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Abstract 	 In this paper we fromulate and study a domain decomposition algorithm for solving
mixed 
nite element approximations to parabolic initial�boundary value problems� In contrast to the
usual overlapping domain decomposition method this technique leads to noniterative algorithms� i�e� the
subdomain problems are solved independently and the solution in the whole domain is obtained from
the local solutions by restriction and simple averaging� The algorithm exploits the fact that the time
discretization leads to an elliptic problem with a large positive coe�cient in front of the zero order term�
The solutions of such problems exhibit a boundary layer with thickness proportional to the square root of
the time discretization parameter� Thus� any error in the boundary conditions will decay exponentially
and a reasonable overlap will produce a su�ciently accurate method� We prove that the proposed
algorithm is stable in L��norm and has the same accuracy as the implicit method�

Keywords� parabolic equations� domain decomposition� error estimate� stability� mixed 
nite elements�
convergence�

�� INTRODUCTION

The main idea of the Schwarz alternating algorithm for solving partial di�erential equa�
tions is to divide the domain into a number of overlapping subdomains and solve a simi�
lar problem on each subdomain �alternatively or in parallel� with boundary information
about the solution from the neighboring subdomains� This general idea has been applied
to various elliptic problems �for a recent review on Schwarz methods we refer to Dryja and
Widlund ������ Since time discretization of parabolic problems leads to certain elliptic
problems on the consecutive time level� domain decomposition algorithms can be applied
to this class of problems as well� However� discretizations of parabolic equations have
one very important feature	 a large parameter in front of the zero order term� Exploring
this property of the discretizations of time dependent problems� Kuznetsov proposed and
studied in ��
�� ����� ���� a special class of domain decomposition algorithms �see also
Blum� Lisky� and Rannacher �
�� Rannacher and Zhou ����� Cai �����

We demonstrate the main idea of this method on the following problem� Let � denote
a spatial domain in R� or R�� Assume � has a piecewise uniformly smooth Lipschitz
boundary� ��� Assume that F� g� f� p�� a� and b are smooth real�valued functions
on the domain of de�nition� with a being a uniformly positive de�nite matrix and b
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nonnegative� For some T � �� the function p�x� t� satis�es���
��

pt �r � �arp� � bp � F in �� ��� T ��
p � g on ��� ��� T ��
p�x� �� � p��x�� in ��

�����

We discretize the time variable by introducing tm � m�t and write the implicit Euler
approximation of �����	

Lpm � �

�t
pm �r � arpm � bmpm �

�

�t
pm�� � Fm� in � pm � gm� on ��� ���
�

Here pm denotes the approximation to p�x� tm� and m � �� 
� � � � � Therefore� to �nd the
solution at time level m we have to solve an elliptic problem with a large parameter in
front of the zero order term� This in turn can be done by applying �nite elements� �nite
di�erences� or �nite volumes �see� e�g� �
�� ���� �
���� In order to explain the idea of the
domain�splitting algorithm� for a moment we shall assume that we can solve the elliptic
problem ���
� exactly� We also consider the problem

L�pm �
�

�t
pm�� � Fm� in �� �pm � �gm� on ��� �����

where �gm is a perturbation of the boundary data gm� Then the di�erence em � pm � �pm

will be a solution to the homogeneous equation with nonhomogeneous boundary data	

Lem � �� in �� em � gm � �gm � �m� on ��� ���
�

From the theory of elliptic problems with a large parameter ��t��� in front of the zero
order term it is well known that the solution will exhibit a boundary layer of thick�
ness proportional to

p
�t� Namely� near the boundary the solution has the following

behaviour em�x� � O��m exp����x��p�t��� where ��x� � dist�x� ���� Similarly� if Neu�
mann boundary condition �pm��n � �m is prescribed on ��� then the solution will have
the following behavior near the boundary	 em�x� � O��m

p
�t exp����x��p�t��� For

small �t the solution will be almost zero outside the boundary layer� Model computa�
tions performed on PLTMG ��� that demonstrate the behavior of em�x� in the case of �
being a unit square for h � ����� �t � ������ a�� � a�� � �� a�� � a�� � �� b � ��
and �m � �� are shown in Figure � and Figure 
 for Dirichlet and Neumann boundary
conditions� respectively� These computations indicate that Neumann boundary condi�
tions should lead to more accurate results since the error compared with the error of the
Dirichlet problem is smaller by a factor of

