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MULTIGRID AND MULTILEVEL METHODS FOR

NONCONFORMING ROTATED Q� ELEMENTS

ZHANGXIN CHEN AND PETER OSWALD

Abstract� In this paper we systematically study multigrid algorithms and
multilevel preconditioners for discretizations of second�order elliptic problems
using nonconforming rotated Q� �nite elements� We �rst derive optimal re�
sults for the W�cycle and variable V�cycle multigrid algorithms� we prove that
theW�cycle algorithm with a su�ciently large number of smoothing steps con�
verges in the energy norm at a rate which is independent of grid number levels�
and that the variable V�cycle algorithm provides a preconditioner with a con�
dition number which is bounded independently of the number of grid levels� In
the case of constant coe�cients� the optimal convergence property of the W�
cycle algorithm is shown with any number of smoothing steps� Then we obtain
suboptimal results for multilevel additive and multiplicative Schwarz methods
and their related V�cycle multigrid algorithms� we show that these methods
generate preconditioners with a condition number which can be bounded at
least by the number of grid levels� Also� we consider the problem of switching
the present discretizations to spectrally equivalent discretizations for which op�
timal preconditioners already exist� Finally� the numerical experiments carried
out here complement these theories�

�� INTRODUCTION

In recent years there has been analyses and applications of the nonconform�
ing rotated �NR� Q� �nite elements for the numerical solution of partial di�er�
ential problems� These nonconforming rectangular elements were �rst proposed
and analyzed in ���	 for numerically solving the Stokes problem
 they are the sim�
plest divergence�free nonconforming elements on rectangles �respectively� rectangu�
lar parallelepipeds�� Then they were used to simulate the deformation of martensitic
crystals with microstructure ��
	 due to their simplicity� Conforming �nite element
methods can be used to approximate the microstructure with layers which are ori�
ented with respect to meshes� while nonconforming �nite element methods allow
the microstructure to be approximated on meshes which are not aligned with the
microstructure �see� e�g�� ��
	 for the references��
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Independently� the NR Q� elements have been derived within the framework
of mixed �nite element methods ���� �	� It has been shown that the nonconform�
ing method using these elements is equivalent to the mixed method exploiting the
lowest�order Raviart�Thomas mixed elements on rectangles �respectively� rectangu�
lar parallelepipeds� ���	� Based on this equivalence theory� both the NR Q� and the
Raviart�Thomas mixed methods have been applied to model semiconductor devices
���	
 they have been e�ectively employed to compute the electric potential equation
with a doping pro�le which has a sharp junction�

Error estimates of the NR Q� elements can be derived by the classical �nite
element analysis ���� ��	� They can be also obtained from the known results on
the mixed method based on the equivalence between these two methods ��	� It
has been shown that the so�called �nonparametric� rotated Q� elements produce
optimal�order error estimates� As a special case of the nonparametric families� the
optimal�order errors can be obtained for partitions into rectangles �respectively�
rectangular parallelepipeds� oriented along the coordinate axes� Finally� in the
case of cubic triangulations� superconvergence results can be obtained ��� ��	�

Unlike the simplest triangular nonconforming elements� i�e�� the nonconforming
P� elements� the NR Q� elements do not have any reasonable conforming subspace�
Consequently� there are di�erences between these two types of nonconforming ele�
ments� The NR Q� elements can be de�ned on rectangles �respectively� rectangular
parallelepipeds� with degrees of freedom given by the values at the midpoints of
edges of the rectangles �respectively� the centers of faces of the rectangular paral�
lelepipeds�� or by the averages over the edges of the rectangles �respectively� the
faces of the rectangular parallelepipeds�� While these two versions lead to the same
de�nition for the nonconforming P� elements� they can produce very di�erent re�
sults in terms of implementation for the NR Q� elements� With the second version
of the NR Q� elements� we are able to prove all the theoretical results for the
multigrid algorithms and multilevel additive and multiplicative Schwarz methods
considered in this paper� However� we are unable to obtain these results with their
�rst version� In particular� as numerical tests in ���	 indicate� the energy norm of
the iterates of the usual intergrid transfer operators� which enters both upper and
lower bounds for the condition number of preconditioned systems� deteriorates with
the number of grid levels for the �rst version� But it is bounded independently of
the number of grid levels for the second version� as shown here�

The other major di�erence between the nonconforming P� and the NR Q� ele�
ments is that the former contains the conforming P� elements� while the latter does
not contain any reasonable conforming subspace� as mentioned above� As a result
of this� the convergence of the standard V�cycle algorithm for the nonconforming P�
elements can be shown when the coarse�grid correction steps of this algorithm are
established on the conforming P� spaces ���� ��	� But this is not the case for the NR
Q� elements� On the other hand� within the context of the nonconforming meth�
ods� i�e�� when the coarse�grid correction steps are de�ned on the nonconforming P�
spaces themselves� the convergence of the V�cycle algorithm has not been shown�
and the W�cycle algorithm has been proven to converge only under the assumption
that the number of smoothing steps is su�ciently large �
� �� �� �� ��� �� ��� ��	�
However� we are here able to show the convergence of the W�cycle algorithm with
any number of smoothing steps for the Laplace equation using the NR Q� elements�
This optimal property cannot be proven for the nonconforming P� elements using
the present techniques�
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The multigrid algorithms for the NR Q� elements were �rst developed and
analyzed in ��	� and further discussed in ���	 and ��	� The second version of these
elements was used in ��	 and ���	� while their �rst version was exploited in ��	�
Moreover� the analysis in ��	 was given for elliptic boundary value problems which
are not required to have full elliptic regularity� However� in all these three papers�
only theW�cycle algorithm with a su�ciently large number of smoothing steps was
shown to converge using the standard proof of convergence of multigrid algorithms
for conforming �nite element methods ��	� We �nally mention that the study of the
NR Q� elements in the context of domain decomposition methods has been given
in ���	�

In this paper we systematically study multigrid algorithms and multilevel pre�
conditioners for discretizations of second�order elliptic problems using the NR Q�

elements� We �rst consider the convergence of the W�cycle and variable V�cycle
algorithms for these nonconforming elements� We prove that theW�cycle algorithm
with a su�ciently large number of smoothing steps converges in the energy norm
at a rate which is independent of grid number levels� and that the variable V�cycle
algorithm provides a preconditioner with a condition number which is bounded
independently of the number of grid levels� A main observation in this paper is
that the optimal convergence property for the W�cycle algorithm holds with any
number of smoothing steps� when the coe�cient of the di�erential problems is con�
stant� Explicit bounds for the convergence rate and condition number are given�
The NR Q� elements has so far been the �rst type of nonconforming elements which
are shown to possess this feature for the W�cycle algorithm with any number of
smoothing steps�

We then study multilevel preconditioners of hierarchical basis and BPX type ��	
for the NR Q� elements� We develop a convergence theory for the multilevel additive
and multiplicative Schwarz methods and their related V�cycle algorithms� We follow
the general theory introduced in ���	 where the analysis of the hierarchical basis
and BPX type for nonconforming discretizations of partial di�erential equations
was carried out� A key ingredient in the analysis is to control the energy norm
growth of the iterated coarse�to��ne grid operators� which enters both upper and
lower bounds for the condition number of preconditioned systems as outlined above�
So far� the energy norm of the iterated intergrid transfer operators has been shown
to be bounded independently of grid levels solely for the nonconforming P� elements
���	� In this paper we prove this property for the NR Q� elements� Based on the
present theory� we derive a suboptimal result for the multilevel preconditioners of
hierarchical basis and BPX type for the NR Q� elements�

Finally� we study the problem of switching the NR Q� discretization system
to a spectrally equivalent discretization system for which optimal preconditioners
are already available� This switching strategy has been used in the setting of the
multilevel additive Schwarz method
 see ���	 for the references� After we �nd a
spectrally equivalent reference discretization for the NR Q� system� we are able to
obtain optimal preconditioner results for the NR Q� elements�

Thanks to the equivalence between the rotated Q� nonconforming method and
the lowest�order Raviart�Thomas mixed rectangular method� all the results derived
here carry over directly to the latter method ��� ��	�

For technical reasons� all the results in this paper are shown for partitions
into uniform squares �respectively� cubes�� They can be extended to triangulations
in which the �nest triangulation can be mapped to a square �respectively� cubic�
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triangulation in an a�ne�invariant fashion� Also� the analysis is given for the two�
dimensional domain
 an extension to three space dimensions is straightforward for
most of the results below�

The rest of the paper is organized as follows� In the next section we prove
some preliminary results for the intergrid transfer operators� Then the multigrid
algorithms and multilevel preconditioners are discussed in x� and x�� respectively�
The problem of switching to a spectrally equivalent discretization is considered in
x�� Finally� the numerical results presented in x� complement the present theories�

�� PRELIMINARY RESULTS

For expositional convenience� let � � ��� ��� be the unit square� and let Hs���
and L���� � H���� be the usual Sobolev spaces with the norm

jjvjjs �
�
�Z

�

X
j�j�s

jD�vj�dx
�
A���

�

where s is a nonnegative integer� Also� let ��� �� denote the L���� or �L������ inner
product� as appropriate� The L���� norm is indicated by jj � jj� Finally�

H�
� ��� � fv � H���� � vj� � �g�

where � � ���
Let h� and Eh� � E� be given� where Eh� is a partition of � into uniform squares

with length h� and oriented along the coordinate axes� For each integer � � k � K�
let hk � ���kh� and Ehk � Ek be constructed by connecting the midpoints of the
edges of the squares in Ek��� and let Eh � EK be the �nest grid� Also� let �Ek be
the set of all interior edges in Ek� In this and the following sections� we replace
subscript hk simply by subscript k�

For each k� we introduce the rotated Q� nonconforming space

Vk �

�
v � L���� � vjE � a�E � a�Ex� a�Ey � a�E�x

� � y��� aiE � IR� �E � Ek


if E� and E� share an edge e� then

Z
e

�j�E�
ds �

Z
e

�j�E�
ds


and
R
�E��

�j�ds � �

�
�

Note that Vk �� H�
� ��� and Vk�� �� Vk� k � ��

We introduce the space

�Vk �

kX
l��

Vl � Vk�

the discrete energy scalar product on �Vk 	H�
� ��� by

�v� w�E�k �
X
E�Ek

�rv�rw�E � v� w � �Vk 	H�
� ����

and the discrete norm on �Vk 	H�
� ��� by

jjvjjE�k �
q
�v� v�E�k � v � �Vk 	H�

� ����
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We introduce two sets of intergrid transfer operators Ik � Vk�� 
 Vk and
Pk�� � Vk 
 Vk�� as follows� Following ��� ��	� if v � Vk�� and e is an edge of a
square in Ek� then Ikv � Vk is de�ned by

�

jej
Z
e

Ikvds �

������
�����

� if e � ���

�

jej
Z
e

vds if e �� �E for any E � Ek���
�

�jej
Z
e

�vjE�
� vjE�

�ds if e � �E� � �E� for some E�� E� � Ek���

If v � Vk and e is an edge of an element in �Ek��� then Pk��v � Vk�� is given by

�

jej
Z
e

Pk��vds �
�

�

�
�

je�j
Z
e�

vds�
�

je�j
Z
e�

vds

�
�

where e� and e� in �Ek form the edge e � �Ek��� Note that the de�nition of Pk��
automatically preserves the zero average values on boundary edges� Also� it can be
seen that

����� Pk��Ikv � v� v � Vk��� k � ��

That is� Pk��Ik is the identity operator Idk�� on Vk��� This relation is not satis�ed
when the NR Q� elements are de�ned with degrees of freedom given by the values
at the midpoints of edges of elements�

We also de�ne the iterates of Ik and Pk�� by

RK
k � IK � � � Ik	� � Vk 
 VK �

QK
k � Pk � � �PK�� � VK 
 Vk �

Finally� we make the convention on the discrete energy scalar product on the space
�VK �

�v� w�E � �v� w�E�K � v� w � �VK �

Obviously� we have the inverse inequality

����� jjvjjE � C�kjjvjj� v � �Vk� � � k � K�

�here and later� by C� c���� we denote generic positive constants which are indepen�
dent of k��

In this section we collect some basic properties of the intergrid transfer opera�
tors Pk�� �respectively� Ik� and their iterates QK

k �respectively� RK
k �� The crucial

results are the boundedness of the operators Ik with constant
p
� and the uniform

boundedness of the operators RK
k with respect to the discrete energy norm jj � jjE �

Lemma ���� It holds that Pk�� �� � k � K� is an orthogonal projection with

respect to the energy scalar product� i�e�� for any v � Vk�

�����
�v � Pk��v� w�E � �� �w � Vk���

jjvjj�E � jjv � Pk��vjj�E � jjPk��vjj�E �
Moreover� there are constants C and c� independent of v� such that the di�erence

�v � v � Pk��v � �Vk satis�es

����� c�kjj�vjj � jj�vjjE � C�kjj�vjj�
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Proof� For any E � Ek�� with the four subsquares Ei � Ek �i � �� � � � � �� see
Figure ��� an application of Green�s formula implies that

