COMPARISON OF VARIOUS FORMULATIONS
OF THREE-PHASE FLOW IN POROUS MEDIA

ZHANGXIN CHEN AND RICHARD E. EwWING

ABSTRACT. Various formulations of the governing equations that describe three-
phase flow in porous media, including phase, global, and pseudo-global pressure-
saturation formulations, are discussed in this paper. A comparison of these differen-
tial formulations is theoretically and numerically presented for the first time. It is
shown that the global pressure-saturation formulation of the governing equations of-
fers the potential for significant improvements in the efficiency of numerical schemes.

1. INTRODUCTION

It has been shown that the governing equations describing two-phase flow in
porous media can be written in a fractional flow formulation; i.e., in terms of a
global pressure and saturation [1], [8], [13]. Further, it has been proven that this
fractional flow approach is far more efficient than the original two-pressure approach
from the computational point of view [5], [11], [12]. The main reasons for this are
that the differential equations written in the fractional flow formulation formally
resemble the governing equations for single-phase flow, and that efficient numerical
schemes can be devised to take advantage of many physical properties inherent in
the flow equations.

In this paper we discuss various formulations of the governing equations de-
scribing three-phase flow in porous media. We show that, under a so-called total
differential condition on the shape of three-phase relative permeability and cap-
illary pressure functions, the governing equations can be written in a fractional
flow formulation; i.e., in terms of a global pressure and two saturations. The case
of three-phase flow is quite different from the case of two-phase flow. The three-
phase relative permeability and capillary pressure curves are far more complicated
than the corresponding two-phase curves. It is the complexity of these three-phase
curves that complicates the derivation of the global pressure-saturation form for
the former case. In the two-phase flow, the governing equations can be written in
terms of a global pressure and saturation without any hypothesis [13]. However, in
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the three-phase flow we show that the total differential condition is necessary and
sufficient for the governing equations to be written in terms of a global pressure and
two saturations. While this condition is not satisfied for all the existing three-phase
curves, it is here verified that it is satisfied for some simplified models.

For the above reason on the total differential condition, we also derive other for-
mulations of the governing equations for three-phase flow in porous media. We show
that these equations can be written in terms of a phase or pseudo-global pressure
and two saturations without any assumption. However, it turns out that the phase
and pseudo-global pressure-saturation forms are much more complicated than the
global pressure-saturation form. Especially, the coupling between the pressure and
saturation equations in the phase and pseudo-global pressure-saturation forms is
stronger, and thus these equations are more expensive to solve. This agrees with
our theoretical and numerical observations, which are carried out here for the first
time. The beauty of the global pressure-saturation form is that the three-phase
differential system derived via it resembles that for the single-phase flow. Hence
the differential equations in this form can be more easily solved.

In the next section we review the governing equations for three-phase flow in
a porous medium. Then the phase, global, and pseudo-global pressure-saturation
forms with and without a weighted total velocity are derived in §3, §4, §5, respec-
tively. A theoretical comparison of these forms is presented in §6. The comparison
of these forms via numerical experiments is given in §7; finite element methods are
applied to solve the partial differential equations. Finally, a concluding remark is
given in §8.

2. THE GOVERNING EQUATIONS

The usual equations describing the flow of three immiscible fluids in a porous
medium Q C R? are given by the mass balance equation and Darcy’s law for each
of the fluid phases [4], [20]:

8 avYox
(2.1a) %+V-(paua) = Qu, xr e, t>0,
kkyq -
(2.1b) Uy = — p (VDo — pad), x e t>0,

where ¢ and k are the porosity and absolute permeability of the porous medium,
Pas Sas Pas Ua, and f1, are, respectively, the density, (reduced) saturation, pressure,
volumetric velocity, and viscosity of the a-phase, ¢, is the source/sink term, k;q
is the relative permeability of the a-phase, and g is the gravitational, downward-
pointing, constant vector. Below o = w, o, and g denote water, oil, and gas phases,
respectively, for example. In addition to (2.1), we also have the customary property
for the saturations:

(2.2) Y sa=1,

«
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where (and later) >°, = >°,_, ., and define, for notational convenience, the
capillary pressure functions:

(2-3) Pcao = Pa — Po, @ =1w,0,49,

where peoo = 0, pego represents the gas phase capillary pressure, and pey, is the
negative water phase capillary pressure.

