N =90 600 N = 361 200 N =1 442 400

k Iter Cond Iter Cond Iter Cond

1 25 12.3 28 13.9 29 14.3

10 23 10.2 25 11.8 27 11.2
100 20 9.4 22 9.9 22 10.1
1000 17 6.2 19 7.2 19 7.4
10000 16 3.5 18 4.0 18 4.1
100000 || 16 2.1 18 2.1 17 2.1

6.3 Applications to simulation of fluid flow in porous media

In this section we discuss briefly the development of a large scale numerical simulator of
multi-phase fuid flow in porous media. The author of this dissertation was one of the code
developers in the Partnership in Computational Sciences (PICS) project where he worked on
the flow module (see [31]). PICS is an initiative sponsored by the U.S. Department of Energy.
The goal of this project is to develop a state of the art computer simulator of groundwater
flow and contaminant transport (GCT).

GCT simulates the flow and reactive transport of substance fluids through a heterogeneous
porous medium of irregular geometry. This simulator is designed to run on both massively
parallel, distributed memory computers and on conventional sequential machines. The flow
module is a major part of the PICS code development effort. In numerical simulation of
fluid flow in porous media there are two important practical requirements for the approxi-
mation method for the corresponding mathematical problem: the method should conserve
mass locally on any element and should produce accurate velocities (fluxes) even for highly
heterogeneous and anisotropic media with large variations of physical properties. The mixed
finite element method considered in Chapter II has all these properties. For this reason in



6.3 Applications to simulation of fluid flow in porous media 121

the current version of GCT code the mixed discretization is used for the pressure equations of
the two-phase model, whereas the saturation equation is discretized by an upstream weighted
Galerkin method. A detailed description of this code can be found in [31].

Triangulation is done first by introducing a logically rectangular grid. Using such a grid
essentially simplifies many coding issues and still allows the handling of rather complex ge-
ometries. This logically rectangular grid is used to define the upstream-weighted Galerkin
method for the saturation equation. To define the mixed method for the pressure equations
each grid cell is split into five tetrahedra. When the lowest-order Raviart-Thomas spaces
are used, one pressure and four velocity unknowns are attached to every tetrahedron in the
grid. As shown in Chapter IT the mixed method results in the system of linear equations of
a saddle-point form.

In the earliest versions of GCT code the generalized method of minimal residuals was used
to solve that systems. In the version GCT 1.3 the Lagrange multiplier technique described in
Section 2.4 has been used to replace the saddle-point system by the system with SPD matrix:

Au =f,

where matrix A corresponds to the Pj-nonconforming approximation of problem (2.13). Then
the iterative methods and preconditioning techniques developed in Chapters 111, IV, and V

are used.

The results of the experiments with GCT code (written in C) on Sun workstation are
presented in Table 6.10. The first column shows the number of cubes in the computational
domain. The parameter N in the second column denotes the total dimension of the problem.
In columns 3 and 4 of this Table we show the number of iterations and the time (in seconds)
required to solve the initial saddle-point system by the minimal residual method (MINRES)
with accuracy € = 10~%. In the next two columns we show the number of conjugate gradient
iterations and the time required to solve the same system using the Lagrange multipliers.
In the last two columns we show the results for preconditioned conjugate gradient method
(PCG) with substructuring preconditioner described in Section 4.4.

Table 6.10: Results of experiments on Sun workstation.

GCT wITH GCT wiTH PCG
MINRES CG METHOD
m X m Xm N Iter time Iter time Iter | time
2X2x2 56 66 4 22 4 12 5
4x4x4 544 349 17 52 7 14 7
8 x 8 x8 4736 871 252 100 43 15 20
16 x 16 x 16 | 39424 || 1492 | 2358 189 861 15 43

We have also experimented with the GCT code on distributed memory architectures such
as Intel’s Paragon. A domain decomposition approach is used in order to use the specific ar-
chitecture of these machines. The computational domain is decomposed into a set of logically
rectangular structures each of which is attached to a single processor. Then a corresponding
parallel algorithm for solving the problem is applied. The domain decomposition methods
developed in Chapter V of this dissertation make it possible to handle the problems in very
heterogeneous and highly anisotropic porous medium.
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The computational times required to implement one time step of the GCT code on Paragon
supercomputer using 4, 8, and 16 processors are presented in Tables 6.11, 6.12, and 6.13,

respectively.

