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Abstract. An optimal iterative method for solving systems of linear algebraic equations arising from
nonconforming finite element discretizations of second order elliptic boundary value problems with anisotropic
coefficients is constructed and studied. The technique suggested is based on decomposition of the original
domain into nonoverlapping subdomains. It is assumed that the equation coefficients in each subdomain
vary inconsiderably. This approach combines the ideas of domain decomposition methods, the algorithms of
multilevel and algebraic multigrid methods with the bordering method. An iterative process whose convergence
rate is independent of the mesh step size and the ratio of anisotropy in the coefficients is constructed. It is
shown that the number of arithmetic operations required for realization of the method with a given accuracy
is proportional to the number of unknowns of the original algebraic problem.
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In this paper we propose an iterative method for solving systems of grid equations ap-
proximating boundary value problems for second order elliptic equations with anisotropic
coefficients. The technique suggested is based on decomposition of the original domain com-
posed of rectangles into nonoverlapping subdomains inside which the equation coefficients vary
inconsiderably.

At present, there are numerous results on non-overlapping domain decomposition (see,
e.g., [6, 7, 14, 26, 28]). Almost all of them can be viewed as so-called additive Schwarz method
[15]. Algorithms of this kind, which have satisfactory convergence properties for the case
of many regions, have one feature in common. In addition to subspaces and subproblems
directly related to individual subdomains, there is a global, coarse subspace. The absence of
such a subspace in general results in slow convergence [15, 26]. All such methods are based on
decomposing the domain into subdomains of size d and involve the solution of related problems
on the subdomains and lower-order coupling systems on the subdomain boundaries. The best
condition number for the preconditioned system is shown to be on the order of (1+1n (d/h))?,
a=1,2,([8, 15, 25]), where h is the mesh-size parameter.

Another approaches consist in developing the bordering method [21, 22] or capacitance
matrix method [5, 12, 14]. The main idea is to use well known techniques to solve or precon-
dition the problems in the subdomains. For the problem at the interfaces a preconditioner is
constructed in the form of an inner Chebyshev iterative procedure. More precisely, the pre-
conditioner is constructed for the Schur complement of the original symmetric positive definite
matrix, defined after eliminating the blocks corresponding to the unknowns in the subdomains
[9, 21]. This approach for solving systems of mesh equations combines the ideas of domain
decomposition methods [6, 9, 14, 26, 28], the algorithms of multilevel and algebraic multigrid
methods [2, 10, 19], with the bordering method [21, 22].

The work in this direction has been done in [9, 5, 12, 13, 14, 21, 22]. Preconditioning
the Schur complement on the interface between subdomains makes it able to construct such
methods that the condition numbers for the resulting preconditioned systems are independent
of mesh-size parameter h and size of the subdomains d. Although the results obtained in all
these references include the cases of large jumps in the coefficients of the problem, none of
them deals with the case of anisotropic coefficient tensor.

* This work was supported in part by the US Department of Energy under Grant #DE-FG05-92ER25143.
T Institute for Scientific Computation, Texas A&M University, 505 Blocker Bldg., College Station, TX
77843-3404 (malyasov@isc.tamu.edu).
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The theory developed in this paper provides an approach which is applicable to second
order elliptic boundary value problems with large anisotropy ratio in the coefficients. The
main idea we follow here is close to the construction considered in [9, 21]. In these works along
with the Schur complement on the interfaces Sp authors introduced some auxiliary interface
operator Br such that the computation of its inverse is very cheap and the condition number of
the preconditioned operator Cond(f?; 1Sr) is bounded from above by C - h~!, with a positive
constant C' and h is a mesh-size parameter. Then the preconditioner Br for operator St is
defined in the form of matrix polynomial of degree m:

Br' = Py (BrtSr)Spt.

Using Chebyshev polynomials it is shown that the preconditioner Br can be constructed to
be spectrally equivalent to the Schur complement St and condition number for the resulting
preconditioned system is independent of the diameters of the subdomains d and mesh-size
parameter h with only a slight increase in computational effort. The arithmetical cost of
solving the problem with matrix Br is proportional to the dimension of the initial discrete
problem, i.e. O(h™2).

The purpose of this paper is to develop a variant of the bordering method for second order
elliptic partial differential equations with anisotropy in the coefficients approximated by the
nonconforming P; elements. We note that an important difference between nonconforming an
conforming cases is that there are no nodes at the vertices (or wire basket) of the subregions.
Thus, there is no problem of crosspoints which is an essential part of the domain decomposition
method when using conforming finite elements [8, 15, 21, 22, 26]. It makes the construction
of the preconditioner for the Schur complement on the interfaces between subdomains very
clear and easy. The construction of this interface preconditioner is the most interesting part
of the work. The main result of this paper is that the condition number of the preconditioned
operator is bounded by a constant independent of the mesh-size parameter and the coefficients
of the problem.