�����
�r�v � Pk��v	�rw�E �

P�
i���r�v � Pk��v	�rw�Ei

�
P�

i��

P�
j��

�w
��j

Ei

		
ej
Ei

R
ej
Ei

�v � Pk��v�jEids�

where ejEi are the four edges of Ei with the outer unit normals �jEi � i � �� � � � � ��
Note that in ����� the line integrals over edges interior to E � Ek�� cancel by

continuity of Pk��v in the interior of E� Also� if ejEi and e
�j
E�i

form an edge of E� it

follows by the de�nition of Pk�� thatZ
ej
Ei

�v � Pk��v�jEids�
Z
e
�j

E�i

�v � Pk��v�jE�ids � ��

and that
�w

��jEi

		
ej
Ei

�
�w

��
�j
E�i

		
e
�j

E�i

is constant� Then� by ������ we see that

�r�v � Pk��v	�rw�E � ��

Now� sum on all E � Ek�� to derive the orthogonality relations in ������
The upper estimate in ����� directly follows from ������ The lower bound can

be easily obtained from a direct calculation of the energy norms of v�PK�� on all
E � Ek��� This completes the proof� �

e�E

e�E

e�E e�E

E�

E� E�

E�

Figure �� Edges and subsquares of E � Ek���

Before we start with the investigation of the prolongations Ik � it will be useful
to collect some formulas� For E � Ek�� and any v � Vk��� de�ne

�

jeiE j
Z
ei
E

vds � biE �

�see Figure � for the notation�� and set

sE � b�E � b�E � b�E � b�E� ��
E � b�E � b�E �

��E � b�E � b�E � b�E � b�E� ��
E � b�E � b�E �
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Then� with the subscript E omitted� we have the next lemma�

Lemma ���� It holds that

�����
jjvjj�L�
E� � h�k��



�
�
s

� � �
��f����� � �����g� �

�� ��
���
�
�

jjrvjj�L�
E� � ����� � ����� � �
� ��

����

and

���
�

h�k��
��

�
�b��� � �b��� � �b��� � �b���


 � jjvjj�L�
E�
� h�k��

�

�
�b��� � �b��� � �b��� � �b���



�

Proof� Using the a�ne invariance of the local interpolation problem connecting
v with its edge averages bi� it su�ces to prove ����� and ���
� for the master square
E � ���� ���� A straightforward calculation gives

����� v � v�x� y� �
�

�
s�

��

�
x�

��

�
y � �

�
���x� � y���

Now direct integration yields the desired results in ������ Also� ���
� follows from the
�rst equation of ����� by computing the eigenvalues of the symmetric �
 � matrix
T tDT � where D �diag������ ����� ����� ������ T stands for the transformation
matrix from the vector �b�� b�� b�� b�� to �s������� ���� and T t is the transpose of
T � These eigenvalues are ����� ���� ���� and ���� which implies ���
�� �

Lemma ��� is the basis for computing all the discrete energy and L� norms
needed in the sequel� The formula ����� valid for the master square can be used to
derive explicit expressions for the edge averages of Ikv and Ikv � v� Toward this
end� we �rst compute the corresponding values for the master square� and then use
the invariance of the local interpolation problem for v under a�ne transformations
�for the square triangulations under consideration� these transformations are just
dilation and translation� to return to the notation on each E � Ek���

� � e� �

e��

e���e�

e���e�	e�

e���e�

e��

e��	e�

e��	e� e���	e�

e��� e���	e���

e���

Figure �� An illustration for Lemma ����

Note that� by the de�nition of the triangulation Ek��� to each E � Ek�� is
uniquely assigned a � � ���� ��� such that � � ��� �� � �k��� For notational
convenience� let b�� and b�� denote the averages of v � Vk�� over the horizontal and

vertical edges e�� and e��� respectively� in �Ek�� �see Figure �� where e��� � e
�
��	e� �

e���	e� � e
�
��	e��e� � �Ek� e� � ��� ��� and e� � ��� ���� The corresponding quantities

for Ikv � Vk are indicated by aj�� j � �� �� Now� introduce the notation

���� � b�� � b���e� � b��	e� � b��	e��e� �

���� � b�� � b���e� � b��	e� � b��	e��e� �
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With these notation� it follows from the de�nition of Ik that the edge averages of
Ikv can be written as follows�

�����

a��� � b�� � �
�
���� �

a���	e� � b�� � �
�
���� �

a���	e� �
�
�b
�
� � �

�b
�
�	e� �

�
�b
�
� � �

�b
�
�	e� �

a���	e�	e� � �
�b
�
�	e� �

�
�b
�
� � �

�b
�
� � �

�b
�
�	e� �

and

������

a��� � b�� � �
�
���� �

a���	e� � b�� � �
�
���� �

a���	e� �
�
�b
�
� � �

�b
�
�	e� �

�
�b
�
� � �

�b
�
�	e� �

a���	e�	e� � �
�b
�
�	e� �

�
�b
�
� � �

�b
�
� � �

�b
�
�	e� �

when the edge average aj� is associated with an interior edge in �Ek
 for boundary
edges� this value is set to be zero�

Note that Ik �as well as Pk��� can be extended to the larger spaces �Vk in a

natural way� In order to de�ne the extension �Ij � �Vk 
 Vk � observe that any v � �Vk
coincides on each E � Ek with a polynomial from VkjE � so the form of the previous

de�nition for Ik remains the same for �Ij � Clearly� �IkjVk�� � Ik and �IkjVk � Idk�
To express the edge averages of Ikv � v� set

��� � b��	e� � b�� � b���e� � b��	e��e� �

��� � b��	e� � b�� � b���e� � b��	e��e� �

if e�� and e�� are interior edges in �Ek��� For boundary edges� they need to be

modi�ed to give the correct expressions for Ikv � v� If e�� is a boundary edge� for
example� we de�ne

��� � ��b��	e� � b����

With these� we see that

������

R
e�
���e��e�

�Ikv � v�j��e�ds �
R
e�
���e�

�Ikv � v�j�ds � ��

�
je�
��
j

R
e�
��

�Ikv � v�j��e�ds � �
je�
���e�

j

R
e�
���e�

�Ikv � v�j�ds � � �
��

�
��

�
je�
��
j

R
e�
��

�Ikv � v�j�ds � �
je�
���e�

j

R
e�
���e�

�Ikv � v�j��e�ds � �
��

�
� �

where �Ikv � v�j� denotes the restriction of Ikv � v to the element associated with
�� The averages of Ikv � v on other edges are given similarly� Then� by Green�s
formula and ������� we see that

