Series Logo
Volume 00, 19xx

MULTIGRID AND MULTILEVEL METHODS FOR
NONCONFORMING ROTATED Q1 ELEMENTS

ZHANGXIN CHEN AND PETER OSWALD

ABSTRACT. In this paper we systematically study multigrid algorithms and
multilevel preconditioners for discretizations of second-order elliptic problems
using nonconforming rotated Q; finite elements. We first derive optimal re-
sults for the W-cycle and variable V-cycle multigrid algorithms; we prove that
the W-cycle algorithm with a sufficiently large number of smoothing steps con-
verges in the energy norm at a rate which is independent of grid number levels,
and that the variable V-cycle algorithm provides a preconditioner with a con-
dition number which is bounded independently of the number of grid levels. In
the case of constant coefficients, the optimal convergence property of the W-
cycle algorithm is shown with any number of smoothing steps. Then we obtain
suboptimal results for multilevel additive and multiplicative Schwarz methods
and their related V-cycle multigrid algorithms; we show that these methods
generate preconditioners with a condition number which can be bounded at
least by the number of grid levels. Also, we consider the problem of switching
the present discretizations to spectrally equivalent discretizations for which op-
timal preconditioners already exist. Finally, the numerical experiments carried
out here complement these theories.

1. INTRODUCTION

In recent years there has been analyses and applications of the nonconform-
ing rotated (NR) @Q; finite elements for the numerical solution of partial differ-
ential problems. These nonconforming rectangular elements were first proposed
and analyzed in [23] for numerically solving the Stokes problem; they are the sim-
plest divergence-free nonconforming elements on rectangles (respectively, rectangu-
lar parallelepipeds). Then they were used to simulate the deformation of martensitic
crystals with microstructure [17] due to their simplicity. Conforming finite element
methods can be used to approximate the microstructure with layers which are ori-
ented with respect to meshes, while nonconforming finite element methods allow
the microstructure to be approximated on meshes which are not aligned with the
microstructure (see, e.g., [17] for the references).
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Independently, the NR @; elements have been derived within the framework
of mixed finite element methods [11, 1]. It has been shown that the nonconform-
ing method using these elements is equivalent to the mixed method exploiting the
lowest-order Raviart-Thomas mixed elements on rectangles (respectively, rectangu-
lar parallelepipeds) [24]. Based on this equivalence theory, both the NR Q; and the
Raviart-Thomas mixed methods have been applied to model semiconductor devices
[11]; they have been effectively employed to compute the electric potential equation
with a doping profile which has a sharp junction.

Error estimates of the NR @1 elements can be derived by the classical finite
element analysis [23, 16]. They can be also obtained from the known results on
the mixed method based on the equivalence between these two methods [1]. It
has been shown that the so-called “nonparametric” rotated )1 elements produce
optimal-order error estimates. As a special case of the nonparametric families, the
optimal-order errors can be obtained for partitions into rectangles (respectively,
rectangular parallelepipeds) oriented along the coordinate axes. Finally, in the
case of cubic triangulations, superconvergence results can be obtained [1, 16].

Unlike the simplest triangular nonconforming elements, i.e., the nonconforming
Py elements, the NR @ elements do not have any reasonable conforming subspace.
Consequently, there are differences between these two types of nonconforming ele-
ments. The NR @, elements can be defined on rectangles (respectively, rectangular
parallelepipeds) with degrees of freedom given by the values at the midpoints of
edges of the rectangles (respectively, the centers of faces of the rectangular paral-
lelepipeds), or by the averages over the edges of the rectangles (respectively, the
faces of the rectangular parallelepipeds). While these two versions lead to the same
definition for the nonconforming P, elements, they can produce very different re-
sults in terms of implementation for the NR @1 elements. With the second version
of the NR ); elements, we are able to prove all the theoretical results for the
multigrid algorithms and multilevel additive and multiplicative Schwarz methods
considered in this paper. However, we are unable to obtain these results with their
first version. In particular, as numerical tests in [22] indicate, the energy norm of
the iterates of the usual intergrid transfer operators, which enters both upper and
lower bounds for the condition number of preconditioned systems, deteriorates with
the number of grid levels for the first version. But it is bounded independently of
the number of grid levels for the second version, as shown here.

The other major difference between the nonconforming P, and the NR @ ele-
ments is that the former contains the conforming P; elements, while the latter does
not contain any reasonable conforming subspace, as mentioned above. As a result
of this, the convergence of the standard V-cycle algorithm for the nonconforming P,
elements can be shown when the coarse-grid correction steps of this algorithm are
established on the conforming P; spaces [18, 12]. But this is not the case for the NR
@1 elements. On the other hand, within the context of the nonconforming meth-
ods, i.e., when the coarse-grid correction steps are defined on the nonconforming P;
spaces themselves, the convergence of the V-cycle algorithm has not been shown,
and the W-cycle algorithm has been proven to converge only under the assumption
that the number of smoothing steps is sufficiently large [7, 8, 3, 4, 25, 1, 12, 14].
However, we are here able to show the convergence of the W-cycle algorithm with
any number of smoothing steps for the Laplace equation using the NR (), elements.
This optimal property cannot be proven for the nonconforming P, elements using
the present techniques.
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The multigrid algorithms for the NR @, elements were first developed and
analyzed in [1], and further discussed in [12] and [9]. The second version of these
elements was used in [1] and [12], while their first version was exploited in [9].
Moreover, the analysis in [9] was given for elliptic boundary value problems which
are not required to have full elliptic regularity. However, in all these three papers,
only the W-cycle algorithm with a sufficiently large number of smoothing steps was
shown to converge using the standard proof of convergence of multigrid algorithms
for conforming finite element methods [2]. We finally mention that the study of the
NR @1 elements in the context of domain decomposition methods has been given
in [13].

In this paper we systematically study multigrid algorithms and multilevel pre-
conditioners for discretizations of second-order elliptic problems using the NR @
elements. We first consider the convergence of the W-cycle and variable V-cycle
algorithms for these nonconforming elements. We prove that the YW-cycle algorithm
with a sufficiently large number of smoothing steps converges in the energy norm
at a rate which is independent of grid number levels, and that the variable V-cycle
algorithm provides a preconditioner with a condition number which is bounded
independently of the number of grid levels. A main observation in this paper is
that the optimal convergence property for the W-cycle algorithm holds with any
number of smoothing steps, when the coefficient of the differential problems is con-
stant. Explicit bounds for the convergence rate and condition number are given.
The NR @1 elements has so far been the first type of nonconforming elements which
are shown to possess this feature for the W-cycle algorithm with any number of
smoothing steps.