The dependent variables are s, pa, and us. In (2.1) and (2.2), we have utilized
the reduced saturations s, which are related to the phase saturations s, by

Sa — Sra

Sq = , @ =w,o0,g,

1- Srw — Sro — Srg

where $,., is the residual saturation of the a-phase, a = w, 0, g. The porosity ¢ can
be a function of space and pressures, and the absolute permeability £ can depend on
space and any dependent variables. The density p, and viscosity p, are functions of
pressures. Finally, we assume that the capillary pressure and relative permeability
functions depend upon the saturations s, solely. For notational simplicity, we
neglect their dependence on space, which would then introduce lower-order terms
in the partial differential equations [8], [13]. In the next three sections we shall
write equation (2.1)—(2.3) in terms of a pressure p and the two saturations s,, and

Sg.
3. PHASE FORMULATION

In this section the phase pressure-saturation formulation is derived.

3.1. Phase pressure-saturation formulation. For expositional convenience,
we introduce the phase mobility functions

)‘a:kra//j’on a:w70797

and the total mobility

A= Ao

Also, we define the fractional flow functions
fa:)\a/)H & =w,o0,g9.

We see that >  fo = 1.
We use the oil phase pressure as the pressure variable in this section:

(3.1) P = Do,
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and define the total velocity
(3.2) u= Z Ugy-

Then, use (3.1) and (3.2), carry out the differentiation indicated in (2.1a), divide
by po in (2.1a), and apply (2.2) and (2.3) to obtain the differential equations with
xr e Qandt>O0:

(3.3a) u=—kAVp—Gx+ Y faVPeao),
_ 99 1 0pa
(33b) Veu= ot +za: Do <(JO¢ PSa ot Uq vpa) )
and
054 -
(pﬁ +V- {fau + kfa Z )\,8 (v(pcﬂo - pcao) o (pﬁ o pa)g)}

(3.4) o p )

_ 1 Pa _

= —Sqa It + o <Qa P5a It Uq Vpa) , a=w,g,
where

G)\ = ngapa-

«

The equations in (3.3) and (3.4) are, respectively, the pressure and saturation equa-
tions. The phase velocity is related to the total velocity by

(35) Uy = fau + kfa Z AB (V(pcﬁo - pcao) - (pﬁ - pa)fl), ¢ =1w,o,dg.
B

3.2. Phase formulation with a weighted total velocity. In the right-hand
sides of (3.3b) and (3.4) appear the terms u, - Vp,, which are essentially quadratic
in the velocities. To get rid of these terms, we now introduce a weighted total
velocity. Toward that end, set

Aa:kTapa/uaa)‘:Z)‘ﬁa @ =w,o,g4,
B

and
fa:)‘a/)‘a o =w,o,g.

The pressure variable is defined as in (3.1), but the total velocity is now weighted:

(3.6) u = Zpaua.
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Then with the same manipulation on (2.1) as above, we have the pressure and
saturation equations with = € €2 and £ > 0:

(3.7a) u=—kXVp—Gr+ Y _ faVDeao);

(3.7b) 3 AfPase) ¢Pa$a +V U= qa,

and

(Qspasa ~
+V @ + k [e% )\ cfo — Mcao) — - FPa
(3.5 5 {foau +kf, Z 8(V(Pepo — Peao) — (P8 — Pa)d) }

:qa7 a:w7g'

The phase velocity is given by

Uq — Pgl{faUJr kfaZAB(v(pcﬁo _pcao) - (pﬁ - pa)g)}a o =w,o0,g.
B

4. GLOBAL FORMULATION
In this section the global pressure-saturation formulation is derived.

4.1. Global pressure-saturation formulation. The phase and total mobilities
and the fractional flow functions are defined in the same manner as in §3.1; i.e.,

