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Abstract� An optimal iterative method for solving systems of linear algebraic equations arising from

nonconforming �nite element discretizations of second order elliptic boundary value problems with anisotropic

coe�cients is constructed and studied� The technique suggested is based on decomposition of the original

domain into nonoverlapping subdomains� It is assumed that the equation coe�cients in each subdomain

vary inconsiderably� This approach combines the ideas of domain decomposition methods� the algorithms of

multilevel and algebraic multigrid methods with the bordering method� An iterative process whose convergence

rate is independent of the mesh step size and the ratio of anisotropy in the coe�cients is constructed� It is

shown that the number of arithmetic operations required for realization of the method with a given accuracy

is proportional to the number of unknowns of the original algebraic problem�
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In this paper we propose an iterative method for solving systems of grid equations ap�
proximating boundary value problems for second order elliptic equations with anisotropic
coe�cients� The technique suggested is based on decomposition of the original domain com�
posed of rectangles into nonoverlapping subdomains inside which the equation coe�cients vary
inconsiderably�

At present� there are numerous results on non�overlapping domain decomposition �see�
e�g�� ��� �� �	� 
�� 
��� Almost all of them can be viewed as so�called additive Schwarz method
����� Algorithms of this kind� which have satisfactory convergence properties for the case
of many regions� have one feature in common� In addition to subspaces and subproblems
directly related to individual subdomains� there is a global� coarse subspace� The absence of
such a subspace in general results in slow convergence ���� 
��� All such methods are based on
decomposing the domain into subdomains of size d and involve the solution of related problems
on the subdomains and lower�order coupling systems on the subdomain boundaries� The best
condition number for the preconditioned system is shown to be on the order of ���ln �d�h��
� � �� 
� ���� ��� 
��� where h is the mesh�size parameter�

Another approaches consist in developing the bordering method �
�� 

� or capacitance
matrix method ��� �
� �	�� The main idea is to use well known techniques to solve or precon�
dition the problems in the subdomains� For the problem at the interfaces a preconditioner is
constructed in the form of an inner Chebyshev iterative procedure� More precisely� the pre�
conditioner is constructed for the Schur complement of the original symmetric positive de�nite
matrix� de�ned after eliminating the blocks corresponding to the unknowns in the subdomains
��� 
��� This approach for solving systems of mesh equations combines the ideas of domain
decomposition methods ��� �� �	� 
�� 
��� the algorithms of multilevel and algebraic multigrid
methods �
� ��� ���� with the bordering method �
�� 

��

The work in this direction has been done in ��� �� �
� ��� �	� 
�� 

�� Preconditioning
the Schur complement on the interface between subdomains makes it able to construct such
methods that the condition numbers for the resulting preconditioned systems are independent
of mesh�size parameter h and size of the subdomains d� Although the results obtained in all
these references include the cases of large jumps in the coe�cients of the problem� none of
them deals with the case of anisotropic coe�cient tensor�
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The theory developed in this paper provides an approach which is applicable to second
order elliptic boundary value problems with large anisotropy ratio in the coe�cients� The
main idea we follow here is close to the construction considered in ��� 
��� In these works along
with the Schur complement on the interfaces S� authors introduced some auxiliary interface
operator �B� such that the computation of its inverse is very cheap and the condition number of
the preconditioned operator Cond� �B��

� S� is bounded from above by C � h��� with a positive
constant C and h is a mesh�size parameter� Then the preconditioner B� for operator S� is
de�ned in the form of matrix polynomial of degree m�

B��
� � Pm� �B��

� S�S
��
� �

Using Chebyshev polynomials it is shown that the preconditioner B� can be constructed to
be spectrally equivalent to the Schur complement S� and condition number for the resulting
preconditioned system is independent of the diameters of the subdomains d and mesh�size
parameter h with only a slight increase in computational e�ort� The arithmetical cost of
solving the problem with matrix B� is proportional to the dimension of the initial discrete
problem� i�e� O�h���

The purpose of this paper is to develop a variant of the bordering method for second order
elliptic partial di�erential equations with anisotropy in the coe�cients approximated by the
nonconforming P� elements� We note that an important di�erence between nonconforming an
conforming cases is that there are no nodes at the vertices �or wire basket of the subregions�
Thus� there is no problem of crosspoints which is an essential part of the domain decomposition
method when using conforming �nite elements ��� ��� 
�� 

� 
��� It makes the construction
of the preconditioner for the Schur complement on the interfaces between subdomains very
clear and easy� The construction of this interface preconditioner is the most interesting part
of the work� The main result of this paper is that the condition number of the preconditioned
operator is bounded by a constant independent of the mesh�size parameter and the coe�cients
of the problem�

The outline of this paper is as follows� In Section � we pose the problem� give its non�
conforming �nite element discretization� the matrix formulation and outline the construction
of a block diagonal preconditioner to the algebraic system� In Section 
 we consider a model
problem in a unit square with constant coe�cients and construct the preconditioners for the
problems in subdomains� Section � contains the main result of the paper� It is subdivided into
three subsections� In the �rst subsection we construct a preconditioner for the problem at the
interface in the form of an inner iterative procedure considering the union of two rectangular
subdomains� The second subsection describes an algorithm for implementing the interface
preconditioner� Then� in the third subsection we construct the interface preconditioner for a
general domain composed of rectangles� The arithmetic cost of solving the system with the
preconditioner proposed is proportional to the number of unknowns of the original algebraic
system� i�e� the preconditioner constructed is of the optimal order of arithmetical complexity�
In Section 	 we provide the results of numerical experiments� These computations show that
the theoretical estimates are fully realized in practice�

�� Problem Formulation� Let � be a bounded domain on a plane IR�� which is com�

posed of open rectangles �i whose sides are parallel to the coordinate axes� � �
mS
i��

�i�

Consider an elliptic problem

�r � � �K � ru � �c� � u � f in ��
u � � on ���

� �Kru�n � � on ���

����

where �K�x is a positive de�nite symmetric coe�cient matrix� �c��x is a nonnegative bounded
function� f�x � L��� is a given function� �� � �� � ��� and �� � �� � �� We consider the
case of �� � �� �� �� The pure Neumann problem ��� � � can be treated in a similar way
but for the sake of simplicity is not described here�
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Assume that the interior of each side of rectangles �i either entirely belongs to �� or ���
or lies inside �� Also assume that �i� i � �� � � � �m� can have either a common side or only a
common vertex� or they do not overlap� It is obvious that any domain composed of rectangles
can be partitioned by additional lines into subdomains �i satisfying this assumption�

Let the bilinear form �a��� � be de�ned by

�a�u� v � � �Kru�rv � ��c� � u� v� u� v � V��� � fv � H��� � v � � on ��g�

where ��� � denotes the inner product in L���� Assume that there a diagonal coe�cient
matrix K�x � diagfkx�x� ky�xg and a piecewise constant function c��x� such that

kx�x � kx�i� ky�x � ky�i� c��x � c��i� x � �i� i �� �� � � � �m�

with constants kx�i � �� ky�i � �� c��i � �� satisfying inequalities

�� ��Kru�ru � �c� � u� u 	 a�u� u 	 �� ��Kru�ru � �c� � u� u ����


for any u � V��� with some positive constants ��� ���
The standard weak form of ���� is� �nd u � V��� such that

�a�u� v � �f� v� 
v � V��������

Let Ch be a rectangular mesh in �� Assume that in each rectangle �i the mesh steps hx�i�
hy�i� i � �� � � � �m� are constant in each direction� and the boundaries ��i of the rectangles
belong to the mesh lines� Also assume that there exist constants c� and c� independent of h
such that

c�h 	 min
i�������m

fhx�i� hy�ig 	 max
i�������m

fhx�i� hy�ig 	 c�h�

Here h � ��
p
M � where M is the number of mesh nodes belonging to � n ���

Let Th be a regular partitioning of Ch into triangles � ���� and let Vh�� be the P��
nonconforming �nite element space of functions v � L��� ���� that is vj� are linear for all
� � Th� v are continuous at the middle points of the sides of � � Th� and vanish at the middle
points of the sides of triangles on ��� Note that the space Vh�� is not a subspace of H����

De�ne the bilinear forms on Vh�� by

�ah��u� v �
P

��Th
� �Kru�rv� � ��c� � u� v� � 
 u� v � Vh���

ah��u� v �
P

��Th
�Kru�rv� � �c� � u� v� � 
 u� v � Vh���

���	

where ��� �� is the inner product in L���� � � Th� Then the P��nonconforming �nite element
discretization of ���� is� �nd uh � Vh such that

�ah��uh� v � �f� v� 
v � Vh�������

Once a basis f�i�xgNi�� for Vh�� is chosen� where N � dim Vh��� then ���� leads to a

system of linear algebraic equations� Write u�x �
PN

i�� ui�i�x� Then ���� becomes

NX
i��

ui�a
h
���i� �j � �f� �j� j � �� � � � � N�

or in matrix representation

�Au � f �����

where �Aji � �ah���i� �j� fj � �f� �j� i� j � �� � � � � N �
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In the same way we de�ne matrix A by Aji � ah���i� �j� i� j � �� � � � � N � Then ���

implies that

���Au�u 	 � �Au�u 	 ���Au�u� 
u � IRN �����

i�e� matrices �A and A are spectrally equivalent�
The underlying method to solve ���� is a preconditioned iterative method� Inequalities

���� suggest considering matrix A as a preconditioner to �A� Therefore� we need to �nd an
e�cient method for solving the problem

Av � g�����

Let u�i� and v�i� denote the vectors corresponding to the �nite element functions u and
v from Vh��i� respectively� Let A

�i� denote the local sti�ness matrix arising from ah�i��� ��

� �A�i�u�i��v�i� � �ah�i�u� v� 
u� v � Vh��i�����

For each subdomain �i� i � �� � � � �m� we can partition the degrees of freedom u�i� into two
sets� The �rst set includes the degrees of freedom at the nodes in the interior of subdomain