We then study multilevel preconditioners of hierarchical basis and BPX type [5]
for the NR Q1 elements. We develop a convergence theory for the multilevel additive
and multiplicative Schwarz methods and their related V-cycle algorithms. We follow
the general theory introduced in [22] where the analysis of the hierarchical basis
and BPX type for nonconforming discretizations of partial differential equations
was carried out. A key ingredient in the analysis is to control the energy norm
growth of the iterated coarse-to-fine grid operators, which enters both upper and
lower bounds for the condition number of preconditioned systems as outlined above.
So far, the energy norm of the iterated intergrid transfer operators has been shown
to be bounded independently of grid levels solely for the nonconforming P; elements
[19]. In this paper we prove this property for the NR @); elements. Based on the
present theory, we derive a suboptimal result for the multilevel preconditioners of
hierarchical basis and BPX type for the NR )1 elements.

Finally, we study the problem of switching the NR @ discretization system
to a spectrally equivalent discretization system for which optimal preconditioners
are already available. This switching strategy has been used in the setting of the
multilevel additive Schwarz method; see [21] for the references. After we find a
spectrally equivalent reference discretization for the NR @), system, we are able to
obtain optimal preconditioner results for the NR ()1 elements.

Thanks to the equivalence between the rotated 1 nonconforming method and
the lowest-order Raviart-Thomas mixed rectangular method, all the results derived
here carry over directly to the latter method [1, 12].

For technical reasons, all the results in this paper are shown for partitions
into uniform squares (respectively, cubes). They can be extended to triangulations
in which the finest triangulation can be mapped to a square (respectively, cubic)
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triangulation in an affine-invariant fashion. Also, the analysis is given for the two-
dimensional domain; an extension to three space dimensions is straightforward for
most of the results below.

The rest of the paper is organized as follows. In the next section we prove
some preliminary results for the intergrid transfer operators. Then the multigrid
algorithms and multilevel preconditioners are discussed in §3 and §4, respectively.
The problem of switching to a spectrally equivalent discretization is considered in
§5. Finally, the numerical results presented in §6 complement the present theories.

2. PRELIMINARY RESULTS

For expositional convenience, let Q = (0,1)? be the unit square, and let H?®(£2)
and L2(2) = H°(Q2) be the usual Sobolev spaces with the norm

1/2
loll. = | [ 32 Ipeepaz )
“lol<s

2

where s is a nonnegative integer. Also, let (-, -) denote the L?(2) or (L?(Q2))? inner

product, as appropriate. The L?(Q) norm is indicated by || - ||. Finally,
HY®) = {v e H'(®) : o] = 0},

where I' = 9Q.

Let hy and &, = &1 be given, where &, is a partition of 2 into uniform squares
with length hg and oriented along the coordinate axes. For each integer 2 < k < K,
let hy = 2%, and En, = &k be constructed by connecting the midpoints of the
edges of the squares in &_1, and let &, = £k be the finest grid. Also, let O&; be
the set of all interior edges in &. In this and the following sections, we replace
subscript hj simply by subscript k.

For each k, we introduce the rotated @; nonconforming space

Vi = {v € L*(Q) : v|g = aky + %z + aby + af(z? — y?), al; € R, VE € &;
if E; and E, share an edge e, then /£|3E1ds = /§|3E2ds;

and [y, &|pds = 0}.

Note that Vi, ¢ Hg(Q) and Vy_1 & Vi, k > 2.
We introduce the space

k
Vk = ZW D) Vk7
=1

the discrete energy scalar product on Vi, & H{(2) by

(v,w)er = Z (Vv,Vw)g, v, w € Vi, & Hy (),
Ec&

and the discrete norm on Vi & HE(Q) by

[olles = /(@ v)en, v e Vi@ Hy(Q).
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We introduce two sets of intergrid transfer operators Ij, : Vy_1 — Vj and
Py : Vi = Vi1 as follows. Following [1, 12], if v € V;,_; and e is an edge of a
square in &, then Ipv € V}, is defined by

0 if e C 89,
1 .
ﬁ/[kvds: H/evds if e # OF for any E € Ep_1,
e
¢ 1
m /(U|E1 +v|g,)ds if e C OE; NOE, for some Ey,Ey € E;_1.

If v € Vj, and e is an edge of an element in O&_1, then P_1v € Vj_1 is given by

1 1(1 1
—/Pk_lvds:—{—/ vds—l——/ vds},
|6| e 2 |61| e1 |€2| ea

where e; and ez in 0 form the edge e € 0€;_1. Note that the definition of Pj_;
automatically preserves the zero average values on boundary edges. Also, it can be
seen that

(21) Py Iyv=w, vE Vi1, k>1.

That is, Py_1 Iy is the identity operator Id;_1 on V},_1. This relation is not satisfied
when the NR @); elements are defined with degrees of freedom given by the values
at the midpoints of edges of elements.

We also define the iterates of I, and Px_q by

RE =1TIg- - Iy : Vi — Vi,
K=P,  Pg_1:Vk = V.
FA‘inally, we make the convention on the discrete energy scalar product on the space
Vi:
(v,w)e = (v,w)e,x, vV, wE V.
Obviously, we have the inverse inequality

(2.2) l[o]le < C2%||v]|, ve Vi, 1<k<K,

(here and later, by C, ¢,... we denote generic positive constants which are indepen-
dent of k).

In this section we collect some basic properties of the intergrid transfer opera-
tors Py_; (respectively, I;) and their iterates Q& (respectively, RE). The crucial
results are the boundedness of the operators I; with constant v/2 and the uniform
boundedness of the operators RE with respect to the discrete energy norm || - ||¢.