)‘a:kv“a/uom)‘zz)‘,ﬁv fa:Aa/)‘v a=w,o,g4.
B

To introduce a global pressure, we assume that the fractional flow functions f,
depend solely on the saturations s,, and s, (for pressure-dependent functions f,,
see the next subsection), and that there exists a function (s, sg) — DPe(Sw, Sg)
such that

(4'1) Ve = fuVDewo + fgvpcgo-

This holds if and only if the following equations are satisfied:

8pc 8pcwo 8pc90
(4.2a) 5. fw + f4 D5,
8pc 8pcwo 8pc90
4.2b = fuw
( ) Osg / Osg g Osg
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A necessary and sufficient condition for existence of a function p. satisfying (4.2) is

8fw 8pcwo + 8fg 8pcgo _ 8fw 8pcwo + 8fg 8pcgo

(4.3) 0sg 08y Dsg 08y 08y 08y 08y 0sg

This condition is referred to as the total differential condition [8]. When the con-
dition (4.3) is satisfied, the function p. is determined by

S OPcwo 8pc o
pc(swa Sg) = fw(ga O) (£ 0) + fg(é~ 0) g (5 0) d§
(4.4) /1 { s }

+/0 ’ {fw<sw,s>ap6”0( 0r€) 4 ol 2 s w,o}da

Sg Sg

where we assume that the above integrals are well-defined, which is always true in
practical situations [8]. We now introduce the global pressure by

(45) P = Po + Des

and the total velocity by
(4.6) w=Y ta.

Now, use the condition (4.3), the definitions in (4.4)-(4.6), and the same calcu-
lations as in §3.1 to get the pressure and saturation equations with =z € Q and
t>0:

(4.7a) u=—kXVp—G)),
09 1 0pa
(47b) V-u= ot +2a: PN (Qa PSa ot U, Vpa) )
and
084
QSW +V- {fau + kAo (v(pc - pcao) - 601)}
(4.8) 9 1
:_SQE_FPQ ( Qsa — Uq - Vpa)a ¢ =w,g,
where

50! = (fﬁ(pﬂ _pa) +f’7(p’7 _Pa))ga a7/877:w707.g7 a% 5757&777% Q.

Finally, the phase velocity is determined by

(49) Uq = fatl + kAq (V(pc - pcao) - 5(1)) &= w,0,g.
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4.2. Global formulation with a weighted total velocity. As in §3.2, to get
rid of the quadratic terms in the velocities in (4.7b), we define

)\a:krapa/uou)\zz)\ﬂ: & =w,o0,g9,
B

and
fa:)‘a/)‘a o =w,o,g.

Also, define the weighted total velocity
(4.10) U= Z Palle-

In the present case we assume that the fractional flow functions f, depend on
the saturations s, and s, and a pressure p, and that there exists a function

(8ws 8¢, D) = De(Sw, ¢, p) satisfying

Ope

Vp.

The assumption on the dependence on the pressure p means that we ignore the
error caused by calculating the density and viscosity functions for the a-phase at p
instead of p,. For details on this error, the reader is referred to [13] for a similar
treatment as in the two-phase flow.

With the same argument as in §4.1, a necessary and sufficient condition for
existence of a function p. satisfying (4.11) is (4.3); i.e.,

8f'LU 8pC’LUO 8fg 8pcgo — 8f'LU 8I)C'LUO + 8fg 8pcgo
0sq 08y 0sg 08y 08y 0sg 08y 0sg

(4.12)

where p is treated as a parameter. Under the condition (4.12), the function p. is
described by

Sw 3C1UO 8CO
peswsin) = [ {16,002 60) 4 1y(60.0 B2 6,0 g
(4.13) ! v Y

59 8pcwo 8pc90
[ Rl €2 50, 00 ) 2500 6)

The global pressure is again defined by

(4.14) P = Do+ Pe-



8 ZHANGXIN CHEN AND RICHARD EWING

Then, as before, we have the pressure and saturation equations with x € Q and
t>0:

(4.15a) u=—kAwVp —G)),
(¢Pa5a
(4.15b) za: 5tV u—an,
and
d(¢pasa)

Opc
+V- {w_lfau + kAa(v(pc - pcao) - 5a) - w_l b G)\}

(4.16) ot

where

W(Sy, Sg,p) =1 —

The phase velocity is computed by

(4.17) uq = pgl{w_lfau + kAo (V(pC — Peao) — 5a) —wt %ZCGA}7 a=w,o,q.

