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Introduction

The classical Macaulay resultant of a system of n + 1 equations in n variables
filz1y. . ,zp) =0
(1)
frs1(x1, .. yxy) =0

is a polynomial expression in the symbolic coefficients of the f; which will evaluate to zero if and
only if the f; have a common solution (possibly at infinity). To compute this resultant, we first
homogenize the system to get:

FI(X(]a"' 7Xn):0

Foi1(Xo,... . Xn) =0

where

/X X
Fi(XO,...,Xn):Xglfi< ! ")

X0 X,
and where d; = degree f;. We then form a certain square matrix A of size (n;d) where d =
14+ 3" (d; — 1). The Macaulay resultant divides the determinant of this matrix A. (In fact the
extraneous factor is the determinant of a submatrix M of A.)

A key observation here is that the size of the matrix A, and hence the size/complexity of the
computation involved, is related to the degrees d; of the polynomials involved. In effect, the form of
A allows for the possibility that every monomial of degree less than or equal to d; actually occurs in
fi- Of course in practice many of these monomials will be absent. The theory of sparse resultants
attempts to exploit the pattern of missing terms to construct resultants via determinants of much
smaller matrices. Such special forms for resultants are not new, for example the Dixon resultant is
a special type of sparse resultant.

To explain what lies behind this smaller matrix, recall that the classical Bezout bound for a
system of n equations in n variables

gl(fL‘l, e ZEn) =0
(2)

gn(T1,. .. ,xp) =0
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states that the system has either an infinite number of solutions (including solutions at infinity) or
it has no more than d = d1d2 d complex solutions (where d = degree gl) Moreover, if we count
solutions at infinity and with appropriate multiplicity, then d = dids ...d, is the exact number of
solutions in complex projective space, P%:. Of course, we are usually not interested in solutions at
infinity, and one often finds in practice that relatively few of the solutions predicted by the Bezout
count lie in C"; the majority lie at infinity.

The sparse resultant techniques exploit an alternative bound, the so-called BKK bound, which
bounds the number of solutions of a system like (2) in (C*)". Here C* = C — {0} is the set of
nonzero complex numbers. Notice that (C*)" is P minus all the coordinate hyperplanes zy = 0,
1 =0,...,and z, = 0. Since g = 0 is the hyperplane at infinity, the BKK bound counts solutions
to (2) in C™ which have all coordinates non-zero. This bound is computed from the so-called mixed
volume of a sum of polytopes constructed from the system (2).

Two remarks are in order. First, because we have removed zero from consideration, we can
consider more general systems of equations; namely systems where the g¢;’s are polynomials in

the z;’s and their rec1procals the z; ~bs. In other words, we can work in the coordinate ring

Cley,z7" ... 2,z ] of (C*)™ ThlS is completely analogous to working with n polynomials in 2n
variables, Clz1,... ,Zn,Y1,.-. ,Yn|, where we also impose the additional n conditions z;y; —1 =0
for : = 1,... ,n. Any solution to all 2n equations necessarily has nonzero values. Second, we can

easily get around the problem of having excluded those solutions where some of the z;’s are zero.
For example, if in

g1(z1,... ,2p) =0

gn(z1,... ,2p) =0,
we want to find solutions with z; = 0, we simply consider the system
g1(0,z2, ... ,2,) =0
' (4)
(0,29, ... ,2,) =0,

For the generic system (i.e. symbolic coefficients) we can use this to count the number of solutions
N in C". Namely,

N=Ny+N;i+Nyg+N3+Nyg+---

where Ny is the number of solutions to (3) with no zero values (i.e. the number predicted by the
BKK bound), Ny is the number of solutions where exactly one of the z; is zero, Ny is the number
of solutions where exactly two of the x; are zero, etc. The only problem with this approach is that
once zero is substituted for one of the z;’s, the system (e.g. (4)) becomes overdetermined. However,
for systems with no more than three variables this is not a serious impediment to carrying out the
count in the manner indicated above.

1 Newton Polytopes and the BKK Bound

We begin by considering a single polynomial f(x1,... ,x,) in n-variables. To reduce notation, we
use ¢ to denote the monomial 27" z:5? ... 25" where e = (eq,... ,e,) € Z" is a multi-exponent. Let



Ey ={m,... ,mif} C Z" denote the set of all multi-exponents occurring in f, so that

if
f=2 o™
=1

where c; # 0. Thus Ey is exactly the set of integer lattice points in R” that occur as multi-exponents
of nonzero terms in f.