Lemma 2.1. [t holds that P,_; (2 < k < K) is an orthogonal projection with
respect to the energy scalar product; i.e., for any v € Vi,

(v — Py_1v,w)e =0, Yw € Vi_1,
(2.3) ) ) )

lllg = llv = Pr—1vllg + || Pre-1vl[g-

Moreover, there are constants C' and c, independent of v, such that the difference
v =v— Py_1v € V} satisfies

(2.4) c2[jol| < [[olle < C2¥|19]].
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Proor. For any E € &;_; with the four subsquares E; € & (i = 1,...,4, see
Figure 1), an application of Green’s formula implies that

(V[v = Po1v), Vo)g = Y (V[v — Peoyv], Vo),

(2.5) 4 1 p
=D im1 2j=1 3,,Zi el fegi (v = Pr—1v)|p,ds,

where e;;i are the four edges of E; with the outer unit normals I/{?i, 1=1,...,4.
Note that in (2.5) the line integrals over edges interior to E € &£,_; cancel by
continuity of Pj,_iv in the interior of E. Also, if e%i and ei} form an edge of E, it
follows by the definition of Pj_; that l

/. (v — Py_1v) Eids-{—/q (v = Pr—1v)|g,ds = 0,

and that
ow | _ Ow | )
6’/%1- b 81/};1_ €5

i

is constant. Then, by (2.5), we see that
(V[v — Pr—1v], Vw)g = 0.
Now, sum on all E € &,_; to derive the orthogonality relations in (2.3).

The upper estimate in (2.4) directly follows from (2.2). The lower bound can
be easily obtained from a direct calculation of the energy norms of v — Px_; on all

E € &,—1. This completes the proof. #
ek
E, Es
ek 2
E, E,
ek

FicURE 1. Edges and subsquares of £ € &,_1.

Before we start with the investigation of the prolongations I}, it will be useful
to collect some formulas. For E € £;_; and any v € Vj,_1, define

1 .
- / vds = by,
|6E| efE

(see Figure 1 for the notation), and set
sg=by+ b} +b% +b, AR =0b% —bp,

09, =bL + 0% — 02, —bL, AL =D — 12
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Then, with the subscript E omitted, we have the next lemma.

Lemma 2.2. It holds that

(2.6) 1011320 = B3y (355 + (A1) + (A2} + £5(6%)?),
| IVollZ2p) = (A1) + (A7) +3(6°)%,
and
h:
2.7) =5 {012 + (092 + (%) + (612} < (vl )

< B {0+ 1) + () + ()

Proor. Using the affine invariance of the local interpolation problem connecting
v with its edge averages b’, it suffices to prove (2.6) and (2.7) for the master square
E = (—1,1)%. A straightforward calculation gives

A2 Al

- L A A 3,2
(2.8) v—v(:r,y)—4s—|— 23:4— 5 Y 89 (% —y°).

Now direct integration yields the desired results in (2.6). Also, (2.7) follows from the
first equation of (2.6) by computing the eigenvalues of the symmetric 4 x 4 matrix
T!DT, where D =diag(1/16,1/12,1/12,1/40), T stands for the transformation
matrix from the vector (b',b%,b%,b%) to (s, A', A?,0°), and T is the transpose of
T . These eigenvalues are 1/10, 1/6, 1/6, and 1/4, which implies (2.7). #

Lemma, 2.2 is the basis for computing all the discrete energy and L? norms
needed in the sequel. The formula (2.8) valid for the master square can be used to
derive explicit expressions for the edge averages of Iyv and Iyv —v. Toward this
end, we first compute the corresponding values for the master square, and then use
the invariance of the local interpolation problem for v under affine transformations
(for the square triangulations under consideration, these transformations are just
dilation and translation) to return to the notation on each E € &_4.

1 1
€p—elte? €pte2
2 2 2
“p—er B e
B—e B
T T i
€5_e1 s €ap

FIGURE 2. An illustration for Lemma 2.3.

Note that, by the definition of the triangulation £,_1, to each E € &,_ is
uniquely assigned a 3 = (81, 32) such that 0 < 31, B < 2*~1. For notational
convenience, let b}; and b% denote the averages of v € V},_; over the horizontal and

vertical edges ej; and e}, respectively, in 91 (see Figure 2, where €35, egﬁ+e2,
e%ﬁ_i_ez, eéﬁ+e2_el € O, et = (1,0), and e = (0,1)). The corresponding quantities
for I,v € Vj are indicated by a?, j = 1, 2. Now, introduce the notation

A1 _ 7l 1 1 1
65 - bﬁ + bﬁfel - bﬁ+e2 o bBJreLe“
N2 _ 12 2 2 2
05 =5 +b5_c2 — b — b5 ier_ca-
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With these notation, it follows from the definition of I;, that the edge averages of
I v can be written as follows:

abs = by + 503,

(2.9) 0 i = b = 505
a%ﬁJrez = §b2 lb%Jrel + 1b1 + bﬁ+e2’
a%ﬁ+e2+e b%+61 + %b?? + §bé bﬁ+e2’
and

a%ﬁ = b% + %él,

2 _ 12 191
(2.10) Soorer =¥~ a0
’ 2 _ 531l 4 1371 112
a25+61 = gbﬁ + §b +e2 + 2 b + b5+e1,
2 _ 531 171 2 | 112
384e2+4et = §bﬁ+e2 + §bﬁ + §b[3 bﬁJre

when the edge average a/, is associated with an interior edge in O&; for boundary
edges, this value is set to be zero.

Note that I (as well as P,_;) can be extended to the larger spaces Vk in a
natural way. In order to define the extension I Vk — Vi, observe that any v € Vk
coincides on each E € & with a polynomial from Vi|E, so the form of the previous
definition for I remains the same for fj. Clearly, IAk|Vk_1 = I}, and fk|Vk = Id,.

To express the edge averages of I v — v, set

9 —b1+b — bt

B+62 B—et

2
05 = bﬁ+e R R R RIS

B+e2—el>

if 6%3 and e% are interior edges in 0&;_1. For boundary edges, they need to be
modified to give the correct expressions for I[v —v. If eé is a boundary edge, for
example, we define

0% = 2(b3, 01 — b3).
With these, we see that

[ (Iw —v)]5- eds = [, (Iyv—v)|gds =0,
2ﬁ+e2

2B+ 2—e

(2.11) ‘ezﬁ‘ fe (Iyv — v)|g_erds = w; Joo (v = v)|pds = =163,

2ﬁ+e2| 2f3+e2

_1p1
ergﬁ (Iyv —v)|pds = G| fzm (Irv — v)|g_erds = 50,

where (Iv — v)|g denotes the restriction of Iyv — v to the element associated with
B. The averages of Iv — v on other edges are given similarly. Then, by Green’s
formula and (2.11), we see that

(2.12) 1TevlE = (ol = [ITkw = vllZ, v € Vi,

From (2.9)—(2.12) and Lemma 2.2, we immediately have the next lemma. Below
the notation = stands for two-sided inequalities with constants independent of k.