4.3. Total differential condition. In this subsection we discuss the total dif-
ferential condition (4.3). For three-phase flow, the classical capillary pressures [18]
are normally used:

(418) Pcwo — pcwo(sw)a Pcgo = pcgo(sg)-

Typical normalized capillary pressure functions are shown in Figures 1 and 2.
Using (4.18), the condition (4.3) reduces to

0 fuw OPcwo _ afg apcgo
dsq Osy sy 0sg

(4.19)

Also, we have the usual definitions of the relative permeabilities

krw — krw(sw)7 kro - kro(sun 59)7 krg - krg(sg)-

Typical relative permeability curves are given in Figures 3 and 4. Then equation
(4.19) can be simplied further:

a>\ apcwo a>‘ 3p090
4.2 w = .
(4.20) A 0sg Osy Ag@sw Osg
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0.2

_0.6 [ .

-0.8 b

FIG. 1. The typical normalized capillary pressure pcyo.

We can construct three-phase relative permeability and capillary pressure curves
which satisfy the condition (4.20). A simple numerical procedure for constructing
these curves has been described in [8]. Some of the numerical examples satisfying
(4.20) have been compared with the classical Stone’s model [22], which does not
satisfy this condition, and similar results were obtained. Here we will see that
some simplified three-phase models in fact (or approximately) satisfy the condition
(4.20).

It follows from (4.20) that, if the total mobility A is close to a constant function,
then the total differential condition holds approximately. We now consider the
following cases. The simplied Corey’s and Baker’s models [14], [15] for the three-
phase relative permeabilities have the form

e

e e
krw = Sw's kro = (1 — Sw _Sg) i) krg =547,

where the e,’s are constants. Substitute them into (4.20) to see that

e
Sw {e_gseg—l . 6_0(1 — Sw — Sg)eo—l}apcwo

g 0s
(4‘21) M = Mg Ko w

S;g Cw ew—1 €o eo—1 8])090
S Sy ety P

fig  Hw fo dsg
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0.4r b

0.2 J

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
s_g

FIG. 2. The typical normalized capillary pressure p.qo.

Now, we see that the total differential condition is identically satisfied in the case
of compressible fluids with cross-relative permeabilities where e, = 1, @ = w, 0, g,
and unity viscosities. For other choices of e,, equation (4.21) depends on the
definitions of the capillary pressures pe,o, and pego, and can be approximately (if
not identically) satisfied by appropriate choices of parameters.

5. PSEUDO-GLOBAL FORMULATION

The global formulation in §4 requires the total differential condition (4.3) on the
shape of three-phase relative permeability and capillary pressure functions. In this
section we derive a pseudo-global pressure-saturation formulation, which does not
require this condition.

5.1. Pseudo-global pressure-saturation formulation. Again, the phase and
total mobilities and the fractional flow functions are defined as in §3.1:

)‘a:kv“a/uom)‘zz)‘,ﬁv fa:Aa/)‘v a=w,o,g4.
B

To introduce a pseudo-global pressure, we assume that the fractional flow functions
fa depend solely on the saturations s,, and s, (for pressure-dependent functions f,,
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FIG. 3. Typical water-oil imbibition relative
permeabilities k., (left) and k,.,, (right).

see the next subsection). Also, assume that the capillary pressures satisfy (4.18).
Then it follows from (3.3a) that

deaO

(5.1) u = _k)‘(VPO_G/\+2a:fa ds.. VSa)-
We introduce the mean values

N 1 1—sw

w) — w\2w)» d )