������ jjIkvjj�E � jjvjj�E � jjIkv � vjj�E � v � Vk���

From ������������ and Lemma ���� we immediately have the next lemma� Below
the notation � stands for two�sided inequalities with constants independent of k�

Lemma ���� It holds that

������
jj�Ikvjj �

q
�
� jjvjj� �v � �Vk�

jjIkvjjE �
p
�jjvjjE � �v � Vk���
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and

������ �kjjIkv � vjj � jjIkv � vjjE �
sX

�

f������ � �����
�g� �v � Vk���

We now prove the following property of the iterated coarse��ne intergrid trans�
fer operators RK

k �

Lemma ���� It holds that

������ jjRK
k vjjE � CjjvjjE � �v � Vk� � � k � K�

Proof� The proof is technical
 it follows the idea of the proof of an analogous
statement for the P� nonconforming elements ���	� First� we consider the case of
� � IR�� That is� we assume that all our de�nitions are extended to in�nite square
partitions of IR�
 due to the local character of all constructions� this is easy to do�
We keep the same notation for the extended partitions Ek� edges ej� � �Ek� squares
E � Ek� etc� In order to guarantee the �niteness of all norm expressions� we restrict
our attention to functions v � Vk with �nite support� By the construction of Ik�
this property is preserved when applying the operators Ik and RK

k �

After the extension to the shift�invariant setting of IR�� it is clear that it su�ces
to consider the case of k � �� Set� for simplicity�  Rk � Rk

� � k � �� � � � �K� Our
main observation from numerical experiments ���	 was that the sequence

fjj  Rkv �  Rk��vjj�E � k � �� � � � �Kg
decays geometrically� What we want to prove next is the mathematical counterpart
to this observation� To formulate the technical result� introduce

�j �
X
��Z�

��j��
�� j � �� �� ��

where the quantities �j� are determined from the edge averages of v � V� by the
same formulas as above� The corresponding quantities computed for  v � I�v � V�
are denoted by  �j� and  �j � j � �� �� �� From ������ in Lemma ���� we see that

�� � �� � jj  R�v � vk�E and  �� �  �� � jj  R�v �  R�vjj�E 

moreover� we can iterate this construction� Thus� if we can prove that

������  � � c� �� �  �� �  �� � 	�� � 	��c��� � �� � ����

where � 
 	� 
 � and c� � � are constants independent of v� then� by Lemmas ���
and ����

����
�

jjRK
� vjjE � jjvjjE �

PK
k�� jj  Rkv �  Rk��vkE

� jjvjjE � C
PK��

k��

p
�	��k

p
�

� CjjvjjE �

Since this gives the desired boundedness of RK
k �for IR�� via dilation� we concentrate

on �������
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From ����� and ������ we �nd the following formulas for  �j��

 ����	e� �
�
��

�
�	e� � �

��
�
� � �

��
�
� �

 ���� � � �
��

�
� � �

��
�
� � �

��
�
� �

 ����	e� �
�
��

�
� � �

��
�
�	e� �

�
��

�
� �

 ����	e�	e� � � �
��

�
�	e� �

�
��

�
�	e� �

�
��

�
� �

 ���� � �
��

�
� � �

� ��
�
� � ����e��� �

� ��
�
� � ����e���

 ����	e� �
�
��

�
� �

 ����	e� �
�
��

�
� � �

� ��
�
�	e� � ����e�	e�� �

�
� ��

�
� � ����e���

 ����	e�	e� � � �
��

�
�	e� �

 ���� � �
��

�
� � �

� ��
�
� � ����e�� �

�
� ��

�
� � ����e���

 ����	e� �
�
��

�
� �

 ����	e� �
�
��

�
� � �

� ��
�
�	e� � ����e�	e��� �

� ��
�
� � ����e���

 ����	e�	e� � � �
��

�
�	e� �

These formulas are used to compute the quantities  �j � In order to write them in
reasonably short form� we introduce the notation

��
�

j �
X
��Z�

�j��
j
�	�� � ��

�

jl �
X
��Z�

�j��
l
�	�� � k� l � �� �� � �j �� l�


if �� � Z� is the null vector� it is omitted in this notation� With them� we see� by
carefully evaluating all squares� that

 �� �
P

��
 ����

� �
P

�

�
� �����

� � � ����	e��
� � � ����	e��

� � � ����	e�	e��
�
�

� �
��� �

�
�
 ��� � ���� �

�� ���� � �e
�

�� � ��e
�

�� � �e
��e�

�� �� �z �
���

�

 �� �
�
�
�� �

�
��� �

�
�
�� � �

�
�
e�

� � �
�
�

e�

�

� �
� ���� � �e

�

�� � ��e
�

�� � �e
��e�

�� �� �z �
���

� �
�� ��

e�

�� � ��e
�	e�

�� � ��e
�

�� � �e
�	e�

�� ��

 �� �
�
�
�� �

�
�
�� �

�
��� � �

�
�
e�

� � �
�
�

e�

�

� �
� ���� � �e

�

�� � ��e
�

�� � �e
��e�

�� �� �z �
���

� �
�� ��

�e�

�� � �e
�	e�

�� � �e
�

�� � �e
��e�

�� ��

Thus� introducing A � �� � �� and  A �  �� �  ��� we have

������
 �� � �

��� �
�
�
A� �

���
��

 A � �
��� �

��
�
A� �

�
 ��
e�

� � �e
�

� � � �
�
 ��

e�

� � �e
�

� �� �
��

�
� � �

���
���

where

��� � ��e
�

�� � �e
�	e�

�� � �e
�

�� � ��e
�	e�

�� � �e
�

�� � �e
��e�

�� � ��e
�

�� � �e
�	e�

�� �
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Next� we simplify �� and ���� Note that

�� � ��e
�

� �
P

� �
�
���

�
� � ���	e� � ����e�	e� � ����e� � ���	e� � ����e��

�
P

� �
�
���

�
�	e��e� � ����e� � ����e��e� � ���	e� � ������

�� � ��e
�

� �
P

� �
�
���

�
� � ����e� � ���	e��e� � ���	e� � ���	e� � ����e��

�
P

� �
�
���

�
��e��e� � ���	e� � ���	e��e� � ����e� � ������

so that

�� � �e
�

� � �e
�

� � �A� �

�
����

Analogously� we can simplify ��� as follows�

��� �
P

� �
�
�



����	e�	e� � ����e� � ���	e� � ����e�	e��

�����	e� � ���	e��e� � ����e� � ���	e�	e��
�

�
P

� �
�
�



����	e�	e� � ���	e��e� � ����e��e� � ����e�	e��

������	e� � ���	e� � ����e� � ����e�� � �����
�

� ���e
�	e�

� � �e
��e�

� �� ���e
�

� � �e
�

� � � ����

Substitution of �� and ��� into ������ leads to

������

 �� � �
��� �

�
��A� �

�� ��
e�

� � �e
�

� � � �

��

��

� �
�
�� �

�
��A� �

��

�
�e

��e�

� � �e
�	e�

� � ��e
�

� � ��e
�

�

�
� �
��

�
�e

�

� � �e
�

�

�
� �

��� �
�
�
A�

where we have used the fact that j���j j � �j � j � �� �� �� which is valid for arbitrary
��� With the same argument� we see that