Lemma 2.3. It holds that

Tl < /3 o € 1)
(2.13) [Hevl| < /5], v eV,
||Ik’U||g < \/§||U||5) Yv € Vi_1,
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and

214) 28T — o] ~ || Tkw — ol|s ~ \/Z{(%)2 +(62)2), Vwe Vit
B

We now prove the following property of the iterated coarse-fine intergrid trans-
fer operators R

Lemma 2.4. It holds that
(2.15) |IREv|le < C|lvlle, VYweVi, 1<k<K.

PRrROOF. The proof is technical; it follows the idea of the proof of an analogous
statement for the P, nonconforming elements [19]. First, we consider the case of
Q0 =IR?. That is, we assume that all our definitions are extended to infinite square
partitions of IR?; due to the local character of all constructions, this is easy to do.
We keep the same notation for the extended partitions &, edges e, € O, squares
E € &, etc. In order to guarantee the finiteness of all norm expressions, we restrict
our attention to functions v € Vi with finite support. By the construction of I,
this property is preserved when applying the operators I and Rf .

After the extension to the shift-invariant setting of IR?, it is clear that it suffices
to consider the case of k = 1. Set, for simplicity, R¥ = R¥, k =1,... K. Our
main observation from numerical experiments [21] was that the sequence

{||RFv — R*Y|2, k=2,... K}

decays geometrically. What we want to prove next is the mathematical counterpart
to this observation. To formulate the technical result, introduce

oj= > (61,  i=0,1,2,

a€Z?

where the quantities 6/, are determined from the edge averages of v € V; by the
same formulas as above. The corresponding quantities computed for o = v € V3
are denoted by 64 and &;, j =0,1,2. From (2.14) in Lemma 2.3, we see that

o140y = ||R?v —v||} and &) 462 & ||Rv — R%v||%;
moreover, we can iterate this construction. Thus, if we can prove that
(216) 5’56*(}04-(}14-&2 S’Y*UE’Y*(C*Uo-f-Ul +0’2),

where 0 < v* < 1 and ¢* > 0 are constants independent of v, then, by Lemmas 2.2
and 2.3,

IREv]le < lvlle + Xps [|REv — R Lo|¢

(2.17) < |lolle + C Xy VO )RVe

< Clolle-

Since this gives the desired boundedness of RX (for IR?) via dilation, we concentrate
on (2.16).
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From (2.9) and (2.10) we find the following formulas for 67 :

B = $0he = 103 + 105
09, = — 1605 + 16% + 169,

05,2 = 505 — 5052 + 195

B erpes = — L)+ 1683, + 100,

0 - 105 o _(05 +0[3 ) = %(00 05 e1)s

0%ﬁ+6 = i92,

025"‘62 - %Qé - 1(924—62 + 0?3—61-1-62) %(90 0[3 1)
0%B+61+e2 = 95+627

O = 305 — 505 +052) + 300505 )

02ﬁ+e2 = 305,

B = 503 = £ (Ohy 0 +0h_ oy ) — 305 —65_2),
égﬁ+el+e2 = 49;13+e

These formulas are used to compute the quantities ;.

In order to write them in

reasonably short form, we introduce the notation

B

BeZ?

_ J 8* _
g = Z 4 06+B*’ i =

> 0405 5, k1=0,1,2(j #1);
BEZ?

if 3* € Z2 is the null vector, it is omitted in this notation. With them, we see, by

carefully evaluating all squares, that

~ _ N0\2 _ N0 N0 2 N0 2
G = Xal) = Xy (0392 + 000 + B 0)* + Bins2)?)
= log+ L(o1 +02) — & (012 + 0% + 015 405 )
= 100 + 15(01 +02) = 33 (012 + 01, + 07y + 07,7 ),
N =0*
- _ 9 1 3 9 1
01 = 100+ 501 + 7502 — EO‘S + 1602
1 e? e?—et 3 (et —el4e? —et el4e?
_§£012+012 +012 + o1y ¢ ) —53(06s + 00y —0p — 002 ),
_0'*
~ 9 _e? 1 _e?
09 = 1600 —I— 01 + 02 1690 + 601
1 e —et e?—et 3 —e2 el+e2 e2 el —e2
_§£012+012 to tory ) —55(00° +o5 " —06 —og © ).
=0o*
Thus, introducing A = o1 + 02 and A = &1 + 72, we have
218 :l“”%f‘—lg*a
(' ) _ +11.A ( + )+L(e2+ el)_l * 3 %
- UO 16 UO 00 16 01 ] 401 320 )
where
2 1 2 1 1 2 2 1 2 1 1 2
*k __ _—e e +e e —e +e e e —e —e e +e
o =0y t05 +0p+0g —0p1 —0p1  —0Ogz —Op2 -
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Next, we simplify ¢* and o**. Note that
ot =207 =Y 0505+ 0%, 0+ 02 e 03— 0 . — 0L )
= 250[13( Fe2—el +0ﬁ £2 90761762 - 00 +e2 + 20[13),
ot =205 =Y 0305404 o+ 0L, 0 0L — 02— 6% )
= Zﬁ 0%3( B—eZ2—et + 6B+e 6B+61762 o 6%*61 + 20?3)’
so that

1
o* = af2 + agl +2A4 - 50**

Analogously, we can simplify ¢** as follows:
o = Eﬁ 05 (( grelqez T 623—62 + 0%+el + 02—61-1-62)
O+ O+ O+ O 2)
Y (B e O e + O )
2000, 01 + 0% 2 + 0% +05_2) +467))
=2(05 " +of ) 408 +o5) + oo,

Substitution of o* and ¢** into (2.18) leads to

oy = 0’0+32A (U1 +a2)+61—40**

_ el —e? el4e? el e?
_EUO+3_2A+3_2(UO +UO _20'0 _20'0

1 1
—35 (01 + 05 )
50’0 + EA’

(2.19)

| /\

where we have used the fact that |a§3*| <oj, j=0,1,2, which is valid for arbitrary
£*. With the same argument, we see that