The outline of this paper is as follows. In Section 1 we pose the problem, give its non-
conforming finite element discretization, the matrix formulation and outline the construction
of a block diagonal preconditioner to the algebraic system. In Section 2 we consider a model
problem in a unit square with constant coefficients and construct the preconditioners for the
problems in subdomains. Section 3 contains the main result of the paper. It is subdivided into
three subsections. In the first subsection we construct a preconditioner for the problem at the
interface in the form of an inner iterative procedure considering the union of two rectangular
subdomains. The second subsection describes an algorithm for implementing the interface
preconditioner. Then, in the third subsection we construct the interface preconditioner for a
general domain composed of rectangles. The arithmetic cost of solving the system with the
preconditioner proposed is proportional to the number of unknowns of the original algebraic
system, i.e. the preconditioner constructed is of the optimal order of arithmetical complexity.
In Section 4 we provide the results of numerical experiments. These computations show that
the theoretical estimates are fully realized in practice.

1. Problem Formulation. Let Q be a bounded domain on a plane IR?, which is com-
m
posed of open rectangles {); whose sides are parallel to the coordinate axes, @ = |J ;.

i=1
Consider an elliptic problem

-V (K-Vu)+é-u=f in Q,
(1].) u=20 on FO:
(KVu,n) =0 onI'y,

where K (x) is a positive definite symmetric coefficient matrix, é(x) is a nonnegative bounded
function, f(x) € L?(Q) is a given function, Ty UT; = Q, and ['o, NT; = (). We consider the
case of Ty = [y # . The pure Neumann problem (I'y = §)) can be treated in a similar way
but for the sake of simplicity is not described here.
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Assume that the interior of each side of rectangles 2; either entirely belongs to I'g or I'y,
or lies inside €. Also assume that Q;, i = 1,...,m, can have either a common side or only a
common vertex, or they do not overlap. It is obvious that any domain composed of rectangles
can be partitioned by additional lines into subdomains ; satisfying this assumption.

Let the bilinear form a(-,-) be defined by

a(u,v) = (KVu, Vo) + (é - u,v), u,v € Vp(Q) = {v € H'(Q) :v=0o0n Ty},

where (-,-) denotes the inner product in L?(2). Assume that there a diagonal coefficient
matrix K (x) = diag{k,(x), ky(x)} and a piecewise constant function cy(x), such that

ke(x) = kyi,  ky(x) =kyi, co(x) =coy, x €, t==1,...,m,
with constants k,; > 0, ky; > 0, co,; > 0, satisfying inequalities
(1.2) ag ((KVu,Vu) + (co - u,u)) <alu,u) <ar (KVu,Vu) + (co - u,u)),

for any u € V5(2) with some positive constants ag, a.
The standard weak form of (1.1) is: find u € V5(2) such that

(1.3) a(u,v) = (f,v), Yu € V5(Q).

Let Cj, be a rectangular mesh in Q. Assume that in each rectangle €); the mesh steps h, ;,
hyi, i =1,...,m, are constant in each direction, and the boundaries 9€; of the rectangles
belong to the mesh lines. Also assume that there exist constants ¢y and ¢; independent of h
such that

coh < min {hg;,hy i} < max {hay by} <cih.
i=1,....m i=1,....m

Here h = 1/v/M, where M is the number of mesh nodes belonging to € \ T'o.

Let 75 be a regular partitioning of Cp into triangles 7 [11] and let V4 (2) be the P—
nonconforming finite element space of functions v € L*(Q) [1]: that is v|, are linear for all
7 € Th, v are continuous at the middle points of the sides of 7 € Tj, and vanish at the middle
points of the sides of triangles on I'g. Note that the space V},(2) is not a subspace of H* ().

Define the bilinear forms on V4, () by

14 al (u,v) = ETeTh(f(Vu, V), + (é - u,v)r, YV u,v € Vi(Q),
- ad(u,v) = 7 (KVu, Vo) + (co - u,0)r, YV u,v € Vi(Q),

where (-,-); is the inner product in L?*(7), 7 € T5. Then the P,—nonconforming finite element
discretization of (1.1) is: find uy € V}, such that

(1.5) d%(uh,v) = (f,v), Yu € V().

Once a basis {(pi(x)}ﬁil for V3 () is chosen, where N = dim V},(2), then (1.5) leads to a
system of linear algebraic equations. Write u(x) = Zi\il u;;(x). Then (1.3) becomes

N
Zulagl((ph(p]):(f:(p]): j:]-)"'vNa
i=1

or in matrix representation

(1.6) Au=f,

where AN]z = Elg(‘ﬂu‘ﬁ]): f] = (f,‘ﬂj), Z).] = 1)"'7N'
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In the same way we define matrix A by A;; = al(pi,¢;), i,j = 1,...
implies that

,N. Then (1.2)

(1.7) ap(Au,u) < (Au,u) < a;(Au,u), Vu € RV,

i.e. matrices A and A are spectrally equivalent.