������

 A � �
��� �

�
�
A� �

�


�
�e

�

� � �e
�

�

�
� �

�


�
�e

�

� � �e
�

�

�
� �

���
��

� �
��� �

�
�
A� �

�


�
�e

��e�

� � �e
�	e�

�

�
� ��
�


�
�e

�

� � �e
�

�

�
� �

�


�
�e

�

� � �e
�

�

�
� ��

� �� �
�
�A�

Now� set B � c�� and  B � c ��� Then it follows from ������ and ������ that

 A � �

�
�

��

�c
B�  B � c

��
A�

�

�
B�

and

�  A�  B� � max

�
�

�
�

c

��
�
��

�c
�

�

�

�
�A� B��

Let c � c� � �
p
�� �� so we see that ������ holds with

	� �
�

�
�

c�

��
�

��

�c�
�

�

�
�

�
p
� � �

��

 ��
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It remains to reduce the assertion of Lemma ��� to the shift�invariant situation
just considered� To this end� starting with any v � Vk on the unit square� we
repeatedly use an odd extension� Namely� set �v � v on ��� �	� and

�v�x� y� � ��v��x� y�� �x� y� � ���� ��
 ��� �	


after this� de�ne

�v�x� y� � ��v�x��y�� �x� y� � ���� �	
 ���� ���
and continue this extension process with the unit square replaced by ���� �	� such
that after the next two steps �v is de�ned on ���� �	�� Outside this larger square we
continue by zero� Clearly� jj�vjj�E � ��jjvjj�E � where the norms for �v and v are taken

with respect to IR� and the unit square� respectively�
It is not di�cult to check by induction that on ��� �	� the functions RK

k �v �ob�

tained by the repeated application of the prolongations de�ned on IR�� and RK
k v

�as de�ned above with respect to ��� �	�� coincide� Also� the values of Ik	��v on
����
k	��� � � ��
k	��	� depend solely on the values of �v on the square ����k� � �
��k	�� and on this enlarged square Ik	��v coincides with its odd extension from
��� �	�� Finally� the zero edge averages are automatically reproduced along the
boundary of ��� �	� from the above extension procedure� Therefore� by ����
� and
the dilation argument� we obtain

jjRK
k vjj�E � jjRK

k �vjj�E � Cjj�vjj�E � ��Cjjvjj�E �
which �nishes the proof of Lemma ���� �

The second inequality in ������ is critical for the convergence results of multigrid
algorithms developed in the next section� while ������ is crucial for the multilevel
preconditioner results in x��

�� MULTIGRID ALGORITHMS

In this section and the next section we consider multigrid algorithms and multi�
level preconditioners for the numerical solution of the second�order elliptic problem

�����
�r � �Aru� � f in ��

u � � on ��

where � � IR� is a simply connected bounded polygonal domain with the boundary
�� f � L����� and the coe�cient A � �L�������� satis�es

����� ���
t� � �tA�x� y�� � ���

t�� �x� y� � �� � � IR��

with �xed constants ��� �� � �� The condition number of preconditioned linear
systems to be analyzed later depends on the ratio ������

Problem ����� is recast in weak form as follows� The bilinear form a��� �� is
de�ned as follows�

a�v� w� � �Arv�rw�� v� w � H�����

Then the weak form of ����� for the solution u � H�
� ��� is

����� a�u� v� � �f� v�� � v � H�
� ����

Associated with each Vk� we introduce a bilinear form on Vk 	H�
� ��� by

ak�v� w� �
X
E�Ek

�Arv�rw�E � v� w � Vk 	H�
� ����
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The NR Q� �nite element discretization of ����� is to �nd uK � VK such that

����� aK�uK � v� � �f� v�� � v � VK �

Let Ak � Vk 
 Vk be the discretization operator on level k given by

����� �Akv� w� � ak�v� w�� � w � Vk �

The operator Ak is clearly symmetric �in both the ak��� �� and ��� �� inner products�
and positive de�nite� Also� we de�ne the operators Rk�� � Vk 
 Vk�� and R�

k�� �
Vk 
 Vk�� by

ak���Rk��v� w� � ak�v� Ikw�� � w � Vk���

and 

R�
k��v� w

�
� �v� Ikw�� � w � Vk���

It is easy to see that IkRk�� is a symmetric operator wtih respect to the ak form�
Note that neither R�

k nor Rk is a projection in the nonconforming case� Finally� let
!k dominate the spectral radius of Ak �

The multigrid processes below result in a linear iterative scheme with a reduc�
tion operator equal to I �BKAK � where BK � VK 
 VK is the multigrid operator
to be de�ned below�

Multigrid Algorithm ���� Let � � k � K and p be a positive integer� Set
B� � A��� � Assume that Bk�� has been de�ned and de�ne Bkg for g � Vk as
follows�

�� Set x� � � and q� � ��
�� De�ne xl for l � �� � � � �m�k� by

xl � xl�� � Sk�g �Akx
l����

�� De�ne ym
k� � xm
k� � Ikq
p� where qi for i � �� � � � � p is de�ned by

qi � qi�� �Bk��

h
R�
k��

�
g �Akx

m
k�
�
�Ak��q

i��
i
�

�� De�ne yl for l � m�k� � �� � � � � �m�k� by

yl � yl�� � Sk


g �Aky

l��
�
�

�� Set Bkg � y�m
k��

In Algorithm ���� m�k� gives the number of pre� and post�smoothing iterations
and can vary as a function of k� In this section� we set Sk � �!k�

��Idk in the
pre� and post�smoothing steps� If p � �� we have a V�cycle multigrid algorithm� If
p � �� we have a W�cycle algorithm� A variable V�cycle algorithm is one in which
the number of smoothings m�k� increase exponentially as k decreases �i�e�� p � �
and m�k� � �K�k��

We now follow the methodology developed in ��	 to state convergence results
for Algorithm ���� The two ingredients in their analysis are the regularity and
approximation property and the boundedness of the intergrid transfer operator�

����� jak �v � IkRk��v� v�j � C
jjAkvjjp


k

p
ak�v� v�� � v � Vk �

and

���
� ak�Ikv� Ikv� � Cak���v� v�� � v � Vk���
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for k � �� � � � �K� where 
k is the largest eigenvalue of Ak� The proof of ����� is
standard
 see the proof of a similar result for the P� nonconforming elements in
���	� Inequality ���
� has been shown in ��	 using the approximation property of
the operator Ik� However� here we see that if A � ��I is a scalar multiple of the
two�by�two identity matrix I� by the second inequality in ������ in Lemma ���� we
actually have

����� ak�Ikv� Ikv� � �ak���v� v�� � v � Vk���

This leads to the following main result of this section� Let the convergence rate for
Algorithm ��� on the kth level be measured by the convergence factor �k satisfying

jak �v �BkAkv� v�j � �kak�v� v�� � v � Vk�

Theorem ���� �i� De�ne Bk by p � � and m�k� � �K�k for k � �� � � � �K in

Algorithm ���� Then there are ��� �� � �� independent of k� such that

��ak�v� v� � ak�BkAkv� v� � ��ak�v� v�� �v � Vk�

with

�� �
p
m�k���C �

p
m�k�� and �� � �C �

p
m�k���

p
m�k��

�ii� De�ne Bk by p � � and m�k� � m for all k in Algorithm ���� Then if A � ��I
is constant� there exists C � �� independent of k� such that

�k � � � C

C �
p
m
�

The same conclusion holds if the assumption that A � ��I is replaced by requiring

that m � m�� where m� is su�ciently large� but independent of k�
The proof of this theorem follows from ����������� and Theorems � and 
 in

��	� From Theorem ���� we have an optimal convergence property of the W�cycle
and a uniform condition number estimate for the variable V�cycle preconditioner�

�� MULTILEVEL PRECONDITIONERS

In this section we discuss multilevel preconditioners of hierarchical basis and
BPX ��	 type for ������ More precisely� we derive the condition numbers of the
additive subspace splittings

����� fVK 
 ��� ��Eg � RK
� fV�
 ��� ��Eg�

KX
k��

RK
k fVk
 ��k��� ��g�

and

����� fVK 
 ��� ��Eg � RK
� fV�
 ��� ��Eg�

KX
k��

RK
k f�Idk � IkPk���Vk 
 �

�k��� ��g�

The condition number of ����� is given by ���	

����� � �

max

min

� 
max � sup
v�VK

jjvjj�E
jjjvjjj� � 
min � inf

v�VK

jjvjj�E
jjjvjjj� �

where

jjjvjjj� � inf
vk�Vk � v�

P
k
RK
k
vk

�
jjv�jj�E �

KX
k��

��kjjvkjj�
�
�

A similar de�nition can be given for ������
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Theorem ���� There are positive constants c and C� independent of K� such that

����� c � jjvjj�E
jjjvjjj� � CK� �v � VK �

and

����� c � jjvjj�E
kkvkk� � CK� �v � VK �

where

kkvkk� � jjQK
� vjj�E �

KX
k��

��kjj�Idk � IkPk���Q
K
k vjj��

That is� the condition numbers of the additive subspace splittings ����� and �����
are bounded by O�K� as K 
��

Proof� For k � �� � � � �K� it follows from the de�nitions of Ik � �Ik� and QK
k � ������

and the �rst inequality of ������ that

��kjj�Idk � IkPk���Q
K
k vjj� � ��kjj�Ik�Idk � Pk���Q

K
k vjj�

� �
� ��kjj�Idk � Pk���Q

K
k vjj�

� Cjj�Idk � IkPk���Q
K
k vjj�E

� CjjQK
k v �QK

k��vjj��
Summing on j and using the orthogonality relations in ������ we see that

infvk�Vk � v�
P

k
RK
k
vk

n
jjv�jj�E �

PK
k�� �

�kjjvkjj�
o

� jjQK
� vk�E �

PK
k�� �

�kjj�Idk � IkPk���Q
K
k vjj�

� Cjjvjj�E �
which implies the lower bounds in ����� and ������

For the upper bounds� we consider an arbitrary decomposition v �
PK

k�� R
K
k vk

with vk � Vk � Then we see� by Lemma ���� that

jjvjj�E �
�

KX
k��

jjRK
k vkjjE

��
� K

KX
k��

jjRK
k vkjj�E � CK

KX
k��

jjvkjj�E �

Consequently� by ������ we have

jjvjj�E � CK

�
jjv�jj�E �

KX
k��

��kjjvkjj�
�
�

Now� taking the in�mum with respect to all decompositions� we obtain

jjvjj�E � CK infvk�Vk � v�
P

k
RK
k
vk

n
jjv�jj�E �

PK
k�� �

�kjjvkjj�
o

� CK
�
jjQK

� vjj�E �
PK

k�� �
�kjj�Idk � IkPk���Q

K
k vjj�

�
�

which �nishes the proof of the theorem� �
We now discuss the algorithmical consequences for the splittings ����� and ������

Theoretically� Theorem ��� already produces suitable preconditioners for the matrix
AK using ����� and ������ However� they are still complicated since they involve
L��projections onto Vk� � 
 k 
 K� which means to solve large linear systems
within each preconditioning step� To get more practicable algorithms� we replace
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the L� norms in Vk and Wk � �Idk � IkPk���Vk � Vk� k � �� � � � �K� by their
suitable discrete counterparts� We �rst consider the splitting �����
 ����� will be
discussed later�

Let f�j��kg be the basis functions of Vk such that the edge average of �j��k equals

one at ej��k and zero at all other edges� Then each v � Vk has the representation

v �

�X
j��

X
�

aj��
j
��k�

Thus� by the uniform L��stability of the bases� which follows from ���
� in Lemma
���� we see that

�����
�

�
���k

�X
j��

X
�

�aj��
� � jjvjj� � �

�
���k

�X
j��

X
�

�aj��
��

Note that �with the same argument as in Lemma ����

���
� ��kjj�j��k jj� �
��

���
� ak��

j
��k� �

j
��k� � jj�j��k jj�E � ��

so ����� can be interpreted as the two�sided inequality associated with the stability
of any of the splittings

����� fVk
 ��k��� ��g �
�X

j��

X
�

fV j
��k
 �

�k��� ��g�

����� fVk
 ��k��� ��g �
�X

j��

X
�

fV j
��k
 ��� ��Eg�

and

������ fVk
 ��k��� ��g �
�X

j��

X
�

fV j
��k
 ak��� ��g�

into the direct sum of one�dimensional subspaces V j
��k spanned by the basis func�

tions �j��k � Any of the splittings ������������ can be used to re�ne ������ As we

will see below� the di�erence is just in a diagonal scaling �i�e�� a multiplication by
a diagonal matrix� in the �nal algorithms� As example� we consider the splitting
������ in detail
 the other two cases can be analyzed in the same fashion�

With ����� and ������� we have the splitting

������ fVK 
 aK��� ��g � RK
� fV�
 a���� ��g�

KX
k��

�X
j��

X
�

RK
k fV j

��k
 ak��� ��g�

It follows from ������ ������ and ���
� that the condition number � for ������ still
behaves like O�K�� Now� associated with this splitting we can explicitly state the
additive Schwarz operator

������ PK � RK
� T� �

KX
k��

�X
j��

X
�

RK
k T

j
��k�
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where

T j
��kv �

aK�v�RK
k �

j
��k�

ak��
j
��k � �

j
��k�

�j��k�

and T�v � V� solves the elliptic problem

a��T�v� w� � aK�v�RK
� w�� � w � V��

Thus the matrix representations of all operators with respect to the bases of the
respective Vk are

Tk �

�X
j��

X
�

T j
��k � Sk�R

K
k �tAK � Sk � diag�aj��

j
��k � �

j
��k�

����

for � � k � K� and

T� � A��� �RK
� �tAK �

where for convenience the same notation is used for operators and matrices� Hence
it follows from ������ that

PK �

�
RK
� A

��
� �RK

� �t �

KX
k��

RK
k Sk�R

K
k �t

�
AK � CKAK �

which� together with the de�nition of RK
k � IK � � � Ik	�� leads to the typical recur�

sive structure for the preconditioner CK

������ Ck � IkCk��I
t
k � Sk� k � K� � � � � �� S� � C� � A��� �

Note that with these choices for Sk� the multiplication of a vector by CK is formally
a special case of Algorithm ��� if one sets m�k� � �� p � �� removes the post�
smoothing step� and replaces Ak by a zero matrix for all k � ��

From ������ and the de�nitions of Ik and Sk� we see that a multiplication by CK

only involves O�nK�� � ��n��n
�
�� � O�nK� arithmetical operations� where nk � ��k

is the dimension of Vk� This� together with ������ yields suboptimal work estimates
for a preconditioned conjugate gradient method for ����� with the preconditioner
CK � That is� an error reduction by a factor � in the preconditioned conjugate
gradient algorithm can be achieved by O�nK

p
lognK log������ operations�

We now turn to the discussion of the algorithmical consequences for the splitting
������ To do this� we need to construct basis functions inWk� k � �� � � � �K� Starting

with the bases f�j��kg in Vk� to each interior edge ej��k�� � �Ek��� we replace the

two associated basis functions �j���k� �
j
��	ej �k with their linear combinations

�j���k � �j���k � �j��	ej �k� �j��	ej �k � �j���k � �j��	ej �k� j � �� ��

where ej���k and ej��	ej �k � �Ek form the edge ej��k��� For all other interior edges

ej��k� which do not belong to any edge in �Ek��� we set

�j��k � �j��k�

The new bases f�j��kg in Vk is still L��stable
 i�e�� they satisfy an analogous inequal�

ity to ������ Moreover� if

v �

�X
j��

X
�

bj��
j
��k�
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we have

Pk��v �
�X

j��

X
�

bj���
j
��k���

and

�Idk � IkPk���v �

�X
j��

X
�����

cj��
j
��k�

since �j���k � Ik�
j
��k�� can be completely expressed by the functions �l��k with

� �� �� only� More precisely� we have

c���	e� � b���	e� � �
� �b

�
�� � b��
��e�� � b��
�	e�� � b��
�	e��e����

c���	e� � b���	e� � �
� ��b

�
�� � b��� � b��
�	e�� � b��
�	e����

c���	e�	e� � b���	e� � �
� ��b

�
�
�	e�� � b��� � b��� � b��
�	e����

and similar relations hold for j � �� Hence any function from Wk has a unique
representation by linear combinations of f�j��k � � �� ��g� and this basis system is

L��stable� With this basis system� as in ������� we have the corresponding splitting

������ fVK 
 aK��� ��g � RK
� fV�
 a���� ��g�

KX
k��

�X
j��

X
�����

RK
k fW j

��k
 ak��� ��g

into a direct sum of RK
� V� and one�dimensional spaces RK

k W
j
��k spanned by the

basis �j��k� Then� with the same argument as for ������� we derive an additive

preconditioner �CK for AK recursively de�ned by

������ �Ck � Ik �Ck��I
t
k �

�Ik �Sk �I
t
k� k � K� � � � � �� �C� � �S� � A��� �

where

�Sk � diag
�
ak��

j
��k� �

j
��k�

��� � �� ��� j � �� �
�

are diagonal matrices and �Ik is the rectangular matrix corresponding to the natural
embedding Wk � Vk with respect to the bases f�j��kg in Wk and f�j��kg in Vk �one

may use the bases f�j��kg for all Vk� which would change the Ik representations� but

keep �Ik maximally simple�� ������ has the same arithmetical complexity as before�
We now summarize the results in Theorem ��� and the above discussion in the

next theorem�

Theorem ���� The symmetric preconditioners CK and �CK de�ned in ������ and

������ and associated with the multilevel splittings ������ and ������� respectively�
have an O�nK� operation count per matrix�vector multiplication and produce the

following the condition numbers�

������ ��CKAK� � CK� �� �CKAK� � CK� K � ��

The splitting ������ can be viewed as the nodal basis preconditioner of BPX
type ��	� while the splitting ������ is analogous to the hierarchical basis precondi�
tioner�
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We now consider multiplicative algorithms for ������ One iteration step of a
multiplicative algorithm corresponding to the splitting ������ takes the form

����
�

y� � xjK �

yl	� � yl � �RK
K�lSK�l�R

K
K�l�

t�AKy
l � fK�� l � �� � � � �K � ��

xj	�K � yK �

where � is a suitable relaxation parameter �the range of relaxation parameters
for which the algorithm in ����
� converges is determined mainly by the constant
in the inverse inequality ����� ��
� ��� ��	� The method ����
� corresponds to a

V�cycle algorithm in Algorithm ��� with Ak replaced by  Ak � �RK
k �tAKR

K
k � one

pre�smoothing and no post�smoothing steps�
The iteration matrix MK�� in ����
� is given by

MK�� � �IdK � �E�� � � � �IdK � �EK����IdK � �EK� � Ek � RK
k Sk�R

K
k �tAK �

An analogous multiplicative algorithm for ����� corresponding to the splitting ������
can be de�ned�

From the general theory on multiplicative algorithms ��
	 and by the same
argument as for Theorem ���� we can show the following result�

Theorem ���� For properly chosen relaxation parameter � the multiplicative

schemes corresponding to the splittings ������ and ������ possess the following upper

bounds for the convergence rate�

������ inf
�
jjMK��jjE � �� C

K
� inf

�
jj �MK��jjE � �� C

K
� K 
��

where MK�� and �MK�� denote the iteration matrices associated with ������ and

������� respectively�
We end with two remarks� First� one example for the choice of � is that

� � K��� which leads to the upper bounds in ������� Second� the diagonal matrices

Sk and �Sk in ������ and ������ can be replaced by any other spectrally equivalent
symmetric matrices of their respective dimension�

�� EQUIVALENT DISCRETIZATIONS

To improve the estimates in Theorems ��� and ���� we now consider the prob�
lem of switching the NR Q� discretization system ����� to a spectrally equivalent
discretization system for which optimal preconditioners are already available� This
switching strategy� as mentioned in the introduction� has been used in the context
of the multilevel additive Schwarz method
 see ���	 for the references�

The most natural candidate for a switching procedure is the space of conforming
bilinear elements

UK �
�
� � C���� � �jE � Q��E�� �E � Ek and �j� � �



�

on the same partition� We introduce two linear operators YK � UK 
 VK and
�YK � VK 
 UK as follows� If � � UK and e is an edge of an element in EK � then
YK� � VK is given by

�����

Z
e

YK�ds �

Z
e

�ds�
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which preserves the zero average values on the boundary edges� If v � VK � we
de�ne �YKv � UK by

�����
� �YKv��z� � � for all boundary vertices z in EK �
� �YKv��z� � average of vj�z� for all internal vertices z in EK �

where vj � vjEj and Ej � EK contains z as a vertex�
Another choice for UK is the space of conforming P� elements

UK �
�
� � C���� � �jE � P��E�� �E �  EK and �j� � �



�

where  EK is the triangulation of � generated by connecting the two opposite vertices
of the squares in EK � The two linear operators YK � UK 
 VK and �YK � VK 
 UK
are de�ned as in ����� and ������ respectively� Moreover� for both the conforming
bilinear elements and the conforming P� elements� it can be easily shown that there
is a constant C� independent of K� such that

�����
�K jj� � YK�jj � Cjj�jjE � �� � UK �

�K jjv � �YKvjj � CjjvjjE � �v � VK �

Since optimal preconditioners exist for the discretization system AK generated by
the conforming bilinear elements �respectively� the conforming P� elements�� the
next result follows from ����� and the general switching theory in ���	�

Theorem ���� Let CK be any optimal symmetric preconditioner for AK � i�e��

we assume that a matrix�vector multiplication by CK can be performed in O�nK�
arithmetical operations� and that ��CKAK� � C� with constant independent of K�

Then

����� C
�
K � SK � YKCK�YK�t

is an optimal symmetric preconditioner for AK �

�� NUMERICAL EXPERIMENTS

In this section we present the results of numerical examples to illustrate the
theories developed in the earlier sections� These numerical examples deal with the
Laplace equation on the unit square�

�����
�"u � f in � � ��� ����

u � � on ��

where f � L�� The NR Q� �nite element method ����� is used to solve �����
with fEkgKk�� being a sequence of dyadically� uniformly re�ned partitions of � into
squares� The coarsest grid is of size h� � ����

The �rst test concerns the convergence of Algorithm ���� The analysis of the
third section guarantees the convergence of theW�cycle algorithm with any number
of smoothing steps and the uniform condition number property for the variable V�
cycle algorithm� but does not give any indication for the convergence of the standard
V�cycle algorithm� i�e�� Algorithm ��� with p � � and m�k� � � for all k� The �rst
two rows of Table � show the results for levels K � �� � � � � 
 for this symmetric
V�cycle� where ��v � �v� denote the condition number for the system BKAK and the
reduction factor for the system IdK �BKAK as a function of the mesh size on the
�nest grid hK � While there is no complete theory for this V�cycle algorithm� it is of
practical interest that the condition numbers for this cycle remain relatively small�
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��hK � �� �� �� ���

�v ���� ��
� ���� ���� ����

�v ���� ���
 ���� ���� ����

�m ��
� ���� ���� ���� ����

Table �� Numerical results for the multiplicative V�cycles�
For comparison� we run the same example by a symmetrized multilevel mul�

tiplicative Schwarz method corresponding to ����
�� One step of the symmetric
version consists of two substeps� the �rst coinciding with ����
� and the second

repeating ����
� in reverse order� The condition numbers �m for  MK��AK with

� � K�� are presented in the third row of Table �� where  MK�� � M t
K��MK�� is

now symmetric� The results are better than expected from the upper bounds of
Theorem ��� which seem to be only suboptimal�

In the second test we treat the above multigrid algorithm and symmetrized mul�
tilevel multiplicative method as preconditioners for the conjugate gradient method�
In this test the problem ����� is assumed to have the exact solution

u�x� y� � x��� x�y��� y�exy�

Table � shows the number of iterations required to achieve the error reduction
���
� where the starting vector for the iteration is zero� The iteration numbers
�iterv� iterm� correspond to Algorithm ��� with p � � and m�k� � � for all k and
the symmetrized multiplicative algorithm ����
�� respectively� Note that iterv and
iterm remain almost constant when the step size increases�

��hK � �� �� �� ���

iterv � � � � ��

iterm � � � �� ��

Table �� Iteration numbers for the pcg�iteration�

In the �nal test we report analogous numerical results �condition numbers and
pcg�iteration count� for the additive preconditioner CK associated with the splitting

������ �subscript a�� and the preconditioner C
�
K �subscript s� which uses the switch

from the system arising from ����� to the spectrally equivalent system generated
by the conforming bilinear elements via the operators in ����� and ������ We have
implemented the standard BPX�preconditioner ��	� with diagonal scaling� as CK �
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These results are shown in Table �� The numbers show the slight growth� which
is typical for most of the additive preconditioners and level numbers K 
 ���
The condition numbers �s for the switching procedure are practically identical
to the condition numbers for CKAK characterizing the BPX�preconditioner ��	 in
the conforming bilinear case� The switching procedure is clearly favorable as can
be expected from the theoretical bounds of Theorems ��� and ���
 however� the
computations do not indicate whether the upper bound ������ is sharp or could be
further improved�

��hK � �� �� �� ��� ��� ���

�a ��� ���� ���� ���� �
�� ���� ����

itera �� �� �� �� �
 �� ��

�s ���
 ���
 ���� ���� ���� ���� �

iters �� �� �� �� �� �� �

Table �� Results for the preconditioners CK and C
�
K �
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