�i� denoted u
�i�
I � and the second set corresponds to the degrees of freedom at the nodes on the

boundary ��i n��� denoted u�i�� � Such a partitioning induces the partitioning of A�i� given by

�A�i�u�i��v�i� �

��
A
�i�
II A

�i�
I�

A
�i�
�I A

�i�
��

��
u
�i�
I

u
�i�
�

�
�

�
v
�i�
I

v
�i�
�

��
������

Finite element system ���� has the obvious algebraic representation��
�����
A
���
II � A

���
I�

� � �
���

� A
�m�
II A

�m�
I�

A
���
�I � � � A

�m�
�I A��

�
����	

�
����
v
���
I

���

v
�m�
I

v�

�
���	 �

�
����
g
���
I

���

g
�m�
I

g�

�
���	 ������

with block A�� de�ned by

�A��u��v� �

mX
i��

�A
�i�
��u

�i�
� �v

�i�
� �����


Note that blocks A
�i�
II � i � �� � � � �m� correspond to the boundary value problems in the rect�

angles �i

ah�i�uh� v � G�v� 
v � Vh��i� i � �� � � � �m������

with homogeneous Dirichlet boundary conditions imposed on the boundaries ��i� Denote the

number of degrees of freedom in �i� ��i n ���
m�
i��

�i and
m�
i��

��i n �� by N
�i�
I � N

�i�
� � NI and

N�� i � �� � � � �m� respectively�

Eliminating the unknowns v
�i�
I � i � �� � � � �m� in ������ we obtain the following Schur

system�

��v� � G������	

where

�� � A�� �
mX
i��

A
�i�
�I

h
A
�i�
II

i��
A
�i�
I�� G� � g� �

mX
i��

A
�i�
�I

h
A
�i�
II

i��
g
�i�
I ������
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Thus� The solution to system ����� can be reduced to the construction of an e�cient
algorithm for solving systems ����� in subdomains and the Schur complement system ����	�

The algorithm for solving subdomain problems with matrices A
�i�
II is considered in Section


� It is shown that these problems can be solved very e�ciently�
The main goal of this paper is to construct an easily invertible matrix B spectrally equiv�

alent to matrix ���

c��B�v��v� 	 ���v��v� 	 c��B�v��v�� 
v� � IRN� �

where constants c� and c� are independent of the mesh size parameter h� the subdomain
diameters� and value of the coe�cients� This issue is discussed in detail in Section ��

�� Model problem in a unit square� Here we discuss an algorithm to solve the sub�
domain systems� Consider a model problem on a unit square�

�kx�
�u

�x�
� ky

��u

�y�
� c�u � f� in � � ��� ����

u � �� on ���
�
��

where coe�cients kx � �� ky � �� c� � �� are constants in �� It is clear that a method
developed for this model problem can be easily generalized for the case of rectangular domain
and mixed boundary conditions�

Let Ch � fC�i�j�g be a partition of � into uniform squares with the length of the side
h � ��n� where �xi� yj is the lower left corner of the square C

�i�j�� We enumerate the squares
in a lexicographical order� �rst� in the y�direction� then in the x�direction� Next� we divide
each square C�i�j� into 
 triangles as shown in Figure �a� The partitioning of � into triangles
is denoted by Th�

We introduce the set of centers of all edges of the triangulation of �� and the set Qh of
those centers that are not on the Dirichlet boundary �� � �� �see Fig� �a� The Crouzeix�
Raviart P��nonconforming �nite element space Vh is de�ned by

Vh � fv � L��� � vj� � P���� 
� � Th� v is continuous at the points
from Qh and vanishes at the middle points of edges on ��g��
�


Let the dimension of Vh be N � Obviously� N � �n��

� �

� �

� �

� � �

� � �

�

�

�

�

�

�

�

�

�

�

�

�

���



�

�
	

�a� Triangilation of the domain �� �b� Local enumeration of the degrees of freedom�

Figure �� Triangilation and partition of the degrees of freedom�

Now we de�ne the bilinear form on Vh by

ah�u� v �
X
��Th

Z
�



kx
�u

�x

�v

�x
� ky

�u

�y

�v

�y
� c�uv

�
dx� 
 u� v � Vh��
��

Thus the nonconforming discretization of problem �
�� is given by seeking uh � Vh such
that

ah�uh� v � �f� v� 
 v � Vh��
�	
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For any function v � Vh we denote by v � IRN its representation with respect to the basis in
Vh�

Let �u�vN be a standard bilinear form de�ned on IRN by �u�vN �
P

x�Qh
u�xv�x�


u� v � Vh� Then de�ne symmetric and positive de�nite operator A � IRN � IRN by

�Au�vN � ah�u� v� u� v � Vh��
��

For each square C � C�i�j� � Ch� denote by V C
h the subspace of the restriction of the

functions from Vh into C� For each v � V C
h � we indicate by vc the corresponding vector�

The dimension of V C
h is denoted by Nc� Obviously� for a square without faces on �� we have