The underlying method to solve (1.6) is a preconditioned iterative method. Inequalities
(1.7) suggest considering matrix A as a preconditioner to A. Therefore, we need to find an
efficient method for solving the problem

(1.8) Av =g.

Let u® and v(® denote the vectors corresponding to the finite element functions u and
v from V},(9;), respectively. Let A denote the local stiffness matrix arising from ag. (-,-):

(1.9) (ADu vy = ag, (u,v), Yu,v € Vi ().

For each subdomain Q;, i = 1,...,m, we can partition the degrees of freedom ul® into two
sets. The first set includes the degrees of freedom at the nodes in the interior of subdomain

Q;, denoted ugi), and the second set corresponds to the degrees of freedom at the nodes on the
boundary 9€; \ T'g, denoted ug) Such a partitioning induces the partitioning of A given by

)

Finite element system (1.8) has the obvious algebraic representation:

Ay AR

(1.10) <A<i>u<">,v<i>)=< §n
Al AR

1 1
A I T
(1.11) : : _ | ,
T A e
AD oA 4 vr gr

with block Arr defined by

(1.12) (Arrur, vr) = > (Afluf? v?).
i=1
Note that blocks Agil), i =1,...,m, correspond to the boundary value problems in the rect-
angles 2,
(1.13) ad, (up,v) = G(v), Yo e Vi (), i=1,...,m,

with homogeneous Dirichlet boundary conditions imposed on the boundaries 9(2;. Denote the
number of degrees of freedom in ;, 99; \ Ty, '61 Q; and '81 0Q; \ Ty by NI(’), NIEZ), Nr and
1= 1=

Nr,i=1,...,m, respectively.
(4)

Eliminating the unknowns v;”’, i = 1,...,m, in (1.11), we obtain the following Schur
system:
(114) AFV[‘ = GF,
where

(115)  Ap = Arp — ZA(’) [ ,] AD Gregr- > Al [A%)] e,

i=1 i=1
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Thus, The solution to system (1.11) can be reduced to the construction of an efficient
algorithm for solving systems (1.13) in subdomains and the Schur complement system (1.14).

The algorithm for solving subdomain problems with matrices Ayl) is considered in Section
2. It is shown that these problems can be solved very efficiently.

The main goal of this paper is to construct an easily invertible matrix B spectrally equiv-

alent to matrix Ar:
co(Brvr,vr) < (Arvr,vr) < ci(Brvr,vr), Vvr € R,

where constants ¢y and ¢; are independent of the mesh size parameter h, the subdomain
diameters, and value of the coefficients. This issue is discussed in detail in Section 3.

2. Model problem in a unit square. Here we discuss an algorithm to solve the sub-
domain systems. Consider a model problem on a unit square:
0%u 0%u

ki — k

o) higgE g tou=f maspap

u =0, on 012,

where coefficients k, > 0, k, > 0, co > 0, are constants in Q. It is clear that a method
developed for this model problem can be easily generalized for the case of rectangular domain
and mixed boundary conditions.

Let C;, = {C*)} be a partition of Q into uniform squares with the length of the side
h =1/n, where (z;,y;) is the lower left corner of the square C7) | We enumerate the squares
in a lexicographical order, first, in the y-direction, then in the z-direction. Next, we divide
each square C'9) into 2 triangles as shown in Figure la. The partitioning of Q into triangles
is denoted by Tp,.

We introduce the set of centers of all edges of the triangulation of €2, and the set @y of
those centers that are not on the Dirichlet boundary T’y = 9§ (see Fig. 1a). The Crouzeix-
Raviart Pj—nonconforming finite element space V}, is defined by

Vi, ={v e L?Q): v|; € P(r), VT € Tp; v is continuous at the points

(2.2) from @, and vanishes at the middle points of edges on T'g}.

Let the dimension of V;, be N. Obviously, N ~ 3n2.

5
<) el <)
o o '_,ca"'.. 2 3
o _,ca"". o
- 1
(a) Triangilation of the domain Q. (b) Local enumeration of the degrees of freedom.

FIGURE 1. Triangilation and partition of the degrees of freedom.

Now we define the bilinear form on V}, by

Ou Ov Ou dv
(2.3) (u,v) Z / ( +ky———+ cmw) dx, YV u,v€ V.
= * 0 O dy By

Thus the nonconforming discretization of problem (2.1) is given by seeking uy, € V}, such
that

(2.4) ap(up,v) = (f,v), Vv € V.
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For any function v € Vj, we denote by v € R its representation with respect to the basis in
Vi

Let (u,v)y be a standard bilinear form defined on RY by (u,v)ny = > xe0, w(x)v(x),
Yu,v € Vj,. Then define symmetric and positive definite operator A : RN — IRY by

(2.5) (Au,v) N = ap(u,v), u,v € Vj.