A =200+LA-2 (081 +082) -3 (0’162 +U§2) + 350"
2.20) = 300+ A+ 5 (8 40 +)
1 2
-t (US + 0§ ) -3 (01 + 0§ )
< 14—10'0 + 8"4
Now, set B = cog and B = ¢Gy. Then it follows from (2.18) and (2.19) that
- 5 11 ~ c 1
<24= < A+ =
A_8+4CB, 8_16A+28,
and
P 5 c 11 1
< z
(A + B) < max <8+16 y» )(A+B)
Let ¢ = ¢* = 3v/5 — 1, so we see that (2.16) holds with
5 ¢ 11 1 _ 3/5+9
* = — = -_= — 1.
LR T R TR
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It remains to reduce the assertion of Lemma 2.4 to the shift-invariant situation
just considered. To this end, starting with any v € Vj, on the unit square, we
repeatedly use an odd extension. Namely, set © = v on [0, 1]? and

ﬁ(l‘,y) = _ﬁ(_may)) (1‘,y) € [_170) X [07 1];
after this, define

ﬁ(may) = _ﬁ(ma_y)a (m,y) € [_1’ 1] X [_150)7
and continue this extension process with the unit square replaced by [—1,1]? such
that after the next two steps o is defined on [—1,3]?. Outside this larger square we
continue by zero. Clearly, ||0||2 = 16||v||%, where the norms for ¢ and v are taken
with respect to IR? and the unit square, respectively.

It is not difficult to check by induction that on [0,1]? the functions RE% (ob-
tained by the repeated application of the prolongations defined on IR2) and RkK v
(as defined above with respect to [0,1]?) coincide. Also, the values of I 419 on
[—2= (4D 1 4 2=(k+1D]2 depend solely on the values of ¢ on the square [-27% 1 +
27k]2) and on this enlarged square I19 coincides with its odd extension from
[0,1]2. Finally, the zero edge averages are automatically reproduced along the
boundary of [0, 1]% from the above extension procedure. Therefore, by (2.17) and
the dilation argument, we obtain

IR ol < IR Ol[E < Cllollz = 16C][v] 2,

which finishes the proof of Lemma 2.4. #

The second inequality in (2.13) is critical for the convergence results of multigrid
algorithms developed in the next section, while (2.15) is crucial for the multilevel
preconditioner results in §4.

3. MULTIGRID ALGORITHMS

In this section and the next section we consider multigrid algorithms and multi-
level preconditioners for the numerical solution of the second-order elliptic problem

~V-(AVu) = f inQ,

(3.1) u=0 onT,

where Q C IR? is a simply connected bounded polygonal domain with the boundary
T, f € L*(Q), and the coefficient A € (L>(£2))?*? satisfies

(3.2) €' > EA(z,y)E > aof’s,  (x,y) €Q, E€R?,

with fixed constants ay, ag > 0. The condition number of preconditioned linear
systems to be analyzed later depends on the ratio a; /ayp.

Problem (3.1) is recast in weak form as follows. The bilinear form a(-,-) is
defined as follows:

a(v,w) = (AVv, Vw), v, w € H(Q).
Then the weak form of (3.1) for the solution u € H}(Q) is
(3.3) a(u,v) = (f,v), Y v e Hy(R).
Associated with each Vj, we introduce a bilinear form on Vi, & H}(Q) by

ap(v,w) = Z (AVv,Vw)g, v, w €V ® H&(Q)
Ecé&y
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The NR @, finite element discretization of (3.1) is to find ux € Vi such that

(3.4) ak(ur,v) = (f,v), YoveVk.
Let Ay : Vi, — Vj, be the discretization operator on level k given by
(3.5) (Agv,w) = ag(v,w), Ywe V.

The operator Ay, is clearly symmetric (in both the ag(-,-) and (-,-) inner products)
and positive definite. Also, we define the operators Rj_1 : Vi, = Vi—1 and R}, :
Vi = Vi1 by

ap—1(Rp—1v,w) = ax(v, [w), Vwe Vi,

and
(Rgflv,w) = (v, I[w), Ywée V1.

It is easy to see that I Ri_1 is a symmetric operator wtih respect to the aj form.
Note that neither R) nor Ry is a projection in the nonconforming case. Finally, let
Ay dominate the spectral radius of Ay.

The multigrid processes below result in a linear iterative scheme with a reduc-
tion operator equal to I — Bx Ak, where By : Vg — Vi is the multigrid operator
to be defined below.

Multigrid Algorithm 3.1. Let 2 < k£ < K and p be a positive integer. Set
B, = Al_l. Assume that Bji_; has been defined and define Byg for ¢ € Vj as
follows:

1. Set 2° =0 and ¢° = 0.
2. Define ! for I = 1,... ,m(k) by
ol =2 4 Sp(g — ApatTh.
3. Define y™*) = z™*) 4 [;¢P, where ¢’ for i = 1,... ,p is defined by
¢ =q¢" '+ By [Rg_l (g — Akmm(k)) — Ak_lqi_l} .
4. Define y! for [ = m(k) +1,... ,2m(k) by
v =y + Sk (g - Ay

5. Set Bjg = y>"k),

In Algorithm 3.1, m(k) gives the number of pre- and post-smoothing iterations
and can vary as a function of k. In this section, we set Sy = (Ag) 'Idy in the
pre- and post-smoothing steps. If p = 1, we have a V-cycle multigrid algorithm. If
p = 2, we have a W-cycle algorithm. A variable V-cycle algorithm is one in which
the number of smoothings m(k) increase exponentially as k decreases (i.e., p = 1
and m(k) = 2K-F).

We now follow the methodology developed in [6] to state convergence results
for Algorithm 3.1. The two ingredients in their analysis are the regularity and
approximation property and the boundedness of the intergrid transfer operator:

Ay
(3.6) lax (v — Iy Ry _1v,0)| < C”—\/I;\_U”\/ak(v,v), Ve Vi,
k
and

(3.7) ay(Iyv, Iv) < Cag—1(v,v), Yové€ Vi1,
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for k = 2,...,K, where \; is the largest eigenvalue of A;. The proof of (3.6) is
standard; see the proof of a similar result for the P; nonconforming elements in
[14]. Inequality (3.7) has been shown in [1] using the approximation property of
the operator I. However, here we see that if A = agI is a scalar multiple of the
two-by-two identity matrix I, by the second inequality in (2.13) in Lemma 2.3, we
actually have

(3.8) ay (Iyv, [v) < 2a—1(v,v), Yovée Vi
This leads to the following main result of this section. Let the convergence rate for

Algorithm 3.1 on the kth level be measured by the convergence factor d; satisfying
lak (v — B Agv,v)| < dpar(v,v), VovéeVg.