Example 1: If f(z,y) = 3z — 2y — zy then Ef = {(1,0),(0,1),(1,1)} C Z* C R%. Graphically
this is

le °

—e@
Do

Definition 1: The Newton polytope of f, denoted Qy, is the convex hull of the set Ey in R".

Example 2: For f as in Example 1, the Newton polytope Q) is a triangle:

What makes sparse resultants “sparse” is that the matrix we use to compute the resultant is
based on the specific Newton polytopes (i.e. the specific multi-exponents) that occur, rather than
all terms up to some particular degree.

Example 3: The polynomial in Example 1, f(z,y) = 3z — 2y — zy, has degree 2. The general
polynomial of degree 2 is ¢y + c1z + coy + c3z® + cqzy + csy® which has a much larger Newton
polytope:



Now consider a system of n equations in n unknowns

g1(z1,...,2p) =0

gn(]:la' o 7$n) =0.

Each equation has its own Newton polytope (). Polytopes can be “added” to produce new
polytopes by a process called Minkowski sum.

Definition 2: The Minkowski sum P; + Py of two convex polytopes Py and P in R" is the set
P=P +P,={p1+p2|p1 € P and ps € P2}

which is again o convex polytope. We let Vol(P) denote the usual volume of P in R™.

In order to state the BKK bound, we must introduce the notion of mixed volume. Specifically,

given convex polytopes Py, ..., P, C R", there is a unique real-valued function MV (Py,... ,P,)
called the mixed volume which is multilinear with respect to Minkowski sum, and has the property
that MV (Py, Py,...,Py) = n! Vol(Py). Equivalently, if A1, ... , A\, are scalars, then MV (Py,... , P,)
is precisely the coefficient of A\jAg... A, in Vol(A P, + -+ + A\, P,) expanded as a polynomial in
Asee s An.
Theorem 1 (BKK Bound): Let ¢1,... ,9, € (C[(L‘l,fl,‘l_l, ceo s Tn,x, ], then the number of common
zeros in (C*)"™ is either infinite, or is less than or equal to MV (Qq,,... ,Qq,). If the g;’s are
given symbolic coefficients, then for almost all choices of numerical values for those coefficients the
number of solutions is exactly MV (Qg,,... ,Qq,)-

Example 4: Consider the following system of equations
91(z,y) = a1z + coy + c3zy = 0
92(z,y) = dix + day = dzzy =0
with the ¢;’s and d;’s # 0. Note that the only common solution with either x or y equal to zero

is (z,y) = (0,0). The BKK bound in this case is MV (Qg,,Q4,) where Q4 and Qg, are both the
triangle @) pictured below:



As MV(Q,Q) = 2! Vol(Q) = 2- 3 = 1, the BKK bound assures us in this case that there is at
most one solution with z # 0 and y # 0 (unless there are infinitely many, which can only occur if
g1 and g9 have a common factor, which in this case forces g; and go to be scalar multiples of one
another).

Note that since both g; and g, have degree 2, the Bezout bound is 4. To compare the two
bounds, one can easily see that this system always has 2 solutions at infinity. Thus the four
solutions of the Bezout bound are accounted for by (0,0), two solutions at infinity, and the one
solution from the BKK bound. Of course, the general pair of quadratic equations in two variables
can have up to four solutions in (C*)? C P:

but because our two equations are “sparse”, i.e. omit certain monomials, the BKK bound improves
on the Bezout bound.

2 Sparse Resultants

Consider now a system of n + 1 polynomials in n variables:

fl(xl,... ,ZEn) =0
(5)

Farr(@1,-. . 2a) = 0.
In general such a system is over-determined and has no solutions. Thus, in order for a solution
to exist, some relationship must hold among the coefficients of the f;’s. In fact, there will be a
single such polynomial relationship, known as the resultant of the system. This resultant is often

calculated using the determinant of a matrix involving the coefficients of the f;. Unfortunately, it
is known that resultants, in particular sparse resultants, are not in general equal to a determinant.



They will however divide a determinant. Thus we can calculate them up to some extraneous factor
as a determinant. For sparse resultants the method is described below.

To calculate the sparse resultant, we make use of the combinatorial data contained in a mixed
subdivision of the polytope Q = Qy, +---+Qy, ., C R", the Minkowski sum of the Newton polytopes
of the polynomials f1,..., fn+1. We therefore begin with a definition of mixed subdivision.

Consider m polytopes Q1,... ,Q,, C R® and their Minkowski sum Q = Q1 +--- + Q,, C R".

Definition 3: A mized subdivision A of Q = Q1+ -+ + Qum s a polyhedral subdivision of Q such
that every polyhedron F € A is of the form F = Fy + --- + F,, where F; is a face of Q; and
dim F =", dim F;.