Nc � ��

The local sti�ness matrix AC on a square C � Ch is given by

�ACuc�vcNc
�
P
��C



kx�

�u

�x
�
�v

�x
� � ky�

�u

�y
�
�v

�y
� � c��u� v�

�
�


u� v � V C
h �

�
��

Note that matrices AC are positive de�nite when C��� �� � and at least semide�nite otherwise
�if c� �� � then all the matrices AC are positive de�nite� The global sti�ness matrix is
determined by assembling the local sti�ness matrices�

�Au�vN �
X
C�Ch

�ACuc�vcNc
� 
u�v � IRN ��
��

To de�ne the solution procedure we divide all the unknowns in the system into two groups�

�� The �rst group consists of the unknowns corresponding to the edges of the triangles
that are internal for each square �these are unknowns corresponding to the nodes
marked by �� in Fig� �� We denote these unknowns by vc�i�j�� i� j � �� � � � � n�


� The second group consists of all unknowns corresponding to the edges of the squares
in the partition Ch� without the faces on �� �Fig� �� the nodes marked by ����
�a First� we enumerate the unknowns on the edges perpendicular to the x�axis

�nodes 
 and � in Fig� �b� We denote these unknowns by vx�i�j�� i � �� � � � � n���
j � �� � � � � n�

�b Second� we enumerate the unknowns on the edges perpendicular to the y�axis
�nodes 	 and � in Fig� �b� We denote these unknowns by vy�i�j�� i � �� � � � � n�
j � �� � � � � n� ��

Now we consider a square C that has no face on the boundary �� and enumerate the
edges sj � j � �� � � � � �� of the triangles in this square in correspondence with the partitioning
introduced above as is shown in Figure �b� Then the local sti�ness matrix of this square has
the following form�

AC �

�
A���c A���c

A���c A���c


��
��

Introducing parameter c � c�h
���
 we can write

A���c � 	 �kx � ky � c� � A���c � AT
���c � ��
kx��
kx��
ky��
ky� ��
��

A���c �

�
���


kx

kx


ky

ky

�
��	� 
c

�
���

�
�

�
�

�
��	 �
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The splitting of space IRN induces the presentation of the vectors� vT � �vT� �v
T
� � where

v� � IRN� � v� � IRN� � and v� corresponds to the unknowns of the 
�nd group� Obviously�
N� � n� and N� � N � n�� Then matrix A can be presented in the following block form�

A �

�
A�� A��

A�� A��


��
���

where A�� � IRN� � IRN� is a diagonal matrix�
Now denote by �A�� � A�� � A��A

��
�� A�� the Schur complement of A obtained by elimi�

nation of the vector v�� Then A�� � �A�� �A��A
��
�� A��� so matrix A has the form

A �

�
�A�� �A��A

��
�� A�� A��

A�� A��


��
���

To understand the structure of the Schur complement �A�� let us write explicitly the matrix
equation

Av � g

in terms of the unknowns vci�j � vxi�j � and vyi�j � For any square C�i�j� � �� �� � we have�

	�kx � ky � cvci�j � 
kx�vxi�j � vxi���j� 
ky�vyi�j � vyi�j�� � gci�j � i� j � �� � � � � n�

	�kx � cvxi�j � 
kx�vci���j � vci�j � gxi�j � i � 
� � � � � n� j � �� � � � � n�

	�ky � cvyi�j � 
ky�vci�j�� � vci�j � gyi�j � i � �� � � � � n� j � 
� � � � � n�

After eliminating the unknowns vxi�j and vyi�j we have a ��point computational scheme for
the unknowns vci�j �

�
ax � 
ay � bvci�j � ax�vci���j � vci���j� ay�vci�j�� � vci�j�� � �gci�j ��
��


where

ax �
kx

� � c�kx
� ay �

ky
� � c�ky

� b � 	c



� �

�

� � c�kx
�

�

� � c�ky

�
��
���

It is easy to see matrix �A�� can be represented in a tensor product form �according to the
enumeration introduced earlier in this section�

�A�� � ax�Ax � Iy � ay�Ix �Ay � b�Ix � Iy��
��	

where the matrices Ix� Iy � IRn � IRn are identity ones� and the matrices Ax� Ay � IRn � IRn

are tridiagonal�

Ax � Ay �

�
������

� �� �

�� 
 ��
� � �

� � �
� � �

�� 
 ��
� �� �

�
�����	 ��
���

To solve the problem with separable matrix �A�� we can use either the discrete fast Fourier
transform �
	� or an algebraic multigrid method �AMG �
� ��� ��� 
�� 
��� When an imple�
mentation cost of the �rst method is estimated by O�h�� ln �h��� the AMG methods have
the optimal order of arithmetic complexity O�h��� Since these methods are well described in
the literature we are not going to discuss them in greater detail�
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�� Preconditioner for the interface problem� In this section we construct a precon�
ditioner for the problem at the interface in the form of an inner iterative procedure� More
precisely� we construct here a preconditioner for the Schur complement of the original matrix�

���� Model problem� For the sake of simplicity� let us consider the problem �
�� for
the case of � being a rectangle composed of two squares  � �  ���  ��� � �  ���  �� �see Fig� 
�

� � f�x� y � � � x � 
� � � y � �g
�i � f�x� y � i� � � x � i� � � y � �g� i � �� 
�

����

Assume that coe�cients kx� ky � c� are constants in �i� i � �� 
� i�e�

kx � kx�i � const � �� ky � ky�i � const � �� c� � c��i � const � ��

Let Th be a regular triangulation of domain � with mesh�size h �as described in Section
�� In this case ����� has the form��

�� A
���
II � A

���
I�

� A
���
II A

���
I�

A
���
�I A

���
�I A��

�
�	
�
�� v

���
I

v
���
I

v�

�
�	 �

�
�� g

���
I

g
���
I

g�

�
�	 ����


Note that blocks A
�i�
II � i � �� 
� correspond to the boundary value problems in subdomains �i

and block A�� is a diagonal matrix�

� �

� �

� �

� � �

� � �

� �

� �

� �

� � �

� � �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�� ��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�� ��

�

�a� Triangilation of the domain �� �b� The degrees of freedom of the reduced problem�

Figure �� Degrees of freedom of real and reduced problems�

Eliminating the unknowns vxi�j and vyi�j in each subdomain as is discussed in Section 

we get the problem �

��
�A
���
II � �A

���
I�

� �A
���
II

�A
���
I�

�A
���
�I

�A
���
�I A��

�
�	
�
�� v

���
c

v
���
c

v�

�
�	 �

�
�� g

���
c

g
���
c

g�

�
�	 �����

where blocks �A
�i�
II � i � �� 
� are separable matrices� and vectors v

�i�
c � i � �� 
� consist of the

unknowns vci�j in each subdomain� In Figure 
b� the nodes corresponding to these unknowns
are marked by ���

Matrix A�� is de�ned by equality ����


�A��u��v� �

�X
i��

�A
�i�
��u

�i�
� �v

�i�
� �

Introducing the subdomain Schur complements

�
�i�
� � A

�i�
�� � �A

�i�
�I

h
�A
�i�
II

i��
�A
�i�
I�� i � �� 
����	
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the Schur complement ����� can be rewritten in the form�

�� � A�� �
�X

i��

�A
�i�
�I

h
�A
�i�
II

i��
�A
�i�
I� � �

���
� � �

���
� �����

We construct a preconditioner B� for �� by de�ning preconditioners B
���
� and B

���
� for

�
���
� and �

���
� � respectively� and setting

B� � B
���
� �B

���
� �����

Let us consider subdomain ��� matrices �
���
� and A

���
�� � and omit the index ���� for

simplicity� Boundary nodes belonging to � �marked by ��� and internal nodes �marked by
�� are schematically shown in Figure ��

The following lemma is valid�
Lemma ���� There exists an h�independent constant � such that

� � h �A��u��u� 	 ���u��u� 	 �A��u��u�� 
u� � IRN� �����

Proof� Consider an eigenvalue problem

��u� � 	A��u�� u� � IRN� �����

Since the symmetric matrices �� and A�� are positive de�nite problem ���� has N� positive
eigenvalues�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

Figure �� Degrees of freedom of the model subdomain problem�

It is obvious that eigenvalues 	i� i � �� � � � � N�� of problem ���� can be found from the
system of equations

�AIIuI � �AI�u� � ��

�A�IuI �A��u� � 	A��u��
����

Here matrix �AII is de�ned by �
��	� The NI �N� matrix �AI� has a form

�AI� �

�
����

�
���
�

�
kxIy

�
���	 �

�
����

�
���
�

�
kx

�
���	� Iy �

and the diagonal N� �N� matrix A�� is de�ned by A�� � 
�kx � cIy �
De�ne by �l � IRn an eigenvector of n�nmatrix Ay �
��� corresponding to the eigenvalue


l�

Ay�l � 
l�l� l � �� � � � � n������
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Note that we explicitly know the eigenvalues and eigenvectors of matrix Ay�


l � 	 sin � �l


n
� �l �

�
sin

�l�
i� �


n

�n

i��

� l � �� � � � � n������

Fix some l � ��� n� and de�ne a vector�
uI
u�


�

�
v � �l
�l


�

with some vector v � IRn and substitute it in system ����� From the second equation of ����
it follows that eigenvalues of problem ���� are de�ned by the expressions