Theorem 3.1. (i) Define By by p = 1 and m(k) = 2K-% for k = 2,... K in
Algorithm 3.1. Then there are 1o, m1 > 0, independent of k, such that

noag (v,v) < ag(BrArv,v) < nag(v,v), Yv € Vg,

o > V/m(B)/(C +v/m(R) and m < (C+ /m(®)/v/m(k).

(ii) Define By, by p = 2 and m(k) = m for all k in Algorithm 3.1. Then if A = apl
is constant, there exists C' > 0, independent of k, such that

c
C+ym’
The same conclusion holds if the assumption that A = oyl is replaced by requiring
that m > mq, where mq is sufficiently large, but independent of k.

The proof of this theorem follows from (3.6)—(3.8) and Theorems 6 and 7 in
[6]. From Theorem 3.1, we have an optimal convergence property of the W-cycle
and a uniform condition number estimate for the variable V-cycle preconditioner.

with

6k§65

4. MULTILEVEL PRECONDITIONERS

In this section we discuss multilevel preconditioners of hierarchical basis and
BPX [5] type for (3.4). More precisely, we derive the condition numbers of the
additive subspace splittings

K

(4.1) {Vic; (e} = RV (o )e b+ ) BV 2%, )
k=2

and

K
42) Vi (el = BRIV (5 )ed + D RE{(Idy — TePee) Vi 2%, ) ).
k=2

The condition number of (4.1) is given by [20]

A v|| .
maX, Amax = sup & Amin = inf

(43) KR = |27

>\min vEVK |||’U||

where
K
lvll]* = inf ol + > 2% sl ¢ -
v €V 1 v=), Rkak P

A similar definition can be given for (4.2).
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Theorem 4.1. There are positive constants ¢ and C, independent of K, such that

2
(4.4) ¢ < |||||Z|||||52 <CK, Wve Vg,
and
45 < E o e
) I TR

K
Moll? = Q)2 + 37 22#]|(Tdy — TP 1) QK o],
k=2
That is, the condition numbers of the additive subspace splittings (4.1) and (4.2)
are bounded by O(K) as K — oo.

PROOF. For k = 2,..., K, it follows from the definitions of I, I, and QF, (2.4),
and the first inequality of (2.13) that

22%||(Idg — Ix Pe—1)QE0|)? = 22¥| |1 (Idy — Pr—1) Q0|
< 3 2°%||(Idy, — Pr—1) Qi 0l P
< Cl|(Idg — I Pr—1)Qf |2
= CllQf v — Qi vlI*.
Summing on j and using the orthogonality relations in (2.3), we see that
. K ;
inf,, cv, ooy, o {02 + 0, 224 ol 2]
< QI WIIE + iy 22(|(Idy — Ik Py-1)Qf 0|2
< Cllvlfz,
which implies the lower bounds in (4.4) and (4.5).

For the upper bounds, we consider an arbitrary decomposition v = Ele RkK Uk
with v € Vi. Then we see, by Lemma 2.4, that

K 2 K K
o]z < (ZIIRkalls> <KD |IRf w2 < CK D Jfokllz-
k=1 k=1 k=1

Consequently, by (2.2), we have

K
lolle < CK <||v1||§ +222'“||ka|2> :

k=2
Now, taking the infimum with respect to all decompositions, we obtain

. K [
[0l < CKinf,,cv, . omx, mrn, {IlonllE + 240, 224 sl |
< OK (JIQIv[2 + X4, 2241 (1d — LPeo)QEVI)

which finishes the proof of the theorem. #

We now discuss the algorithmical consequences for the splittings (4.1) and (4.2).
Theoretically, Theorem 4.1 already produces suitable preconditioners for the matrix
Ak using (4.1) and (4.2). However, they are still complicated since they involve
L2-projections onto Vj, 1 < k < K, which means to solve large linear systems
within each preconditioning step. To get more practicable algorithms, we replace



16 ZHANGXIN CHEN AND PETER OSWALD

the L? norms in Vi and Wy = (Idg — It Py 1)Vi C Vi, k = 2,...,K, by their
suitable discrete counterparts. We first consider the splitting (4.1); (4.2) will be
discussed later.

Let {¢’, .} be the basis functions of V}, such that the edge average of ¢ . equals

one at ei & and zero at all other edges. Then each v € Vi has the representatlon
2
=22 audi
j=1 «

Thus, by the uniform L2-stability of the bases, which follows from (2.7) in Lemma
2.2, we see that

(4.6) %2—%22(@] < |l < 52 kZZaJ

=1 « =l «

}—l

Note that (with the same argument as in Lemma 2.2)
41 S -
(4.7) 22k||<l5 1»||2 120 ak(¢i,k,¢i,k) ~ ||¢Zyk||g =5

so (4.6) can be interpreted as the two-sided inequality associated with the stability
of any of the splittings

(4-8) {VkaQk }_ZZ{ akaQk ' :

j=1 «

(4.9) 2400 = S (Vs (e,

=1 «

and

(4.10) {Vi; 2%5(-, )} = ZZ{VM,%
=1 «

into the direct sum of one-dimensional subspaces ch’k spanned by the basis func-

tions gzﬁi x- Any of the splittings (4.8)—(4.10) can be used to refine (4.1). As we
will see below, the difference is just in a diagonal scaling (i.e., a multiplication by
a diagonal matrix) in the final algorithms. As example, we consider the splitting

(4.10) in detail; the other two cases can be analyzed in the same fashion.
With (4.1) and (4.10), we have the splitting

(4.11) {Vi;ax ()} = R{E{Viau(, }+ZZZRk{ GRS

k=2j=1 «

It follows from (4.4), (4.6), and (4.7) that the condition number  for (4.11) still
behaves like O(K). Now, associated with this splitting we can explicitly state the
additive Schwarz operator

(4.12) Pk = Ry T1+ZZZRK ak?

k=2 j=1 «
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where '
T] _ G/K(’U, RkK(MLk) ]
a k= T Pak
ak((ba,kv ¢a,k)

and Thv € V; solves the elliptic problem
a1 (Thv,w) = ak (v, REw), VYwe.