Example 5: If Q1 = Q2 =

1
0 1
then Q = Q1 + Q2 is
2
1 1
0 1 2
A mixed subdivision is:
2
1 4
0 i 2

where:



(1) the triangle on the upper left is the sum of the vertex (0,1) regarded as a face of @); with all
of Q2;

(2) the triangle on the lower right is the sum of @ with the vertex (1,0) of Q2;

(3) the square is the sum of the edge {(z,1) s.t. 0 <z < 1} of @; with the edge {(1,y) s.t. 0 <
y < 1} of Qo.

Note that these descriptions are not unique. Moreover the subdivision itself is not unique. Another
possibility is:

Fast algorithms exist for finding mixed subdivisions.
Among the polyhedra of a mixed subdivision A of Q@ = Q1 + -+ - + @, C R are some that are
especially important:

Definition 4: A polyhedron F = Fy +---+ Fp, € A s called o mized facet if dim F' = n and every
F; has dimension < 1. (This requires m > n.)

If m = n then all the Fj in a mixed facet F' = F} + --- 4+ F,, have dim F; = 1, and in this case
the mixed volume is calculated as the sum of the ordinary volumes in R” of the mixed facets of the
mixed subdivision A:

MV(Qi,...,Qn) = > Vol(F).

mixed
facets
FeA

Example 6: In Example 5 above the square is the only mixed facet. Thus MV (Q1,Q2) =
Vol(Square) = 1. Note this agrees with our previous observation; since Q1 = @2, we had
MV(Q1,Q2) = 2! Vol(Q1) = 1. Also in the second mixed subdivision in Example 5 the only
mixed facet is the parallelogram which also has volume equal to 1.

Now we consider again the system (5) of n+1 equations in n variables and compute its resultant
(up to extraneous factors) as det M for a certain square matrix M. The rows and columns of M
will essentially be indexed by the integer lattice points in the Minkowski sum Q = Qp, +---+Qy, .,
of the Newton polytopes of the polynomials f;, ¢ = 1,... ,n + 1 in the system (5). The specific
entries m;; of M are determined with the help of a mixed subdivision A of Q.



Explicitly, we must first perturb the Minkowski sum @ slightly so that each integer lattice point
will lie in the interior of a polyhedron F' in the mixed subdivision A. So pick a small vector § and
consider the shifted polyhedron (6 + Q).

The rows and columns of M will be indexed by

I=72Z"Nn(+Q).
Example 7 (see Canny “A Toolkit for Non-linear Algebra”):
Let

fi(z,y) = ci1 + crozy + C13x2y + cuux
fa(z,y) = cary + 022x2y2 + 023x2y + coux
f3(z,y) = c31 + 32y + 332y + cax.

The Newton polytopes are

Qp =
1+ %12 V13
V14
0 |v11 1 2
2+ p U22
_ V21
Q. 1 V93
V24
0 1 2
Qs = V32
1 V33
V34
0 (Y31 1

where we have labeled the vertices to correspond with the respective coefficients of the f;’s.



The Minkowski sum () with a particular mixed subdivision A is shown below:

We perturb this slightly by shifting it to the left and down. This leaves 15 lattice points {(1,0)
(2,0) (0,1) (1,1) (2,1) (3,1) (0,2) (1,2) (2,2) (3.2) (4,2) (L,3) (2,3) (3,3) (4,3)} inside § + Q. Note
that 7 lattice points in () are dropped when we shift.

y3 ° ° °
y? / . . .
y ® ) ) ®

1 z 22 3 7



M will thus be a 15 x 15 matrix of the form:

10 20 01 11 21 31 02 12 22 32 42 13 23 33 43

W WWWNNNNNNF MR OO

B W N R WNEFHEOWNFON -

Its rows and columns will be indexed by the lattice points inside § + Q.

To illustrate how to fill in a row of the matrix M, we take a particular case from the example.
Consider the row labeled (1,2), which is the eighth row as shown above. The point (1,2) lies in a
certain polytope § + F' where F' = F}| + F5 4+ F3 is a polytope of the mixed subdivision A of Q. In
this case Fj is the vertex vi; of Qy,, F> is all of Jf,, and F3 is the vertex vz of Q4. The rule is
that we select the vertex associated with the F; of dimension zero having the largest ¢, in this case
i = 3. Thus vs3 is the relevant vertex. Now wv33 = (1,1). We take the row index (1,2) and subtract
(1,1) to get (0,1) which is the monomial y. We multiply y with f3 (because we are using a vertex

in Qf3):
yfs = ca1y + caay® + cazzy® + caamy.