Fulsu) = 1= [ fulsmn )t

N 1 l—sg

Fosd == [ auesae,

Sg Jo

and the pseudo-global pressure

vt [ TP ac - [0S

wce

where s, and sg. are such that peyo(swe) = 0 and pego(sge) = 0. Now, by (5.1),
we see that

) d CcCxxo
(5.2) w=—kA(Vp— Grt+ 3 (fa — Fo) P20

dsq, Vsa),
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0.9+ / g
0.8 , g
0.7+ , |

0.6 / J

0.3F / .
0.2F y ]

0.1r e b

FIG. 4. Typical gas-oil drainage relative
permeabilities k,, (left) and k,, (right).
where f, = 0. The equations (3.3b) and (3.4) remain the same here.

5.2. Pseudo-global formulation with a weighted total velocity. The phase
and total mobilities and the fractional flow functions are again given as in §3.2:

)‘Ot:krapa/uav)‘:z)‘ﬁv fa:)\a/)‘v a:w,o,g.
B

We now assume that the fractional flow functions f, depend on the saturations s,
and s, and a pressure p. Then the mean values are accordingly modified by

Fo(50:p) = —

1— sy

1—5syw
A Fuo (50 €, p)dE.

- 1
fg(sg7p)

l—sg
A £o(€. 59 D),

T 1o Sg
and the pseudo-global pressure has the corresponding expression

p=pot [ Tulen T2 aer [ e p Tl e

dSqy dsg

wce
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Apply this definition to (3.7a) to obtain

dpcao
(5.3) = kA (wVp — G, +Z —fa) 5. Vsa),

where

. vod dpcwo %9 d dpe o(g)
w=t- [ DnenPeSac [7 1 en Tt

we

The other two equations (3.7b) and (3.8) remains unchanged.

6. THEORETICAL COMPARISON

We first note that if f,, and f, are close to their respective mean values f., and
[, then the last term in the right-hand side of (5.2) and (5.3) can be neglected. In
partlcular in the case of compressible fluids with cross-relative permeabilities and
unity viscosities mentioned in §4.3, f, = f,, and fg = f Hence, in these cases
the pseudo-global form reduces to the global form. However, in the general case
the pseudo-global form is essentially the same as the phase form, and the coupling
between the pressure and saturation equations in these two forms has the same
pattern. Hence we only compare the phase and global forms here and in the next
section; an analogous comparison between the pseudo-global and global forms can
be carried out.

We compare the equations (3.3) and (3.4) with the equations (4.7) and (4.8); the
same comparison between the equations (3.7) and (4.15), and the equations (3.8)
and (4.16) can be done in the same way. Note that the ‘continuity’ equations (3.3b)
and (4.7b) have the same form. However, the coupling between the pressure and
saturation equations in (3.3) and (3.4) is stronger than that between the equations
in (4.7) and (4.8). In particular, equation (3.3a) has the gradient of the two capillary
pressure functions pey, and pego, with different coefficients, but equation (4.7a) in
form resembles the Darcy law for the single-phase flow, and is much simpler. Hence
the computation of the pressure equation (3.3a) by the mixed finite element methods
described in the next section requires the approximation of the two terms:

JwVDewo and fgvpcgo-
What is more, while the capillary diffusion terms involve the gradient of the two

capillary pressure functions peyo and pego in (3.4) for @ = w and g, the calculation
of the diffusion terms requires the resolution of the four linear systems

()\o + )\g))\wVpcwm )\g)\vacgm )\w)\ngcwm and ()\o + )\w))\gvcho-
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However, in (4.8) for &« = w and ¢ the diffusion terms only require the resolution
of the two linear systems

)\wv(pc - pcwo) and )\gv(pc - pcgo)-

Therefore, we would expect that equations (3.3) and (3.4) are more expensive from
the computational point of view. This is the case, as shown in the next section.

We close this section with two remarks. First, in the uninteresting case in which
Pewo = Pego = 0, the models presented in §3.1, §4.1, and §5.1 (respectively, §3.2,
§4.2, and §5.2) are the same. Second, boundary conditions imposed for the three-
phase flow equations can be incorporated into the fractional flow formulation in the
same manner as for the two-phase flow [13].