p
�t� Nevertheless� in both cases the decay of

the boundary data has the same exponential rate�
These observations were the basis of the domain splitting algorithm� proposed and

studied by Kuznetsov ��
� �see also Blum� Lisky and Rannacher �
�� Cai ���� Rannacher
and Zhou ������ This algorithm can be explained in the following simple manner� The
domain � is covered by a �xed number of overlapping subdomains �d

i with overlap of
two adjacent subdomains no less than 
d� Then the domain splitting algorithm reads as
follow	

�� Initialize p�� for m � �� ��� perform the following two steps	


� For each subdomain �d
i � solve approximately the boundary value problem	�

Lpmi � �
�tp

m
i �r � arpmi � bmpmi � �

�tp
m�� � Fm� x � �d

i

lpmi � lpm��i on ��d
i �

�����
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where l is a linear operator associated with some boundary conditions� For example�
l being the identity operator will correspond to Dirichlet boundary conditions� which
will produce the method of Kuznetsov ��
�� and Blum� Lisky and Rannacher �
��

�� From the patch�wise solutions pmi � i � �� � � � � N recover the solution pm in � by
restricting pmi to �i and performing some averaging along the common boundary
between two adjacent subregions�

Figure �� Unit square� Dirichlet boundary condition

This algorithm has one remarkable feature� The subdomain problems for level m
are completely independent and can be solved in parallel on a distributed computer
architecture� Synchronization is needed only once when computing the values of pm

along the interior boundaries� Furthermore� when advancing from tm�� to tm� one can
use di�erent time step�sizes in each subdomain �d

i �

Figure 
� Unit square� Neumann boundary condition
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Obviously� the choice d � � will lead to a meaningless algorithm� However� following
Dawson� Du� and Dupont ��� �see� also� ����� one can modify the boundary conditions in
����� by explicit approximation along the boundary ��d

i � using a much coarser mesh at
level m� � with step size H �� h� Dawson� Du� and Dupont ��� have shown that such a
method is stable if �t � O�H�� and has O�h��H���t� asymptotic rate of convergence
in the maximum norm� The choice H � O�h���� will balance the terms in the error
estimate and the scheme will be stable for �t � O�h����� This stability condition is
much less restrictive than the Courant condition for a fully explicit scheme making the
algorithm a good candidate for parallel realization�

If d ��
p
�t then the pollution due to an inaccurate boundary condition in ����� will

be very small and the domain decomposition method should work quite well� Theoreti�
cally� this can be proved by using the general theory of local error estimates for singularly
perturbed reaction�di�usion problems �see� e�g� Schatz and Wahlbin ����� lemma 
�
 and
lemma ����� However� a larger overlap means more arithmetic work and more information
to be exchanged between the adjacent subregions� This in turn relates to more intensive
communications in the computer realization� The obvious question that arises is what
is the minimal overlap that guarantees stability of the method and provides the same
asymptotic order of accuracy as the global method ����� �

The computational experiments performed on model problems by Blum� Lisky� and
Rannacher in �
� show that this algorithm is stable and has the same accuracy as the
global method ���
� for an overlap that is proportional to the space�grid size� In these
experiments d is typically 
h � 
h� Unfortunately� the existing theory puts much more
severe restriction on the overlap parameter d� than those observed in the computational
experiments� Kuznetsov �e�g�� ��
������� has shown that the domain decomposition scheme
has the same accuracy as the standard implicit Galerkin scheme for d � p

�tj log�tj�
This analysis is purely algebraic and is done for discretizations of convection�di�usion
problems� Using analytic technique Blum� Lisky� and Rannacher �
� have proved that

there is a constant � such that d � �
p
�tj log dh j is su�cient for the stability of the

method ������ Also� the method will have the same asymptotic convergence rate as the
global method ���
�� Actually� Blum� Lisky� and Rannacher �
� have considered more
general domain splitting schemes� namely� Crank�Nicolson approximations in time� linear
and quadratic extrapolation of the Dirichlet boundary data from levels m � �� m � 
�
and m� �� and general convex averaging along the subdomain interfaces�

Another interesting study of this algorithm applied to streamline di�usion �nite ele�
ment approximations to convection�di�usion problems has been done by Rannacher and
Zhou in ����� Again� the keys in their analysis are the decay property of the solution to
a homogeneous equation with nonhomogeneous boundary data� strong L��stability� and
an a priori estimate for the di�erences pm � pm���

The goal of this paper is to extend the formulation of the domain splitting algorithm
to the mixed �nite element approximations to parabolic problems and prove its stability
and convergence� In section 
 we introduce the �nite element spaces that are being
used for second�order elliptic equations and formulate a backward in time Euler mixed
�nite element approximation to problem ������ Next� we introduce the domain splitting
algorithm for this discretization� This algorithm is based on setting Neumann boundary
conditions on the arti�cial internal boundaries of the subdomains� which in our opinion
are more natural for the mixed �nite element formulation� The main result of this paper
is proved in Theorem ��	 under the condition d � c�

p
�tj logh�tj the domain splitting

algorithm is stable and is O��t��close to the solution of the standard implicit mixed �nite
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element method� The proof of Theorem �� is the main result in this paper� Lemma ��
plays a key role in the proof� whereby a decay property of the the mixed �nite element
solution to a homogeneous reaction�di�usion equation with a small parameter in front of
the second�order term and nonhomogeneous Neumann boundary conditions is established�
Since the mixed �nite elements approximate the pressure p and the velocity u � arp as
independent variables� we had to �rst �nd the correct formulation of the decay property
for both p and u and prove it for their mixed �nite element approximations P and U �
This was the major theoretical di�culty we had to overcome� We note that the proof uses
the inverse property of the �nite element spaces and the weighted super�approximation
property ������ Condition �
��
� on the overlapping parameter d plays an essential role
in the proof� Also� in the inductive part of the proof we use the estimate ������ for the
expression kUm

� �Um��
� k� This estimate� formulated in Lemma �� is derived in ����

�� DOMAIN SPLITTING ALGORITHM

For the purpose of simplicity we shall consider the problem ����� with homogeneous
Dirichlet boundary conditions� i�e� g � �� To describe the mixed variational form for
������ as usual� we introduce two Hilbert spaces� Let

W � L����� V �
n
� � L������ r �� � L����

o
�

and the space V be equipped with norm k� kV � �k� k� � k r � � k������ The inner
product and norm in L���� are denoted by ��� �� and k �k� respectively� And for the sake
of simplicity� ��� �� and k � k are also respectively be used as the inner product and norm
in the product spaces L����� or L������

Throughout this paper H i��� denotes the standard Sobolev spaces W i������ with
H���� � L���� and

H�
� ��� � fv � H����� v � � in ��g�

We also denote by H i��� the vector analog of H i����
Let u � arp� then the pair �p�u� � W � V satis�es the following mixed variational

equation	 ���
��

�pt� ��� �r � u� �� � �bp� �� � �F� ��� � � � W� t � ��� T ��
�	u��� � �r ��� p� � �� � � � V � t � ��� T ��
p��� � p��

�
���

where pt � �p��t and 	 � a��� We note that the boundary condition p � � on �� is
implicitly contained in �
����

For the spatial discretization of problem �
���� let Th � fTg be a quasi�uniform family
of partitions of the domain � into closed triangles or rectangles with diameter h � �� i�e�
�� � �fT � Thg� The mixed �nite element spaces Wh 	 W and V h 	 V � are de�ned in
a standard way� Examples of various particular spaces can be found in the monograph
of Brezzi and Fortin �
�� p� �
���
�� We assume that

r � V h 	 Wh �
�
�

and there exists a linear operator IIh 	 V 
 V h such that

r � IIh � Qhr � �
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Here� the operator Qh 	 W 
Wh is the L� projection on Wh� i�e��

�� �Qh�� �h� � �� �� � W� �h � Wh�

Below� and throughout the paper� the letter C is used as a generic constant� which is
independent of h� p� u� etc�

We assume that the partition Th and the �nite element spaces Wh and V h satisfy the
inverse inequality

k�hkH�
���
� Ch�� k�hk� � �h � V h� �
���

k�hkH����� Ch�� k�hk� � �h � Wh� �
�
�

and the following approximation properties	 there exists an integer r � � such that

k�� IIh�k� Chi k�k
H

i

���
� � � �H i���� � � i � r � �� �
���

k� �Qh�k� Chi k� kHi���� � � � H i���� � � i � r � �� �
���

After these preliminaries we state the backward in time Euler mixed �nite element
approximation in space of the problem ������ The global mixed �nite element approxi�
mation �Pm

� �U
m
� � � Wh � V h to the exact solution �p��� tm��u��� tm�� � W � V of �
���

is the solution of the problem�

�����
����

�
Pm
� � Pm��

�
�t ��

�
� �r �Um

� � bmPm
� ��� � �Fm���� � � � Wh�

�	mUm
� ��� � �r ��� Pm

� � � �� � � � V h�
P �
� � Qhp

� � Wh�

�
���

Here� m � �� �t � � is the time�step size and tm � m�t� The initial approximation P �
�

is taken as the L� projection in Wh of p� only for the sake of simplicity� any other choice
that guarantees approximation can be used� For a function 
�t�� we denote its value at
t � tm by 
m�

Note that U �
� is determined by P �

� through the relation

�	�U �
���� � �r ��� P �

� � � �� � � � V h� �
���

To solve problem �
���� we apply an overlapping domain decomposition method� To
this end� let the domain � be divided into a �nite number of polygonal subdomains �i�
i � �� � � �� N � each of which is a union of elements of Th and has diameter O���� To each
�i� we associate a convex extension

�d
i � �fT � Th 	 dist�T��i� � dg �

where d � h is the overlap width� Further� let

�i � ��d
i n��� �ij � �ji � ��i � ��j�

denote the interior boundary of subdomain �d
i and the common interior boundary of

subdomains �i and �j� respectively�
For each subdomain �d

i � we denote the restrictions of Wh and V h to �d
i by Wh��

d
i �

and V h��
d
i �� respectively� And let

V �
h��

d
i � �

n
v � V h��

d
i � 	 v �nj�i � �

o
�
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where n denotes the exterior unit normal direction�
Now� we describe the overlapping domain splitting algorithm for problem �
����

Step �� We choose some approximation P � � Wh to the initial value p���� e�g�� its L��

projection in Wh� The initial approximation U � for u��� is determined by �
����
If approximations �P i�U i� � Wh � V h to �pi�ui� � �p��� ti��u��� ti�� � W � V � have

been calculated for all � � i � m� then �Pm�Um� � Wh � V h is determined through the
following steps	
Step �� On each arti�cial interior boundary �i 
� �� we calculate the normal component
�U � n by constant extrapolation in time from the previous time level	

�U
m � n � Um�� � n� �
���

Step 
� In each subdomain �d
i � i � �� ���� N � the local approximations �Pm

i �U
m
i � �

Wh��
d
i ��V h��

d
i � are computed independently by solving the following local mixed �nite

element problems	

�������
������

�
Pm
i � Pm��

�t ��

�
�d

i

� �r �Um
i � bmPm

i ����d

i

� �fm����d

i

� � � � Wh��
d
i ��

�	mUm
i ����d

i

� �r � �� Pm
i ��d

i

� �� � � � V �
h��

d
i ��

Um
i � nj�i � �U

m �n
���
�i
�

�
����

Step �� The global approximation �Pm�Um� � Wh � V h is formed from the restrictions
of the patch�wise solutions �Pm

i �U
m
i � � Wh��

d
i �� V h��

d
i � on �i	

Pmj�i
� Pm

i j�i
� �
����

Umj�in��i
� Um

i j�in��i
� �
��
�

and by averaging of the normal components of the velocity Um
i along the arti�cial interior

boundaries	

Um � n �
�




�
Um

i � n�Um
j � n

	
� on �ij� �
����

The main result in this paper is a proof of the stability of the domain decomposition
method� This result is established in the following theorem	