We enter c3; in the (0,1) column of row (1,2), 32 in the (0,2) column, cz3 in the (1,2) column, and
¢34 in the (1,1) column. All other entries are zero. The final result would be

1,0 20 01 1,1 21 31 02 12 22 32 42 13 23 33 43
]., 0 [ C11 C14 0 0 C12 C13 0 0 0 0 0 0 0 0 T
2, 0 C31 C34 0 C32 C33 0 0 0 0 0 0 0 0 0 0
0, 1 C24 0 C21 0 Ca3 0 0 0 C22 0 0 0 0 0 0
1, 1 0 0 0 C11 C14 0 0 0 C12 C13 0 0 0 0 0
2, 1 0 0 0 0 C11 C14 0 0 0 C12 C13 0 0 0 0
3, 1 0 Co4 0 C21 0 C23 0 0 0 Co2 0 0 0 0 0
0, 2 0 0 0 0 0 0 C11 C14 0 0 0 C12 C13 0 0
1, 2 0 0 C31 C34 0 0 C32 C33 0 0 0 0 0 0 0
2, 2 0 0 0 C31 C34 0 0 C32 C33 0 0 0 0 0 0
3, 2 0 0 0 0 C31 C34 0 0 C32 C33 0 0 0 0 0
4:, 2 0 0 0 0 0 Co4 0 0 Co1 0 C23 0 0 0 Co2
]., 3 0 0 0 0 0 0 0 C31 C34 0 0 C32 C33 0 0
2, 3 0 0 0 C24 0 0 C21 0 Co3 0 0 0 Co9 0 0
3, 3 0 0 0 0 0 0 0 0 C31 C34 0 0 C32 C33 0
4, 3 L 0 0 0 0 0 0 0 0 0 C31 C34 0 0 C32 C33 1

Note that the labeling and indexing choices could affect the placing of the matrix entries, but the
desired resultant will always be a factor of det M independent of the choices made.
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3 Solving Systems of Equations
Consider now a system of n equations in n variables

fl(fL‘l,... ,ZEn) =0
: (6)
fo(z1,.ooyx) =0

and let’s assume that the set of common solutions (including the solutions at infinity) consists of a
finite set of isolated points. In other words, we assume that the homogenized system,

FI(X07"' 7Xn):0

F,(Xo,...,X,)=0

where

/X X
Fi(XO,...,Xn):ngfi( ! ”)

fo,---,fo

and where d; = degree f;, has a zero dimensional set of solutions in complex projective n-space,
PZ.

As we have already mentioned, Bezout’s Theorem tells us that the number of common solutions
is bounded by the product of the degrees d = [[i'; d;, and in fact is equal to d if we count
solutions (including those at infinity) with appropriate multiplicity. The question now is to find
those solutions, and to do it by making use of the sparse resultant.

Recall that the resultant tells us, loosely speaking, whether or not a system of n 4+ 1 equations
in n variables (or n + 1 homogeneous equations in n 4+ 1 variables) has a solution (non-trivial
solution). Thus to use the resultant, we must augment the system (6) (or (7)) by one equation.
The appropriate choice of equation to add is a generic linear equation:

Uy + ULxy + -+ Upxy =0

(OI' woXg + w1 X1+ - +up X, = 0).
The idea behind this choice is best illustrated in the case of two variables. Consider a system
of 2 equations in 2 variables:

fl(xay) =0
fQ(xay) =0

Geometrically these equations represent two curves in the plane, and the common solutions to
the system (8) are just the points where the curves intersect. Say («, 3) is one such point:

(8)

11



ug + urx + ugy =0

If we add a general line uy 4+ w12 + usy = 0 to the system, the result will be a system of 3 equations
in two variables which will have no common solution. Only special choices of ug, ui, and us
will produce a system with such a solution. On the one hand, this will be the case if the line
uo + u1x + usy goes through one of the solutions to the original system f; = 0 and fo = 0 (possibly
at infinity) say for example («, 3):

uo + w1 x + ugy =0

This will happen precisely when the u; satisfy ug + au; + Sus = 0. On the other hand, we know
that

fl (I, y) =0

f2 (I, y) =0

ug + w1z + ugy =0
will have a common solution (possibly at infinity) if and only if the resultant R(ug,u1,u2) = 0.
Here we regard the resultant as a polynomial in the variables ug, w1, us. It follows from this that

ug + auy + Pus must be a factor of R(ug,u1,us). In fact, we see that R(ug,u1,us) must factor
completely into linear factors of the form Aug + Qu; + Tug where (A : 60 : 7) € IP’?C is a solution of

Fi(X,Y,Z) =0 and F5(X,Y, Z) = 0 where F,(X,Y,Z) = Z% f; (% %) In particular @ = ¢ and

B = % will be a solution to the original system

fl(xay) =0
fZ(xay) =0.