For each square C' = C»J) ¢ (;, denote by V,¢ the subspace of the restriction of the
functions from V}, into C. For each v € th, we indicate by v, the corresponding vector.
The dimension of th is denoted by V.. Obviously, for a square without faces on I'y we have
N, =5.

The local stiffness matrix A® on a square C' € Cj, is given by

Oou Ov Oou Ov
AC ¢y Ve = E: T y T )
(2.6) (e, ve)v = 2, <k (e o) T PGy 3

)+ co(u,wr) |

Yu,v € th.

Note that matrices A” are positive definite when C'NI'y # 0 and at least semidefinite otherwise
(if cg # 0 then all the matrices A® are positive definite). The global stiffness matrix is
determined by assembling the local stiffness matrices:

(2.7) (Au,v)y = Y (A%, vy,  Vu,veRY
CeCy

To define the solution procedure we divide all the unknowns in the system into two groups:

1. The first group consists of the unknowns corresponding to the edges of the triangles
that are internal for each square (these are unknowns corresponding to the nodes
marked by “o” in Fig. 1). We denote these unknowns by vc; j), 4,5 = 1,...,n.

2. The second group consists of all unknowns corresponding to the edges of the squares
in the partition Cp,, without the faces on 'y (Fig. 1, the nodes marked by “x”).

(a) First, we enumerate the unknowns on the edges perpendicular to the z-axis
(nodes 2 and 3 in Fig. 1b). We denote these unknowns by vz (; j), i = 1,...,n—1,
7=1,...,n.

(b) Second, we enumerate the unknowns on the edges perpendicular to the y-axis
(nodes 4 and 5 in Fig. 1b). We denote these unknowns by vy j), i = 1,...,n,
j=1,...,n—1.

Now we consider a square C' that has no face on the boundary 92 and enumerate the
edges s;j, j = 1,...,5, of the triangles in this square in correspondence with the partitioning
introduced above as is shown in Figure 1b. Then the local stiffness matrix of this square has
the following form:

(2 8) AC — |: All,c AIQ,C :|

Introducing parameter ¢ = coh?/12 we can write

(2.9) Ante=4lke +ky+c], A =AJ = [—2ks, —2ky, —2ky, —2k,]

2k, 1
2k, 1
A22,c = 2%k + 2¢ 1
Y
2k, 1



DOMAIN DECOMPOSITION METHOD FOR ANISOTROPIC PROBLEMS 7

The splitting of space IRY induces the presentation of the vectors: v’ = (vI,vI), where

vi € R™, vy € R™?, and v, corresponds to the unknowns of the 2-nd group. Obviously,
N1 =n? and N, = N — n2. Then matrix A can be presented in the following block form:

All A12
2.10 A=
(2.10) [Azl Ao }

where Ass : RN — ]fA{N2 is a diagonal matrix.
Now denote by A1 = A1 — A12A;21 Ay the Schur complement of A obtained by elimi-
nation of the vector vo. Then A;; = A1 + A12A521A21, so matrix A has the form

(2.11) A= { A+ A A As As ] _

A21 A22

To understand the structure of the Schur complement 12111 let us write explicitly the matrix
equation

Av=g
in terms of the unknowns ve; j, vz; j, and vy; ;. For any square CUd) N ON # 0 we have:

A(ka + ky + c)vcij — 2ka (T35 + V@it ,5) — 2ky (vyi + VY1) = gciy,  GLi=1,...,m,
4(]695 + C)’U.Ti’j — Qkx(vci_m + ’UCiJ') = 9% ;, 1=2,...,n,5=1,...,n,

4(ky + C)’l}yiJ' — Qky(vcm_l + ’UCiJ') = 9Yi,j, 1=1,...,n, J=2,...,n.

After eliminating the unknowns vz;; and vy; ; we have a 5-point computational scheme for
the unknowns ve; ;:

(2.12) (20 + 2ay + b)ve;j — az(vei—1,j + VCiq1,5) — ay(VCij—1 + VCij41) = gci ;s

where

_ ke R petef(1+—1 41
Cltc/ky’ Y 14c/ky’ B l+c/ky 1+4c¢/ky)

(213)  a,

It is easy to see matrix Aq; can be represented in a tensor product form (according to the
enumeration introduced earlier in this section):

(2.14) A =a,(A, © 1) + ay(I, ® Ay) +b(I, @ 1),

where the matrices I, I, : R™ — IR™ are identity ones, and the matrices A;, 4, : R" — IR"
are tridiagonal:

(2.15) Ay = A, =

To solve the problem with separable matrix Ay we can use either the discrete fast Fourier
transform [24] or an algebraic multigrid method (AMG) [2, 10, 19, 20, 28]. When an imple-
mentation cost of the first method is estimated by O(h=21n (h~!)), the AMG methods have
the optimal order of arithmetic complexity O(h~2). Since these methods are well described in
the literature we are not going to discuss them in greater detail.
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3. Preconditioner for the interface problem. In this section we construct a precon-
ditioner for the problem at the interface in the form of an inner iterative procedure. More
precisely, we construct here a preconditioner for the Schur complement of the original matrix.