Thus the matrix representations of all operators with respect to the bases of the
respective Vj, are

ZZ = Su(BO Ak, Sy = diag(a;(¢], 5. 8% ,) ),
=1 «
for 2 <k <K, and
T, = AT (REY Ay,
where for convenience the same notation is used for operators and matrices. Hence
it follows from (4.12) that

K

Pr = (RfA;l(Rf)t +)° RkKSk(RkK)t> Ag = Ck Ak,
k=2

which, together with the definition of RkK = Ik -+ Ir41, leads to the typical recur-

sive structure for the preconditioner C'x

(4.13) Cr=LCh It + Sk, k=K,...,2, S =0 =A7"

Note that with these choices for S}, the multiplication of a vector by Ck is formally
a special case of Algorithm 3.1 if one sets m(k) = 1, p = 1, removes the post-
smoothing step, and replaces Ay by a zero matrix for all & > 2.

From (4.13) and the definitions of I}, and Sj,, we see that a multiplication by Ck
only involves O(ng+...+na+n3) = O(ng) arithmetical operations, where nj ~ 2%
is the dimension of V},. This, together with (4.4), yields suboptimal work estimates
for a preconditioned conjugate gradient method for (3.4) with the preconditioner
Ck. That is, an error reduction by a factor € in the preconditioned conjugate
gradient algorithm can be achieved by O(nx+/lognk log(e™!)) operations.

We now turn to the discussion of the algorithmical consequences for the splitting
(4.2). To do this, we need to construct basis functions in Wy, k = 2,... , K. Starting
with the bases {(bi’k} in Vi, to each interior edge eé’kfl € 0&,—1, we replace the

two associated basis functions gzﬁgﬁ o ¢%ﬁ tei k with their linear combinations

J _ J _ 4] J . __
28,k = Pogk t ¢2B+e] b Yagiein = P2k — Popreipr I =12

where ¢ 5.5 and el € 0&, form the edge eé’ w_1- For all other interior edges

2(+ed k
ea » Which do not belong to any edge in 9&_;, we set
Joo_— 4J

ak T Ya,k

The new bases {zbi .} in Vg is still L2-stable; i.e., they satisfy an analogous inequal-
ity to (4.6). Moreover, if

S H AT

=1 «
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we have

2
Prv = Z Z bgﬁ‘f’ﬂk—v

j=1 B

and
2

(Idg — It P =Y > il
Jj=1 a#2f3
since ‘/’gﬁ,k — Ik¢%7k_1 can be completely expressed by the functions 1/1’D(7k with
a # 2 only. More precisely, we have

=b

1 1 2 2 2 2
Cogyer = Dagyer (035 + b3(5_c2) = B3(g1er) — Do(gperez))

1
8
1 _pl L(Ep2 1 2 1
C2p4e2 = b2ﬁ+62 - §(5b2ﬁ + bQB + b2(ﬁ+61) + b2(ﬁ+e2))’
1 _pl L(Ep2 1 2 1
Coftel e = b2ﬁ+e2 - §(5b2(5+e1) + bzp’ + b25 + b2(ﬁ+e2))’
and similar relations hold for j = 2. Hence any function from W}, has a unique
representation by linear combinations of {1} , : a # 24}, and this basis system is
L?-stable. With this basis system, as in (4.11), we have the corresponding splitting

K 2
(4.14) {Visar ()} = RV ()} + ) > REWY sa( )}

k=2 j=1 a#28
into a direct sum of R¥V; and one-dimensional spaces RkK Wi « spanned by the
basis z/;ik Then, with the same argument as for (4.13), we derive an additive

preconditioner Ck for Ak recursively defined by
(4.15) ék :Ikékflfltc-f-fkgkfli, k=K,...,2, C’l 25'1 EAl_l,

where
S = diag (ax(@], 4, 0] ,) 7 @ £ 28, = 1,2)

are diagonal matrices and I, is the rectangular matrix corresponding to the natural
embedding W, C Vi with respect to the bases {«}, .} in Wi and {¢], .} in V}, (one
may use the bases {¢’ ,} for all V}, which would change the I}, representations, but
keep I; maximally simple). (4.15) has the same arithmetical complexity as before.

We now summarize the results in Theorem 4.1 and the above discussion in the
next theorem.

Theorem 4.2. The symmetric preconditioners Cx and Cx defined in (4.13) and
(4.15) and associated with the multilevel splittings (4.11) and (4.14), respectively,
have an O(nk) operation count per matriz-vector multiplication and produce the
following the condition numbers:

(4.16) k(CxAg) < CK, k(CxAg)<CK, K >1.

The splitting (4.11) can be viewed as the nodal basis preconditioner of BPX
type [5], while the splitting (4.14) is analogous to the hierarchical basis precondi-
tioner.
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We now consider multiplicative algorithms for (3.4). One iteration step of a
multiplicative algorithm corresponding to the splitting (4.11) takes the form

Y’ =%,
(4.17) y =y —wRK Sk (RE )(Aky' - fk), 1=0,... , K—1,
ol =y~

where w is a suitable relaxation parameter (the range of relaxation parameters
for which the algorithm in (4.17) converges is determined mainly by the constant
in the inverse inequality (2.2) [27, 26, 15]. The method (4.17) corresponds to a
V-cycle algorithm in Algorithm 3.1 with Ay, replaced by A; = (RE) A RE, one
pre-smoothing and no post-smoothing steps.

The iteration matrix Mg, in (4.17) is given by

MK,w = (IdK — wEl) e (IdK — wEK_l)(IdK — wEK) y E'k = RkKSk(RkK)tAK.

An analogous multiplicative algorithm for (3.4) corresponding to the splitting (4.14)
can be defined.

From the general theory on multiplicative algorithms [27] and by the same
argument as for Theorem 4.2, we can show the following result.

Theorem 4.3. For properly chosen relaxation parameter w the multiplicative
schemes corresponding to the splittings (4.11) and (4.14) possess the following upper
bounds for the convergence rate:

c - c
(418) inf”MK,wHESI_E: inf”MK,w”fSl_Ea K—)OO,

where Mg, and MKM denote the iteration matrices associated with (4.11) and
(4.14), respectively.

We end with two remarks. First, one example for the choice of w is that
w ~ K !, which leads to the upper bounds in (4.18). Second, the diagonal matrices
Sp and Sy in (4.13) and (4.15) can be replaced by any other spectrally equivalent
symmetric matrices of their respective dimension.