7. NUMERICAL COMPARISON

In order to compare the efficiency of numerical schemes for solving the two
systems in (3.3) and (3.4) (respectively, (3.7) and (3.8)), and in (4.7) and (4.8)
(respectively, (4.15) and (4.16)), we restrict ourselves to two relatively simple sets
of data. Of course, more physically adequate data could be used; however, here we
are mainly interested in the comparison of these two systems.

7.1. The first test. The capillary pressure functions are defined as follows:

Pewo = Sw — 1, Pcgo = 1- Sg-

Recall that p.y, is the negative water phase capillary pressure. The relative per-
meability curves are given by

kpw = Sws kro=1— 84 — Sg9 k?“g = Sg-

With these choices, the total differential condition (4.3) is satisfied from the discus-
sion in §4.3. Further, with ¢ = po = po = 1, @ = w, 0, g, and g = 0, the mobility
and fractional flow functions become

Aw = fw=5w, Ao=fo=1—84y,—54, Ag=[fg=354, A=1

Thus the function Pe is given by
1 2 2
Pc 2 (1 w g) :

For the present set of data, the system in (3.3) and (3.4) (respectively, (4.7) and
(4.8)) is the same as that in (3.7) and (3.8) (respectively, (4.15) and (4.16)). Finally,
the domain € is the unit cube Q = (0,1)3, and a no-flow boundary condition for
each phase is taken:

(7.1) Ug - v=0, a=w,o0,g,x €I t>0,
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where v is the outer unit normal to the boundary 02 of €.
In the phase pressure-saturation form, the equations (3.3) and (3.4) now reduce
to (with z € Q and ¢t > 0):

2a) u=—k(Vp+5,Vsy —5,V5y),
and
084
(7.3a) TV {swu— ks (1= 5u) Vsw +5,V50) } = qu,
0
(7.3b) % + V- {squ+ksg((1 —54)Vsg+ 55 V5w) } = gq,

where ¢ = ) ¢o. Similarly, in the global pressure-saturation form the pressure
equation (4.7) becomes

(7.4a) u=—kVp,
(7.4b) V.u=gq;

the saturation equations are the same as in (7.3) for the present set of data. Recall
that the p in (7.2a) is the oil phase pressure, while the p in (7.4a) is the global
pressure defined in (4.5). Also, it follows from (7.1) that the boundary condition
for (7.2) and (7.4) is

(7.5) u-v=0, z€dt>0,

and that the boundary conditions for (7.3a) and (7.3b) are

(7.6a) {ksw((1 = 54)Vsw+5,Vsg)}-v=0, z€0Q,t>0,
(7.6b) {ksy((1 - 54)Vsg+ 5,V5sy)}-v=0, z€dQ t>0.

For the present simple problem, (7.4) implies that the pressure equation is com-
pletely decoupled from the saturation equations in the global pressure-saturation
form, and thus it can be independently computed and the resulting total velocity
can be used by the saturation equations later. In the phase pressure-saturation
form, the system in equations (7.2) and (7.3) is solved sequentially. An approxima-
tion of u is first obtained at time level ¢ = ¢t™ from solution of equation (7.2) with
the saturations s, and s, evaluated at the previous time level ¢ = ¢"~!. Then,
using the current approximation for u, approximations of s,, and s, are obtained
at t = t"™ by using (7.3a) and (7.3b) simultaneously. The saturation equations are
solved here by the classical up-weighting finite difference scheme, while the pres-
sure equation is solved by a mixed finite element method. We assume that the
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reader is familiar with the former scheme; the latter method will be reviewed in the
appendix.