3.1. Model problem. For the sake of simplicity, let us consider the problem (2.1) for
the case of  being a rectangle composed of two squares 2 = Q; UQo, T' = Oy NQy (see Fig. 2):

(3.1) Q={(z,y):0<z<2,0<y<1}
' Qi={(z,y):i—-1<z<i0<y<1}, i=1,2.
Assume that coefficients k., k,, co are constants in §;, i = 1,2, i.e.

ky = kyi = const > 0, ky =ky; = const > 0, co = cp,; = const > 0.

Let T, be a regular triangulation of domain Q with mesh-size h (as described in Section
1). In this case (1.11) has the form:

1 1
w0 A ] [
(3.2) 0 A{QI) AR | v | = | g®
AF] AF] AFF vr gr

Note that blocks A(Iil), 1 = 1,2, correspond to the boundary value problems in subdomains §2;
and block Apr is a diagonal matrix.

rd rd - rd - rd
rd rd rd rd rd rd
o o o o o o o o o o o o
r - rd rd - rd
// // // // // //
rd rd - rd - rd
rd rd rd rd rd rd
/j - /j /j rd /j °© °© °© °© °© °©
o S 1921 S L/ S 923 S (921 Qo
rd rd - rd - rd
rd rd rd rd rd rd
o o o o o o o o o o o o
r - rd rd - rd
rd rd rd rd rd rd
e e e i e e
r r
(a) Triangilation of the domain . (b) The degrees of freedom of the reduced problem.

F1GURE 2. Degrees of freedom of real and reduced problems.

Eliminating the unknowns vz; ; and vy; ; in each subdomain as is discussed in Section 2
we get the problem

A0 AR T g
(3.3) 0 AP AR || VO |=1g? |,
AW AL App vr gr

where blocks A?}, i = 1,2, are separable matrices, and vectors vgi), i = 1,2, consist of the

unknowns ve; j in each subdomain. In Figure 2b, the nodes corresponding to these unknowns

K”

are marked by “o”.
Matrix Apr is defined by equality (1.12)

2

(e ve) = 3 (o i),

i=1

Introducing the subdomain Schur complements

; ; 2017 s .
(3.4) AP = A - A [A] AR, =12
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the Schur complement (1.15) can be rewritten in the form:
(3.5) Ar=Are = YA [AF)] AR = A + A,

We construct a preconditioner Bp for Ar by defining preconditioners Bl(}) and Bl(?) for
Al(}) and Al(?), respectively, and setting

(3.6) Br=B" +BY.

Let us consider subdomain €}y, matrices Al(}) and A{}F), and omit the index “(1)” for
simplicity. Boundary nodes belonging to I' (marked by “¢”) and internal nodes (marked by
“0”) are schematically shown in Figure 3.

The following lemma is valid.

LeEMMA 3.1. There exists an h-independent constant o such that

(37) a-h (AFFUF,UF) < (AFUF,UF) < (A[Tll[‘,llr), Yur € ]RNF.

Proof. Consider an eigenvalue problem
(38) Arur = ,LLAFFUF, ur € ]RNF.

Since the symmetric matrices Ar and Arr are positive definite problem (3.8) has Nr positive
eigenvalues.

o o o

o o o T
Q

o o o

FIGURE 3. Degrees of freedom of the model subdomain problem.

It is obvious that eigenvalues p;, ¢ = 1,..., Np, of problem (3.8) can be found from the
system of equations

Arpur 4+ Aprur =0,
(3.9) ;
Arrur + Arrur = pArrur.

Here matrix A;; is defined by (2.14). The N; x Ny matrix A has a form

0 0
fi[[‘ = : = : ®Iy,
0 0
2k, I, —2k,

and the diagonal Nt x Np matrix Arr is defined by Arr = 2(k, + ¢)I,,.
Define by £, € IR"™ an eigenvector of n xn matrix 4, (2.15) corresponding to the eigenvalue
>\l5

(3.10) Ayﬁl :Alé‘l) l: 1,...,”.
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Note that we explicitly know the eigenvalues and eigenvectors of matrix A,:

Y. (L m@Ei-1)\" B
(3.11) A = 4sin 5’ {l—{smiml L l=1,...,n.

Fix some [ € [1,n] and define a vector
2]
ur & ’

with some vector v € IR™ and substitute it in system (3.9). From the second equation of (3.9)
it follows that eigenvalues of problem (3.8) are defined by the expressions

ky
(3.12) w=1- o, 1=1,...,n,
where a parameter vg ) is the n-th component of vector v(!) from the system
An(vV ® &) = —Arg,
or, using expressions (2.13),

(3.13) (az Ay + Nay + b)) v =2k, [0 ... 0 1

Introducing notations:

(3.14) dl:AlZ—y-{—i, e:2kx 52<1+£>,

system (3.13) can be rewritten in the form:

!
3+ d; -1 Ug) 0
-1 2+4d -1 0 o 0
(3.15) . : =1:
-1 2+4d -1 o 0
0 -1 3+4d ’Ug) e

Set ¢; =1+ %dl and consider the following recurrent sequence:

ap =1
(3.16) a; = 2x;+1
Qir1 = 2z;04 —Qi_1, 1=1,...,n—1.