12



(Note that those factors with A = 0 correspond to solutions at infinity.)
In higher dimensions the linear equation

Uy + urxy + -+ Upxy =0

represents a “variable” hyperplane, but the arguments above work the same way to show that
R(ug,. .. ,up) factors into linear factors corresponding to the roots of (6) (really of (7)).

A potential problem occurs if the set of solutions to the original system is not a discrete set
of points, but contains a component of dimension one or more. In that case, every hyperplane
uo + w121 + - -+ + upx, will intersect that component (in projective n-space) so that the system

fl(Il,... ,:L‘n) :0

fn(xl,... ,(I,‘n) =0
ug +urzy + - +upzy, =0

will always have a solution. This means that the resultant R(uy, ... ,u,) will be identically zero and
of no use. Note that this can occur even when the solution set in C" is a discrete set of points if the
equations have a positive dimensional set of solutions at infinity. Canny in his paper “Generalized
Characteristic Polynomials” details a way to handle this problem.

Finally, in lieu of actually factoring R(ug,...,u,), we can use a modification of the above
ideas, coupled to some numerical linear algebra techniques (specifically computing eigenvalues), to
produce an effective algorithm for solving the original system (6). This is discussed in the next
section.

4 Numerical Methods

Currently there are two methods which are the primary candidates for use in solving systems of non-
linear polynomial equations. The first is based on resultants as discussed above and uses numerical
linear algebra techniques, specifically eigenvalue computations, to find the solution. This approach
is discussed below. The other method is homotopy continuation. Homotopy methods are faster in
practice for problems involving a very large number of equations and variables. Unfortunately, if
the problem is singular in a certain sense, homotopy methods may run very slowly or even diverge.
The resultant /eigenvalue method can handle small to medium sized problems and generally is more
robust in the singular cases.

The approach begins with a version of the method discussed in section 3 above. We augment
the system (6) of n equations in n variables by adding a linear equation of the form

staizy+---t+apxy

where aq, ... ,a, are specified constants and only s (and z1,... ,z, of course) is an unknown.
As s varies, we are sweeping out a family of parallel hyperplanes that fill n-space. For example
when n = 2 the lines s + z 4+ y = 0 look like:

13



Again, the resultant R(s), viewed as a polynomial in s, will have a root s = s¢ precisely when
the hyperplane

80+a1$1+a2$2+"'+an$n:0

passes through one of the points corresponding to a solution of the original system (6) (actually
(7)). If we do this for n independent systems of hyperplanes (by choosing the a; so that the n x n
matrix A, formed by the coefficients a; to a,, for each of the n systems is invertible), then we can
solve for the roots by computing

where sgi) is a root of the ith resultant R(")(s) obtained by augmenting (6) with the i*! linear
equation which includes s as a variable in the constant term (with respect to z1,... ,zy,).

Example 8: Augmenting by the linear form s — z; will yield a resultant R(s) whose roots are
the x1 coordinates of the common solutions to f; =0,..., f, =0.
Now the (sparse) resultant R(s) of the system

fl(Il,... ,In) :0

fa(z1,. oo smp) =0
st+aizy+---+apzy, =0

is computed using the determinant of a matrix which can be put in block form:

Ry Ry
R21 (8) R22 (8) )

Here Ry (s) and Ras(s) have entries that are linear in s. Using elementary row operations we can
get

Ry Ry
0 R22(3) — R21 (S)Rl_llng

14



which is a matrix whose determinant (up to the constant factor det R;;) is det M (s) where M (s) =
Ros(s)—Ray (s)RﬁlRlQ has entries that are linear in s. Thus M (s) = sM;+M,. Finally multiplying
by Ml_l, we get a matrix

sI + MyM;*

whose determinant has roots in s that are the same as the roots of the resultant R(s). But the
roots of

det(sI + MoM[ ")

are just the eigenvalues of MoM ! and these can be computed by well known methods.

Note when using the sparse resultant, one can define the matrix used to compute it in such a
way that M; will be the identity. Thus inversion will not be required. Moreover, if the linear form
s+ajzy + -+ apx, has been selected so that it never goes through two solutions of (6) (which is
the case with probability one), then as long as the common solutions to (6) have multiplicity one,
the eigenvalues will have multiplicity one, and the roots can be computed from the eigenvector.
One thus avoids doing the computation n times, at the expense of computing eigenvectors.
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