From this experiments one can see that using the Lagrange multiplier reformulation of
the mixed system and the nonoverlapping domain decomposition methods are essential for

improving the efficiency of the iterative solution and the GCT simulator as a whole.

Table 6.11: Results of experiments with GCT code on Paragon; 4 processors.

GCT wiTH GCT wiITH
MINIMAL RESIDUALS CONJUGATE GRADIENT
mXm xm N time (sec) time (sec)
4x4x4 544 10 7
8x8x8 | 4736 94 (1m34) 19
16 x 16 x 16 | 39 424 702 (11m42) 179 (2mb9)
32 x 32 x 32 | 321 536 2405 (40m05)

Table 6.12: Results of experiments with GCT code on Paragon; 8 processors.

GCT wiTH GCT wiTH
MINIMAL RESIDUALS CONJUGATE GRADIENT

m X mXxm N time (sec) time (sec)

4x4x4 544 6 9

8x8x8 4736 45 13
16 x 16 x 16 | 39 424 359 (5mb9) 96 (1m36)
32 x32x 32| 321 536 4774 (1h19m34) 1204 (20m04)
64 x 64 x 64 | 2 596 864 16579  (4h36m19)

Table 6.13: Results of experiments with GCT' code on Paragon; 16 processors.

GCT wiITH GCT wiTH
MINIMAL RESIDUALS CONJUGATE GRADIENT

mXm xm N time (sec) time (sec)

4x4x4 544 2 1

8§ x8x8 4736 22 )
16 x 16 x 16 | 39 424 175 (2m55) 51
32 x 32 x 32 | 321536 2401 (40m01) 685 (11m25)
64 x 64 x 64 | 2 596 864 9431 (2h37m11)




CHAPTER VII
CONCLUSIONS

The main objectives of this dissertation were:

(1)

(2)
(3)

Development and study of the efficient iterative techniques for nonconforming finite
element approximations to boundary value problems of second order self-adjoint linear
elliptic PDE’s with a special emphasis on problems in three dimensions with possibly
large anisotropy in the coefficients of the PDE’s.

Construction of an iterative method based on domain decomposition for algebraic sys-
tems that occur when using nonmatching grids in subdomains.

Experimental verification of conclusions from the theoretical analysis of the algorithms
considered and application of the developed methods to the simulation of fluid flow in
porous media.

Based on the research conducted in this dissertation, the following main results are pre-
sented for the defense:

(1)

New preconditioning techniques for nonconforming approximations of two- and three-
dimensional anisotropic problems are developed and studied. It is shown that the pre-
conditioners are spectrally equivalent to the original matrices; the constants of equiv-
alence are independent of mesh size and the coefficients of the problem. In particular,
we have proposed preconditioners based on:

(a) algebraic substructuring method; estimates of computational complexity of the
implementation of constructed preconditioners are obtained and optimal arithmetic
complexity is shown.

(b) fictitious components method; the proof of an optimality of the considered method
is based on the theory of the extension of mesh functions from the original do-
main into the fictitious embedded domain; a variant of the extension theorem for
nonconforming finite element spaces is given.

(c) nonoverlapping domain decomposition method based on block bordering; it is
shown that the preconditioner constructed has an optimal arithmetic complexity.

(d) domain decomposition method on nonmatching grids; based on the technique of
domain decomposition and the fictitious components methods a construction of
block diagonal preconditioners for algebraic systems arising in the mortar finite
element method is developed.

Using an equivalence between nonconforming finite element methods and hybrid-mixed
methods the constructed iterative methods for algebraic systems with symmetric pos-
itive definite matrices are extended to saddle-point problems which arise from mixed
finite element approximations.

Extensive testing of the newly developed iterative methods and preconditioning tech-
niques are considered on model and real problems. In particular, these methods are
applied in the simulator of fluid flow in porous media.
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