It is easy to see that
ai:Ui(l'l)‘f‘Ui,l(l'l), izl)"')na

where U,,(x) is the Chebyshev polynomial of the 2-nd kind of degree m:

(e vm=0)™" = (o) ™).

1
Un@ = 3=t

By induction it can be shown that

Qp—1 o Un—l(ml) + Un—Q(ml)

3.17 D =e. —e- _
(317) o ran Un(21) + 2Un—1(21) + Up—2(21)
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Since x; > 1 then vg) > 1for any | = 1,...,n. From (3.12) it follows that the maximal
eigenvalue of problem (3.8) is bounded from above by e < 1.
Now we have to estimate the minimal eigenvalue g, of problem (3.8) from below. Taking

into account that U, (z;) = 2z,U,,—1(x;) — Up—2(x;) we get

y o Qe+ D)Upi () —Uplm) e 2z +1 Un ()
3.18) o =e. 2 d ’_§-< LT d )

n =€ Q21+ 2)Up_1 (21) 2+l (@ + DU 1(m)

Since

Up(z)  (z+ Va2 — )" — (x4 /22 — 1) (D B

Up-1(z) (x+ V2?2 —1)" — (z + Va2 - 1)—"
2
= z+vVa2-1(1+ ,
( (a:+\/a:2—1)2”—1>
from (3.12), (3.14), and (3.18) it follows that
-1 2
(3.19) i il 14 _

2n
o +1 (:rl+\/a:12—1) -1

d 2
L1+

4 2n
+di (1+%dl+,/d,+id,?) -1
To estimate expression (3.19) from below we consider two cases:

1y = (%dl +Jd + idl?) > 1/2n. It means that d; + /&, (A +d;) > 1/n, or d; >

m. Then we have

d; 1 1 h
> > = > .
d+d = \/T+8n(2n+1) 4dn+175

2. y < 1/2n. In this case d; < So, (3.19) is estimated from below as follows

1
2n(2n+1) °

_ di 1+ 2 > d 1+72 >
SRR (1+y)"—1) = Vd+d 2w —1) =

dl dl 1 -I-ny
> o : =
- 444 (e—1)2ny) — Vd+d 2ny
i (S (a+ VaETa)\  L+i(a+VaEEd)

= = >

4+d, di + /A (4 + dy) 1+ (d+VaEF D)

> min li >E
- 274n | T 4°

From these estimates it follows that u; > h/5 for any | = 1,...,n. Thus, the minimal
eigenvalue of problem (3.8) is bounded from below by pmin > h/5 and we have

ot >

(Ag‘lgll[‘,ll[‘) < (Ag‘l)ll[‘,ul“) < (A%lrzll[‘,ul“), Yur € ]RNF.
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Analogously, we have the same estimates for matrices Al(“212 and Ag), which completes the
proof. O

REMARK 3.1. Lemma 3.1 holds true if on some of the other edges of the rectangular
subdomain ; a homogeneous Neumann boundary condition is imposed.

REMARK 3.2. If a homogeneous Neumann boundary condition is imposed on the whole
remaining part of the boundary of subdomain 9 \ I' then inequalities (3.7) of Lemma 3.1
should be replaced by:

a-h (Arrur,ur) < (Arur,ur) < (Arrur, ur),

(3.20) Vur € R \ ker (Ar),
where constant a does not depend on mesh size parameter h and coefficients of the subdomain
problems.

We proceed with the construction of preconditioner Bp. We define it in the form of an
inner Chebyshev iterative procedure [2, 9, 19]. From Lemma 3.1 we know that the eigenvalues
of matrix A Ar belong to segment [h/5,1]. Let Pp(y) be the polynomial of least deviation
from zero on this segment that satisfies the condition Pr,(0) = 1. Denote by 8,1 =1,...,L,
the inverses of the roots of polynomial Pp(y). The formulae for Py (y) and its roots 1/4;,

Il =1,...,L, can be found, e.g. in [27]. Then preconditioner By for matrix Ap is determined
by:

L
(3.21) Br' = {Ip — ] (Ir = BiAR AY) } AL

=1

The procedure for calculating the vector wr = B Lgr for given gr € R™ has the form:

wl(?) = 0,
(3.22) wl! = Wl _ Azl (prﬁ—ﬂ - gp) . 1=1,...,L,
we = w®
r = Wp .

For computational stability, instead of (3.22), we can use the three-term recurrence relation
[27]. We return to the realization of the iterative procedure (3.22) in the next subsection.