Uniform partitions of €2 into rectangular parallelepipeds with the space step
h = Az = Ay = Az are taken. The time differentiation terms in (7.3) are dis-
cretized with the backward Euler scheme, and the time step is assumed to be
proportional to the space step: At = kh, where k is the proportionality constant.
A cell-centered finite difference method with the seven point stencil is used for the
solution of the saturation equations, while a mixed finite element method with the
use of the Raviart-Thomas-Nedelec mixed space [21], [19] of lowest-order over rect-
angular parallelepipeds is applied to the solution of the pressure equations (see the
appendix). Tables 1-4 describe the errors and convergence orders in the L°°-norm
for the pressure and saturation at ¢ = 1 for the phase and global pressure-saturation
differential systems, where s is the approximation to the water saturation. In Ta-
ble 5, the CPU times in seconds for solving the whole pressure-saturation system
over the given mesh up to time ¢ = 1 from the initial time ¢ = 0 are presented.
CPU-P denotes the CPU times for the phase system, while CPU-B indicates those
for the global system. All experiments are carried out on a Sun workstation.

1/h | L%-error | L°-order
10 0.10356 -

20 0.05147 1.01

40 0.02533 1.02

Table 1. Convergence of p;, for the phase system in test one.

1/h | L-error | L°-order
10 0.23302 -

20 0.11875 0.97

40 0.05950 0.99

Table 2. Convergence of s; for the phase system in test one.
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1/h | L%-error | L°-order
10 0.10402 —

20 0.05208 1.00

40 0.02576 1.02

Table 3. Convergence of pj, for the global system in test one.

1/h | L®°-error | L°°-order
10 0.19847 -

20 0.09982 0.99

40 0.04977 1.00

Table 4. Convergence of s;, for the global system in test one.

1/h | CPU-B | CPU-P
10 | 30.05 56.02
20 | 241.21 | 443.14
40 | 965.03 | 1772.00

Table 5. CPU times up to t = 1 in test one.

It follows from Tables 1-4 that the numerical results agree with the theoretical
error prediction O(At+ h) for both systems. However, the CPU times required for
the solution of the phase pressure-saturation system almost double those for the
global system. This shows that the latter system can be more easily solved, and
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agrees with our theoretical observation in §6. Lots of time is spent on the coupling
between the pressure and saturation equations in the former system.

7.2. The second test. In the second test we take the same set of data as in the
first test except that the gas density is chosen as follows:

(7.7) pg =1+ Dy

The comparison is here done for the two systems in (3.3) and (3.4) and in (4.7)
and (4.8). Similar results have been observed for the comparison between the two
systems in (3.7) and (3.8) and in (4.15) and (4.16). Set

1

- 0
(7'8) Qg(sgap) = P_ <Qg - ¢59% — Ug * Vpg) )
g

where u,, is given by (3.5) (respectively, (4.9)). With (7.7) and (7.8), the differential
equations in (3.3) and (3.4) become

(7.9a) u=—k(Vp+ 545Vsy —54Vsg),
(79b) V'U:(J'u)_*_qc_*_qq(sgap)a
and
084
(7.10a) rr + V- {swu — ksw((l — ) Vsy + sngg)} = Qu,
0 -
(7.10b) % + V- {sgu+ksy((1 — 54)Vsg + 55 V5w) } = Gg(sg,p).

The equations in (4.7) reduce to

(7.11a) u=—kVp,
(7.11Db) V'UZQw+QO+§g(Sgap);

the saturation equations are given in the same way as in (7.10) as observed above.
Finally, the boundary conditions are the same as in (7.5) and (7.6).

Note that, in the present situation, it follows from (7.7) and (7.8) that the pres-
sure equations (7.9) and (7.11) are parabolic. Also, the pressure equation (7.11) is
not totally decoupled from its saturation equations. These are the major differences
between the two tests.

The above discretization techniques and set of numerical data in the first test
are used here. The corresponding convergence results and CPU times are displayed
in Tables 6-10. The convergence results have the same performance as in the
first test. However, the difference between the CPU times for the two forms is
slightly different in these two tests. The reason is that the pressure equation (7.4)
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is decoupled from its saturation equations in the first test, but not in the second
test. Also, because of the stronger coupling between the pressure and saturation
equations in the phase form, the global system takes less time.

1/h | L®-error | L°-order
10 0.20207 -

20 0.10367 0.96

40 0.05160 1.01

Table 6. Convergence of pj, for the phase system in test two.