5. EQUIVALENT DISCRETIZATIONS

To improve the estimates in Theorems 4.2 and 4.3, we now consider the prob-
lem of switching the NR ) discretization system (3.4) to a spectrally equivalent
discretization system for which optimal preconditioners are already available. This
switching strategy, as mentioned in the introduction, has been used in the context
of the multilevel additive Schwarz method; see [21] for the references.

The most natural candidate for a switching procedure is the space of conforming
bilinear elements

Uk = {€ € C°[@Q) : €| € Qi(E), VE € & and ¢|r = 0},

on the same partition. We introduce two linear operators Yx : Ux — Vi and
Yk : Vk — Uk as follows. If £ € Ux and e is an edge of an element in £k, then
Yr€& € Vi is given by

(5.1) / Yicéds = / ¢ds,
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which preserves the zero average values on the boundary edges. If v € Vi, we
define Ygv € Uk by
(5.2) (Yxv)(z) =0 for all boundary vertices z in &k,
- (Ykv)(z) = average of vj(z) for all internal vertices z in €k,
where v; = v|g; and E; € £k contains z as a vertex.

Another choice for Uk is the space of conforming P; elements

Uk = {€ € C°(@Q) : €| € Pi(E), VE € £k and ¢|r =0},

where €k is the triangulation of  generated by connecting the two opposite vertices
of the squares in £x. The two linear operators Yx : Ux — Vi and f’K Vk = Uk
are defined as in (5.1) and (5.2), respectively. Moreover, for both the conforming
bilinear elements and the conforming P; elements, it can be easily shown that there
is a constant C, independent of K, such that

25018 = Yiel| < Cllelle, V€€ Uk,

(5.3) .
2K||v — Yo|| < Cllvlle, Vv € Vi.

Since optimal preconditioners exist for the discretization system Ax generated by
the conforming bilinear elements (respectively, the conforming P; elements), the
next result follows from (5.3) and the general switching theory in [21].

Theorem 5.1. Let C'x be any optimal symmetric preconditioner for Ag; ie.,
we assume that a matriz-vector multiplication by Ck can be performed in O(ng)
arithmetical operations, and that k(CkAk) < C, with constant independent of K.
Then

(5.4) Cx = Sk + Y Ok (Yi)t

is an optimal symmetric preconditioner for Ay.

6. NUMERICAL EXPERIMENTS

In this section we present the results of numerical examples to illustrate the
theories developed in the earlier sections. These numerical examples deal with the
Laplace equation on the unit square:

—Au=f inQ=(0,1)3%,

(6.1) u=0 onl,

where f € L?. The NR @, finite element method (3.4) is used to solve (6.1)
with {€,}_, being a sequence of dyadically, uniformly refined partitions of 2 into
squares. The coarsest grid is of size hy = 1/2.

The first test concerns the convergence of Algorithm 3.1. The analysis of the
third section guarantees the convergence of the W-cycle algorithm with any number
of smoothing steps and the uniform condition number property for the variable V-
cycle algorithm, but does not give any indication for the convergence of the standard
V-cycle algorithm, i.e., Algorithm 3.1 with p = 1 and m(k) =1 for all k. The first
two rows of Table 1 show the results for levels K = 3,...,7 for this symmetric
V-cycle, where (k,, d,,) denote the condition number for the system Bx Ak and the
reduction factor for the system Idg — Bg Ak as a function of the mesh size on the
finest grid hx. While there is no complete theory for this V-cycle algorithm, it is of
practical interest that the condition numbers for this cycle remain relatively small.
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1/hk | 8 16 | 32 64 | 128

Ky 1.54 | 1.70 | 1.84 | 1.96 | 2.06

d, [0.23]0.27]0.32|0.33|0.35

Km | 1.75]181|1.84|185]| 185

Table 1. Numerical results for the multiplicative V-cycles.

For comparison, we run the same example by a symmetrized multilevel mul-
tiplicative Schwarz method corresponding to (4.17). One step of the symmetric
version consists of two substeps, the first coinciding with (4.17) and the second
repeating (4.17) in reverse order. The condition numbers &, for MKMAK with
w ~ K~ are presented in the third row of Table 1, where Mg, = Mfe Mr, is
now symmetric. The results are better than expected from the upper bounds of
Theorem 4.3 which seem to be only suboptimal.

In the second test we treat the above multigrid algorithm and symmetrized mul-
tilevel multiplicative method as preconditioners for the conjugate gradient method.
In this test the problem (6.1) is assumed to have the exact solution

u(z,y) = z(l —z)y(1 —y)e™.
Table 2 shows the number of iterations required to achieve the error reduction
1075, where the starting vector for the iteration is zero. The iteration numbers
(itery, itery,) correspond to Algorithm 3.1 with p = 1 and m(k) = 1 for all k¥ and

the symmetrized multiplicative algorithm (4.17), respectively. Note that iter, and
iter,, remain almost constant when the step size increases.

1/hk |8 16| 32|64 | 128

iter, |8 8 9] 9] 10

iter, |91 9] 9 (10| 10

Table 2. Iteration numbers for the pcg-iteration.

In the final test we report analogous numerical results (condition numbers and
pcg-iteration count) for the additive preconditioner Ck associated with the splitting
(4.11) (subscript @), and the preconditioner C'y (subscript s) which uses the switch
from the system arising from (3.4) to the spectrally equivalent system generated
by the conforming bilinear elements via the operators in (5.1) and (5.2). We have
implemented the standard BPX-preconditioner [5], with diagonal scaling, as Ck.
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These results are shown in Table 3. The numbers show the slight growth, which
is typical for most of the additive preconditioners and level numbers K < 10.
The condition numbers kg for the switching procedure are practically identical
to the condition numbers for Cx Ak characterizing the BPX-preconditioner [5] in
the conforming bilinear case. The switching procedure is clearly favorable as can
be expected from the theoretical bounds of Theorems 4.2 and 5.1; however, the
computations do not indicate whether the upper bound (4.16) is sharp or could be
further improved.

(1]

1/hi | 8 16 | 32 | 64 | 128 | 256 | 512

Kq 96 | 123 ]144|16.1|174| 183|193

iter, | 18 22 24 26 27 28 28

ks | 337|387 |424|4.54|480|505| -

iters | 10 11 13 13 14 15 -

Table 3. Results for the preconditioners Cx and C.
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