Lemma 3.1 and the theory of Chebyshev iterative methods imply the following basic
result.

THEOREM 3.2. Let L > (5/h)1/2. Then matriz Br in (3.21) is spectrally equivalent to
matriz Ar with constants of equivalence independent of mesh size parameter h and the value
of coefficients ky ;, ky i, coi, ¢ = 1,2, in the subdomains.

REMARK 3.3. Clearly, in the theory L is chosen to be of the order (5/h)1/2. In practice
it is calculated explicitly after the boundaries of the spectrum of matrix AptAr have been
calculated by an appropriate iterative procedure [17].

3.2. Arithmetical complexity of the interface preconditioner. In order to estimate
the arithmetic complexity of multiplying a vector by matrix B[ Lit is sufficient to estimate
the arithmetic complexity of multiplying a vector by matrix Ap because we know that matrix
Arr is diagonal and the number of iterations L in the inner Chebyshev iterative procedure
(3.22) is of the order (5n)1/2.

The procedure of finding the product Arug is based on a partial solution technique
[3, 4, 18], which we outline here. Let us consider the terms A%l)uF and Al(})uF in the expression

vr = Ag)ulﬂ + A%z)ulﬂ separately. Below we define the multiplication procedure only for the

first term Algl)uF. The second term is treated in the same manner. Again, we omit the index
“(1)” for simplicity.
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First, vector vp = Arur = Arrur — AF]A;;/I]FUF is rewritten as
(323) vr = Arrur + fi[‘[u[,
where vector uy is defined from the system of equations

0

(324) /I]]ll[ = —AH‘UF = 0 y

Qkqu

with matrix A;; defined by (2.14).
Let us denote by W, an orthogonal n x n matrix of eigenvectors of problem (3.10) and
by L, a diagonal n x n matrix of the eigenvalues of matrix A, (3.11):

Wy:{£17"'7£n}a Ly:dlag{Al,,An}

Then we define an Ny x Ny orthogonal matrix @ = I, ® W,. Introducing a vector
v = QTur and multiplying both parts of equation (3.24) by matrix Q" we get the following
matrix equation:

0
(3.25)  QTAnQvr = (a,(Ar @ 1) + ay (I, ® L) + b(I, ® L)) vi = 2k, (i)
WyTllF

Note that this system can be decoupled into n independent linear systems:

U%l) 0
(3.26) (aede + b+ Na)L) | 2 | =| © |, i1=1,..n

vgl 0

Ug) 2k, wy

where the component wy is the I-th component of the backward Fourier transform w = WyT ur
of vector ur.
As soon as we find vector vy from systems (3.26) we compute the product
(1)

Un
(327) AFIUI = /I[‘]QV] = —Qkay :
(n)

Un

From (3.27) it follows that to define product Arur we need to know only the last com-
ponents uﬁf), 1=1,...,n, of the solution vectors v{") from systems (3.26).
Now we define the partial solution algorithm:

0. On the initial step we solve n systems with three-diagonal n x n matrices:

l
:rg) 0
n—1
20 1
and store the last components of the vectors x(!), i.e. parameters a:g), Il=1,...,n. It

requires O(n?) operations and O(n) elements of memory.
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1. Given vector ur we use the discrete fast Fourier transform algorithm to compute a
vector w = 2k, W, ur for only O(nInn) operations.

2. Then, we compute a vector v = vle), e ,Uén)] from (3.27) by the formulae vg) =
wl-mg),l: 1,....n.

3. Again, we use the discrete fast Fourier transform algorithm to compute a vector
p = —2k,Wyv.

4. Finally, we compute the vector v = Arrur + p.

As a result of this algorithm the procedure of multiplying a vector by matrix B! can be
implemented for O(n? +n3/?1nn) operations. Note that this estimate does not depend on the
coefficients of the problem.

REMARK 3.4. We provided computations of the complexity for so-called “parallel” partial
solutions, that is, when the grid line where we need to find a solution is parallel to the grid
line where the right-hand side is nonzero. For the case of so-called “perpendicular” partial
solutions, when the grid line where we need the solution is perpendicular to the grid line
with the nonzero right-hand side we can use an algorithm of the approximate partial solution
[3, 18, 23]. Instead of computing the exact value of vr = Arur, we calculate the approximation

vl(f) = Aff)ulﬂ. It can be shown [3, 23] that taking the accuracy parameter € ~ h?, p > 2, the

matrix Al(f) is spectrally equivalent to Ar.

As a consequence one can develop the partial solution algorithm for the general case when
we need to find the partial solution on the entire boundary of the rectangular subdomain. Using
the results of [3, 18] the partial solution on the boundary 9€; of the rectangular subdomain
Q; can be found for O(n? +pn In® (n)), where the first term of this estimate corresponds to the
initial step and can be obtained before starting the iterative process. If we use the algorithm
of the approximate partial solution developed in [23] we have an estimate of computational
cost O(n? + pn®/21n® (n)).