	l � �� kx
kx � c

v�l�n � l � �� � � � � n�����


where a parameter v
�l�
n is the n�th component of vector v�l� from the system

�AII�v
�l� � �l � � �AI��l

or� using expressions �
����

�axAx � �
lay � bIxv
�l� � 
kx

�
� � � � � �

�T
������

Introducing notations�

dl � 
l
ay
ax

�
b

ax
� e �


kx
ax

� 




� �

c

kx

�
�����	

system ����� can be rewritten in the form�

�
������

� � dl ��
�� 
 � dl �� �

� � �
� � �

� � �

�� 
 � dl ��
� �� � � dl

�
�����	 �

�
�������

v
�l�
�

v
�l�
�
���

v
�l�
n��

v
�l�
n

�
������	
�

�
������

�
�
���
�
e

�
�����	 ������

Set xl � � � �
�dl and consider the following recurrent sequence�

�� � �
�� � 
xl � �
�i�� � 
xl�i � �i��� i � �� � � � � n� ��

�����

It is easy to see that

�i � Ui�xl � Ui���xl� i � �� � � � � n�

where Um�x is the Chebyshev polynomial of the 
�nd kind of degree m�

Um�x �
�



p
x� � �


�
x�

p
x� � �

�m��

�
�
x�

p
x� � �

���m���
�
�

By induction it can be shown that

v�l�n � e � �n��
�n�� � �n

� e � Un���xl � Un���xl

Un�xl � 
Un���xl � Un���xl
������
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Since xl � � then v
�l�
n � � for any l � �� � � � � n� From ����
 it follows that the maximal

eigenvalue of problem ���� is bounded from above by 	max 	 ��
Now we have to estimate the minimal eigenvalue 	min of problem ���� from below� Taking

into account that Un�xl � 
xlUn���xl� Un���xl we get

v�l�n � e � �
xl � �Un���xl� Un�xl

�
xl � 
Un���xl
�

e



�



xl � �

xl � �
� Un�xl

�xl � �Un���xl

�
������

Since

Un�x

Un���x
�

�x�
p
x� � �n�� � �x�

p
x� � ���n���

�x�
p
x� � �n � �x�

p
x� � ��n

�

� x�
p
x� � �



� �




�x�
p
x� � ��n � �

�
�

from ����
� ����	� and ����� it follows that

	l �

r
xl � �

xl � �

�
B�� �


�
xl �

p
x�l � �

��n
� �

�
CA ������

�

r
dl

	 � dl

�
B�� �


�
� � �

�dl �
q
dl �

�
	d

�
l

��n
� �

�
CA �

To estimate expression ����� from below we consider two cases�

�� y �
�
�
�dl �

q
dl �

�
	d

�
l

�
� ��
n� It means that dl �

p
dl�	 � dl � ��n� or dl �

�
�n��n��� � Then we have

	l �
r

dl
	 � dl

� �p
� � �n�
n� �

�
�

	n� �
� h

�
�


� y � ��
n� In this case dl �
�

�n��n��� � So� ����� is estimated from below as follows

	l �

r
dl

	 � dl

�
� �




�� � y
�n � �

�
�
r

dl
	 � dl



� �




e�ny � �

�
�

�
r

dl
	 � dl



� �




�e� �
ny

�
�
r

dl
	 � dl

� � � ny


ny
�

�

r
dl

	 � dl

�
� �

n � �
�

�
dl �

p
dl�	 � dl

�
dl �

p
dl�	 � dl

�
A �

�
n � �

�

�
dl �

p
dl�	 � dl

�
	 �

�
dl �

p
dl�	 � dl

� �

� min

�
�



�
�

	n

�
� h

	
�

From these estimates it follows that 	l � h�� for any l � �� � � � � n� Thus� the minimal
eigenvalue of problem ���� is bounded from below by 	min � h�� and we have

h

�
�A

���
��u��u� 	 ��

���
� u��u� 	 �A

���
��u��u�� 
u� � IRN� �
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Analogously� we have the same estimates for matrices A
���
�� and �

���
� � which completes the

proof�

Remark ���� Lemma ��� holds true if on some of the other edges of the rectangular
subdomain �� a homogeneous Neumann boundary condition is imposed�

Remark ���� If a homogeneous Neumann boundary condition is imposed on the whole
remaining part of the boundary of subdomain ��� n � then inequalities ���� of Lemma ���
should be replaced by�

� � h �A��u��u� 	 ���u��u� 	 �A��u��u��


u� � IRN� n ker ����
���
�

where constant � does not depend on mesh size parameter h and coe�cients of the subdomain
problems�

We proceed with the construction of preconditioner B�� We de�ne it in the form of an
inner Chebyshev iterative procedure �
� �� ���� From Lemma ��� we know that the eigenvalues
of matrix A��

���� belong to segment �h��� ��� Let PL�y be the polynomial of least deviation
from zero on this segment that satis�es the condition PL�� � �� Denote by �l� l � �� � � � � L�
the inverses of the roots of polynomial PL�y� The formulae for PL�y and its roots ���l�
l � �� � � � � L� can be found� e�g� in �
��� Then preconditioner B� for matrix �� is determined
by�

B��
� �

�
I� �

LY
l��

�
I� � �lA

��
����

��
���� ����
�

The procedure for calculating the vector w� � B��
� g� for given g� � IRN� has the form�

w
���
� � ��

w
�l�
� � w

�l���
� � �lA

��
��

�
��w

�l���
� � g�

�
� l � �� � � � � L����



w� � w
�L�
� �

For computational stability� instead of ���

� we can use the three�term recurrence relation
�
��� We return to the realization of the iterative procedure ���

 in the next subsection�

Lemma ��� and the theory of Chebyshev iterative methods imply the following basic
result�

Theorem ���� Let L � ���h
���

� Then matrix B� in ���
� is spectrally equivalent to

matrix �� with constants of equivalence independent of mesh size parameter h and the value

of coe�cients kx�i� ky�i� c��i� i � �� 
� in the subdomains�

Remark ���� Clearly� in the theory L is chosen to be of the order ���h
���

� In practice
it is calculated explicitly after the boundaries of the spectrum of matrix A��

���� have been
calculated by an appropriate iterative procedure �����

���� Arithmetical complexity of the interface preconditioner� In order to estimate
the arithmetic complexity of multiplying a vector by matrix B��

� it is su�cient to estimate
the arithmetic complexity of multiplying a vector by matrix �� because we know that matrix
A�� is diagonal and the number of iterations L in the inner Chebyshev iterative procedure

���

 is of the order ��n
���

�
The procedure of �nding the product ��uG is based on a partial solution technique

��� 	� ���� which we outline here� Let us consider the terms �
���
� u� and �

���
� u� in the expression

v� � �
���
� u� � �

���
� u� separately� Below we de�ne the multiplication procedure only for the

�rst term �
���
� u�� The second term is treated in the same manner� Again� we omit the index

���� for simplicity�
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First� vector v� � ��u� � A��u� � �A�I
�A��
II

�AI�u� is rewritten as

v� � A��u� � �A�IuI ����
�

where vector uI is de�ned from the system of equations

�AIIuI � � �AI�u� �

�
����

�
���
�


kxu�

�
���	 ����
	

with matrix �AII de�ned by �
��	�
Let us denote by Wy an orthogonal n � n matrix of eigenvectors of problem ����� and

by Ly a diagonal n� n matrix of the eigenvalues of matrix Ay ������

Wy � f��� � � � � �ng � Ly � diag f
�� � � � � 
ng �
Then we de�ne an NI � NI orthogonal matrix Q � Ix � Wy � Introducing a vector

vI � QTu� and multiplying both parts of equation ���
	 by matrix QT we get the following
matrix equation�

QT �AIIQvI � �ax�Ax � Iy � ay�Ix � Ly � b�Ix � Iy vI � 
kx

�
����

�
���
�

W T
y u�

�
���	 ����
�

Note that this system can be decoupled into n independent linear systems�

�axAx � �b� 
layIx

�
�����

v
�l�
�
���

v
�l�
n��

v
�l�
n

�
����	 �

�
����

�
���
�


kxwl

�
���	 � l � �� � � � � n����
�

where the component wl is the l�th component of the backward Fourier transform w � W T
y u�

of vector u��
As soon as we �nd vector vI from systems ���
� we compute the product

�A�IuI � �A�IQvI � �
kxWy

�
���

v
���
n

���

v
�n�
n

�
��	 ����
�

From ���
� it follows that to de�ne product ��u� we need to know only the last com�

ponents v
�l�
n � l � �� � � � � n� of the solution vectors v�l� from systems ���
��

Now we de�ne the partial solution algorithm�
�� On the initial step we solve n systems with three�diagonal n� n matrices�

�axAx � �b� 
layIx

�
�����

x
�l�
�
���

x
�l�
n��

x
�l�
n

�
����	 �

�
����

�
���
�
�

�
���	 �

and store the last components of the vectors x�l�� i�e� parameters x
�l�
n � l � �� � � � � n� It

requires O�n� operations and O�n elements of memory�
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�� Given vector u� we use the discrete fast Fourier transform algorithm to compute a
vector w � 
kxW

T
y u� for only O�n ln n operations�


� Then� we compute a vector v �
h
v
���
n � � � � � v

�n�
n

i
from ���
� by the formulae v

�l�
n �

wl � x�l�n � l � �� � � � � n�
�� Again� we use the discrete fast Fourier transform algorithm to compute a vector
p � �
kxWyv�

	� Finally� we compute the vector v� � A��u� � p�
As a result of this algorithm the procedure of multiplying a vector by matrix B��

� can be
implemented for O�n��n
�� lnn operations� Note that this estimate does not depend on the
coe�cients of the problem�

Remark ���� We provided computations of the complexity for so�called �parallel� partial
solutions� that is� when the grid line where we need to �nd a solution is parallel to the grid
line where the right�hand side is nonzero� For the case of so�called �perpendicular� partial
solutions� when the grid line where we need the solution is perpendicular to the grid line
with the nonzero right�hand side we can use an algorithm of the approximate partial solution
��� ��� 
��� Instead of computing the exact value of v� � ��u�� we calculate the approximation

v
���
� � �

���
� u�� It can be shown ��� 
�� that taking the accuracy parameter  � hp� p � 
� the

matrix �
���
� is spectrally equivalent to ���

As a consequence one can develop the partial solution algorithm for the general case when
we need to �nd the partial solution on the entire boundary of the rectangular subdomain� Using
the results of ��� ��� the partial solution on the boundary ��i of the rectangular subdomain
�i can be found for O�n��pn ln� �n� where the �rst term of this estimate corresponds to the
initial step and can be obtained before starting the iterative process� If we use the algorithm
of the approximate partial solution developed in �
�� we have an estimate of computational
cost O�n� � pn
�� ln� �n�

Therefore� the algorithm of multiplying a vector by matrix B��
� can be implemented for

O�n� � pn
�� ln� �n operations� This estimate does not depend on the coe�cients of the
problem�

���� Interface preconditioner for general problem� Now let us consider problem

���� in the domain � �
mS
i��

�i� being the union of m rectangles �i� i � �� � � � �m� as is

described in Section ��
Using the same arguments as in Subsection ��� it is easy to show that the statement of

Lemma ��� holds true even for a general domain � composed of rectangles� Since precondi�

tioner B� is constructed by de�ning subdomain preconditioners B
�i�
� it is su�cient to consider

the model problem in the rectangular subdomain �i with homogeneous Neumann boundary

condition on the whole boundary �� � � �
	S

i��
�i� Boundary nodes belonging to � ���� and

internal nodes ��� are schematically shown in Figure 	�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

� � �

� � �

��

��

��

��

Figure �� Degrees of freedom of the Neumann subdomain problem�

Denote by u� and by u�i � i � �� � � � � 	� the vectors of the degrees of freedom on the
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boundaries � and �i� i � �� � � � � 	� respectively� Following �
��� one can show that for any
vector v� � IRN� such that v� � ker ��� the following is valid�

���v��v� � inf
vh�V

h
���

vhj��vh�

ah��v
h� vh � inf

wh

i
�V

h
���

wh

i
j�i�v

h

�i

ah��w
h
i � w

h
i  � ���iv�i �v�i� i � �� � � � � 	����
�

where uh�� u
h
�i
� i � �� � � � � 	� are piecewise constant functions de�ned on �� �i� i � �� � � � � 	� and

generated by vectors u�� u�i � i � �� � � � � 	� respectively�
From ����� ���
�� and ���
� it follows that for any vector v� � IRN� such that v� �

ker ��� we have

�A��u��u� � ���u��u� � �
	

	P
i��

���iu�i �u�i �

� �h �
	P

i��
� �A�i�iu�i �u�i � �h � �A��u��u��

���
�

It means that we can de�ne preconditioner B� for the Schur complement ����� in the
form ���
�� By Theorem ��
 matrix B� is spectrally equivalent to matrix �� provided that
the degree L of the matrix polynomial ���
� is chosen to be O�h�����

Using the partial solution technique described in Subsection ��
 and Remark ��	 one can
shown that the procedure of multiplying a vector by matrix B��

� can be implemented for
O�h�� � h�
�� ln� h���

Now assume that we use the AMG methods to solve the subdomain problems� Then
problem ���� with matrix �A can be solved for O�h�� � h�
�� ln� h�� operations� As was
mentioned in Section 
 we use the matrix A as the preconditioner in a preconditioned iterative
method to solve the problem �����

Summarizing the results of Sections 
 and � we can formulate the following statement�
Statement ���� Under the above assumptions the arithmetic complexity of the proposed

algorithm for solving problem ���� is estimated from above by

C � �h�� � h�
�� ln� h���

where constant C is independent of mesh size parameter h and coe�cients of the problem �K�x
and �a��x�

�� Results of the numerical experiments� In this section the method of precondi�
tioning being presented is tested on the model problem in the unit square�

�kx�
�u

�x�
� ky

��u

�y�
� f� in � � ��� ����

u � �� on ���

Domain � is composed of 	 subdomains as shown in Figure �� Coe�cients kx and ky are
constants in each subdomain�

��

kx � k

ky � 	

��

kx � 	

ky � k

��

kx � 	

ky � k

��

kx � k

ky � 	

Figure �� Coe�cients in the subdomains for a model problem�
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The domain is divided into n� squares �n in each direction and each square is partitioned
into 
 triangles� The dimension of the original algebraic system is N � �n� � 
n and the
dimension of the Schur complement after elimination of the subdomain problems is N� � 	n�
The right�hand side is generated randomly� and the accuracy parameter is taken as  � �����
The degree of matrix polynomial ���
� equals L �

�p

��n

�
��� where ��� is an integer part of

�� The condition number of matrix A��
���� is calculated by the relation between the conjugate

gradient and the Lanczos algorithm �����

The results are summarized in Table �� where niter and Cond denote the iteration number
and condition number� respectively� All experiments are carried out on Sun Workstation�

Table ��

���� ���
N � 
����


��� 
��
N � ������

	��� 	��
N � 	��
��

k niter Cond niter Cond niter Cond
� 
� ���� 
� ���� 
� ����
�� 
� ��
 
	 ��� 
� ���

��� 
� ��� �� ��� 
� ���
���� �
 	�
 �	 ��
 �	 ��	
����� � ��� � 
�� � 
��
������ � ��� 	 ��� 	 ���
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