1/h | L®°-error | L°°-order
10 0.50273 -

20 0.26600 0.92

40 0.14091 0.92

Table 7. Convergence of s; for the phase system in test two.

1/h | L%-error | L°-order
10 0.03991 -

20 0.01980 1.01

40 0.00983 1.01

Table 8. Convergence of pj, for the global system in test two.
We end with two remarks. First, the transport term in the saturation equations is
governed by the (or weighted) total velocity u. Thus accurate numerical simulations
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require an accurate approximation for w. The mixed finite element method is
here used to approximate u and p simultaneously, via the coupled system of first-
order differential equations in (7.2) or (7.4), and produces an accurate velocity
[17]. Second, due to their convection-dominated feature, more efficient approximate
procedures should be used to solve the saturation equations. However, the interest
here is in the comparison between the two differential systems; the simple finite
difference scheme is accurate enough for this purpose.

1/h | L%-error | L°-order

10 0.09843 -
20 0.05180 0.93
40 0.02701 0.94

Table 9. Convergence of s;, for the global system in test two.

1/h | CPU-B | CPU-P

10 51.02 73.13

20 403.00 581.00

40 1602.0 2322.03

Table 10. CPU times up to ¢t = 1 in test two.

8. CONCLUDING REMARK

The phase, pseudo-global, and global pressure-saturation differential systems
have been established for the three-phase fluid flow in porous media. A comparison
between these systems has been carried out both theoretically and numerically.
The global differential system is far more efficient than the phase and pseudo-
global systems from the computational point of view, and also more suitable for
mathematical analysis. The advantage of the global form can be more obviously
seen in the case of incompressible flow and one-space dimension. For, in this case,
the global pressure equation can be analytically solved. The weakness of the global
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formulation is the need of the satisfaction of the total differential condition by the
three-phase relative permeability and capillary pressure curves.

Appendix. REMARKS ON A MIXED METHOD
We rewrite equations (7.4) and (7.5) as follows:

(A.1a) u=—kVp, x € Q,
(A.1b) V-u=gq, x €,
(A.1lc) u-v =0, x € oS

For compatibility, ¢(x) needs to satisfy the condition

/Qq(x)dzn = 0.

Define the spaces

L*(Q) = {w: /Q lw(z)|?dz < oo},
H(div; Q) = {v € (L*(Q))®: V -v € L*(Q)},

W ={w GLZ(Q):/Qw(x)dxzo},
V={ve Hdiv;Q) :v-v =0 on 0Q}.

Then the mixed form of (A.1) for the pair (u,p) € V x W is

(A.2a) (V- u,w) = (q,w), Yw e W,

(A.2b) (k™ tu,v) — (p,V-v) =0, Yo eV,

where (-,-) is the L2(Q) or (L?(£2))? inner product, as appropriate. This system
has a unique solution [7].

For 0 < h < 1, let &, a partition of €2 into rectangular parallelepipeds. In &
we need that adjacent elements completely share their common face. Then we
introduce the Raviart-Thomas-Nedelec mixed space [21], [19] of lowest-order

Vi ={veV:vlg=(akg+a)z, a3 +agy, al +aS2), ay € R, VE € &,},
Wh:{’wEW:U|E:bE,bEE%,VEGgh}.

Then the mixed finite element solution of (A.2) is (up, pp) € Vi X W}, satisfying

(A.3a) (V- up,w) = (q,w), Yw € Wy,
(A.3b) (ktup,v) — (pn, V-0) =0, Vv € V.
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Again, this system has a unique solution [7].

The linear system arising from (A.3) is a saddle point problem [7], which can

be expensive to solve. Omne of useful numerical methods for solving this saddle
point problem is the inexact Uzawa algorithm (see, e.g., [6], [16]). A more efficient
approach was suggested by means of a nonmixed formulation. Namely, it has been
shown that the mixed finite element method is equivalent to a modification of a
nonconforming Galerkin method [2], [3], [9], [10]. The nonconforming method yields
a symmetric and positive definite problem, which can be more easily solved.

10.

11.

12.

13.

14.

15.

16.

17.
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