Therefore, the algorithm of multiplying a vector by matrix B ! can be implemented for
O(n? 4+ pn®/?1n” (n)) operations. This estimate does not depend on the coefficients of the
problem.

3.3. Interface preconditioner for general problem. Now let us consider problem

m
(1.1) in the domain Q = Q;, being the union of m rectangles Q;, i = 1,...,m, as is
i=1

described in Section 1. '

Using the same arguments as in Subsection 3.1 it is easy to show that the statement of
Lemma 3.1 holds true even for a general domain {2 composed of rectangles. Since precondi-
tioner Br is constructed by defining subdomain preconditioners Bl(f) it is sufficient to consider
the model problem in the rectangular subdomain 2; with homogeneous Neumann boundary

4
condition on the whole boundary 8 =T' = |J T';. Boundary nodes belonging to T' (“¢”) and
i=1
internal nodes (“0”) are schematically shown in Figure 4.

>
o o
I's o o o '
Q
o o o
s

FIGURE 4. Degrees of freedom of the Neumann subdomain problem.

Denote by ur and by ur,, i = 1,...,4, the vectors of the degrees of freedom on the
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boundaries T and T';, i = 1,...,4, respectively. Following [21], one can show that for any
vector v € R™ such that vp L ker (Ar) the following is valid:

: b h h : b h . h .
(3.28) (Arvp,vr)= inf ad(v",v") > inf ad(w,w') = (Ap,vr,,vr,), i =1,...,4,
vhevy, (@) wlhevh(n)
vt fr=vp wl |, =vf,
where uft, ult ,i=1,...,4, are piecewise constant functions defined on I', I';, i = 1,..., 4, and
generated by vectors ur, ur,, ¢ =1,...,4, respectively.

From (3.7), (3.20), and (3.28) it follows that for any vector vr € IR such that vp L
ker (Ar) we have

4
(Arrur,ur) > (Arur,ur) > ; > (Ar,ur;,ur,) >
(3.29) i=1

4
>ah- Y (Ar,r,ur;,ur,) > ah - (Arrur, ur).
=1

It means that we can define preconditioner Br for the Schur complement (1.15) in the
form (3.21). By Theorem 3.2 matrix Br is spectrally equivalent to matrix Ar provided that
the degree L of the matrix polynomial (3.21) is chosen to be O(h~1/?).

Using the partial solution technique described in Subsection 3.2 and Remark 3.4 one can
shown that the procedure of multiplying a vector by matrix By ! can be implemented for
O(h=2 + h=3/21n> b 1).

Now assume that we use the AMG methods to solve the subdomain problems. Then
problem (1.8) with matrix A can be solved for O(h~2 4+ h~3/21n*> h~1) operations. As was
mentioned in Section 2 we use the matrix A as the preconditioner in a preconditioned iterative
method to solve the problem (1.6).

Summarizing the results of Sections 2 and 3 we can formulate the following statement.

STATEMENT 3.1. Under the above assumptions the arithmetic complexity of the proposed
algorithm for solving problem (1.6) is estimated from above by

C-(h?+h=321n*hY),

where constant C is independent of mesh size parameter h and coefficients of the problem IN((X)
and ap(x).

4. Results of the numerical experiments. In this section the method of precondi-
tioning being presented is tested on the model problem in the unit square:

0%u 0%u . _ 5
—km@— ya—yz—f, IHQ:[O,I] ,
u =0, on 0N.

Domain 2 is composed of 4 subdomains as shown in Figure 5. Coefficients k, and k, are
constants in each subdomain.

Q3 Q4
ke =1 ke =
ky =k ky =1

0 Qo
ke =k ke =1
ky =1 ky =

F1aURE 5. Coefficients in the subdomains for a model problem.
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The domain is divided into n? squares (n in each direction) and each square is partitioned
into 2 triangles. The dimension of the original algebraic system is N = 3n? — 2n and the
dimension of the Schur complement after elimination of the subdomain problems is Np = 4n.
The right-hand side is generated randomly, and the accuracy parameter is taken as ¢ = 1076,
The degree of matrix polynomial (3.21) equals L = [\/2.571] +1, where [n] is an integer part of
7. The condition number of matrix Afll Ar is calculated by the relation between the conjugate
gradient and the Lanczos algorithm [16].

The results are summarized in Table 1, where n;t, and C'ond denote the iteration number
and condition number, respectively. All experiments are carried out on Sun Workstation.

TABLE 1.

100 x 100 200 x 200 400 x 400

N = 29800 N = 119600 N = 479200

k Niter | Cond || Niter Cond Niter Cond

1 23 10.7 25 10.9 26 10.9
10 23 9.2 24 9.8 26 10.2
100 20 8.3 19 7.9 20 8.1
1000 12 4.2 14 6.2 14 6.4
10000 6 1.5 7 2.0 7 2.1
100000 3 1.1 4 1.1 4 1.1
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