Theorem �� Let the solution of problem ����� be su�ciently smooth and let the over�
lapping parameter d satisfy the condition

d � c�
p
�tj log�h�t�j for some constant c� � �� �
��
�

Then the domain decomposition algorithm ����� � ����	� is stable in the L��norm and the
following estimate holds true


kPm
� � Pmk� ��t kUm

� �Um k�� C��t��� �
����

This theorem says that the domain splitting algorithm is O��t��close in L��norm to the
solution of the global method �
���� In order to estimate the error of the algorithm we
can use the existing estimates for kp�tm�� Pm k and ku�tm��Um k Chen and Lazarov
���� Namely� the following estimate has �see� e�g� ����	
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Lemma �� For m � � let �p�tm��u�tm�� � �pm�um� � Wh � V h and �Pm
� �U

m
� � �

Wh � V h be the solutions of problems ����� and ������ respectively� If the solution to
problem ����� is su�ciently smooth� then

kpm � Pm
� k � kum �Um

� k� C�hr	� ��t�� �
����

Combining the results of Theorem �� and Lemma �� we conclude that the domain splitting
algorithm will produce an approximate solution that is as accurate as the solution of the
global method �
����

Theorem �� will be the subject of our study in section ��

�� STABILITY ESTIMATE

In this section� we give a proof of Theorem �� from Section 
� The proof is based on
the decay property of the mixed �nite element solution of a singularly perturbed elliptic
equation with nonhomogeneous Neumann boundary data�

For our analyisis V h��
d
i � has to satisfy the so�called weighted super�approximation

property� First� we de�ne ��x� � dist�x��i� and ��x� � e���x��
p

t� where � � ��� �� is a

constant which will be determined later� We say that the �nite element space V h��
d
i �

satis�es the weighted super�approximation property if there is a constant C independent
of h and such that for any W � V h��

d
i � the following inequality is valid	

k�������W �  W �kL���d

i
�� C� k����W kL���d

i
�� �����

where  W is the quasi�interpolant of �W in V h��
d
i �� i�e�  W � IIh��W � � V h��

d
i ��

The Lp�error analysis for � � p � � of conforming �nite element approximations
often uses this type of property �see� e�g� ��
�� �
���� We are not aware of a direct proof
of this property based only on the de�nition of mixed �nite element spaces V h and Wh

in section �� One can verify this super�approximation property for each particular pair
of spaces V h and Wh provided that IIh is de�ned element by element� To be speci�c we
consider the Raviart�Thomas rectangular element of order zero ����� In the same way
one can treat the triangular Raviart�Thomas element of order zero� Let K � Th and li�
i � �� 
� �� 
 be the edges of K� For �W we de�ne IIK��W � � V h�K� byZ

li
��W � IIK��W �� � nds � �� i � �� 
� �� 
� ���
�

Then IIh��W � � V h��
d
i � is given by

IIh��W �jK � IIK��W �� �K � Th�
Obviously� �W �W on the boundary ��d

i � This implies that IIK��W � �n �W �n
on ��d

i � Due to ���
�  W satis�es the following identity	

�r � ��W �  W �����d

i

� �� � � � Wh��
d
i ��  W �W � V �

h��
d
i ��

Once  W is constructed locally� then the super�approximation property ����� is derived
by using the locality of the operator IIh and the following inequality

sup
x�K

��x�� inf
x�K

��x� � C�� �K � Th� �����
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with a constant C� independent of h� Indeed� let 
 � K� where K � Th and denote by
�� � ��
�� Then

jj�W � IIK��W �jjL��K� � jj��� ���W � IIK���� ���W �jjL��K�

� Ch k��� ���W kH��K�

� Ch�kr�W kL��K� �max j��� ���j kW kH��K��

� C
�hp
�t

sup
x�K

��x� kW kL��K� �

Here we have used the fact that r� is a piece�wise smooth vector function and there is

a positive constant C� independent of h� such that jr�j � C�p
�t

� with j�j denoting the

Euclidean norm� Then using ����� and assuming that h� � C�t we get

k�������W �  W �k�L��K�� C�� k����W k�L��K� � ���
�

The required super�approximation property ����� follows by summing ���
� over all �nite
elements K � Th� The analysis of all other mixed �nite elements which contain the
lowest order Raviart�Thomas rectangles or triangles applies the same argument and the
technique developed by Dupont and Scott ��
�� A super�approximation property of this
type was used by Wang �

� in the convergence and superconvergence analysis of mixed
�nite element approximations to second order elliptic problems�

The decay property is discussed and established in the following lemma	

Lemma �� �decay property lemma� Let �Q�W � � Wh��
d
i �� V h��

d
i � satisfy����

���
�Q����d

i

��t �r �W � bQ����d

i

� �� � � � Wh��
d
i ��

�	W ����d

i

� �r ��� Q��d

i

� �� � � � V �
h��

d
i ��

W � nj�i � G �nj�i �
�����

with G � V h� Then� there exist positive constants C and �� such that

�

�t
kQk�L���i�

� kW k�L���i�
� Ce��d�

p

t�kGk�L���d

i
� ��t kr �Gk�L���d

i
��� �����

where d � dist��i��i��

Proof � Since � � d on �i� we have

�

�t
kQk�L���i�

� kW k�L���i�
� e��d�

p

t



�

�t
��Q�Q��d

i

� ��W �W ��d

i

�
� �����

We shall bound the right�hand side of ������ Let  Q denote the L� projection of �Q in
Wh��

d
i �� From the �rst equation of ������ it follows that

�

�t
��Q�Q��d

i

�
�

�t
�  Q�Q��d

i

� �r �W � bQ�  Q��d

i

� �r �W � �Q��d

i

� �bQ�  Q��d

i

� �r � ��W �� Q��d

i

� �r� �W � Q��d

i

� �bQ�  Q��d

i

� �����

From ����� and the second equation of ������ and taking into account that  W � G �
V �

h��
d
i �� we get

�

�t
��Q�Q��d

i

� �r � �  W �G�� Q��d

i

� �r� �W � Q��d

i

� �r �G� Q��d

i

� �bQ�  Q��d

i

� ��	W �  W �G��d

i

� �r� �W � Q��d

i

� �r �G� Q��d

i

� �bQ�  Q��d

i

�
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which implies

�

�t
��Q�Q��d

i

� 	���W �W ��d

i

� �	W � �W �  W ��d

i

� �r� �W � Q��d

i

��r �G� Q��d

i

� �	W �G��d

i

� �bQ�  Q��d

i

� �����

Now we estimate the terms on the right hand side of ������ For the �rst term we use
the weighted super�approximation property ����� to get	

�	W � �W �  W ��d

i

� C k����W kL����
i
� � k�������W �  W �kL���d

i
�

� C���W �W ��d

i

� ������

Using the estimate jr�j � C�p
�t

� we get the following bound for the second term in the

right hand side of �����	

��� �r� �W � Q��d

i

��� � C�

�t
��Q�Q��d

i

� C���W �W ��d

i

� ������

The next two terms in ����� are estimated in the following manner	

�r �G� Q��d

i

� �

�t
��Q�Q��d

i

�
�t


�
����r �G�r �G��d

i

�

�	W �G��d

i

� ���W �W ��d

i

�
C


�
����G�G��d

i

�

where � � � is arbitrary�
Finally� for the last term in ����� we apply the local inverse inequality for Q � Wh�K�

and K � Th	
hjjrQjjL��K� � CjjQjjL��K�

and get

��bQ�  Q��d

i

� ��bQ�  Q �Q��d

i

� C

�t
��t � �h����Q�Q��d

i

�

We use these estimates for the terms in the right hand side of ������ Next� we �x �
su�ciently small� then choose �t � �� and note that ��� � � in �d

i � This completes the
proof of the decay property lemma�
Proof of Theorem ��	 We compare �Pm�Um� with the pair �  Pm�  U

m
�� which is the

solution of the following auxiliary problem	���
��


 Pm � Pm��

�t ��
�
�
�
r �  Um � bm  Pm��

	
� �Fm���� � � � Wh�

�	  U
m
��� � �r ���  Pm� � �� � � � V h�

����
�

First� for any � � ��� ��� we write the inequalities

kUm �Um
� k� �



� �

�

�

�
kUm �  U

m k� ��� � �� k  U
m �Um

� k�

� C

�

NX
i��

kUm
i �  U

m k�L���i�
��� � �� k  U

m �Um
� k��

kPm � Pm
� k��

C

�

NX
i��

kPm
i �  Pm k�L���i�

��� � �� k  Pm � Pm
� k� �
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Combining these two estimates and applying Lemma �� to Q � Pm
i �  Pm and W �

Um
i �  U

m
we get	

kPm � Pm
� k� �	��t kUm �Um

� k�

� �� � ��
�
k  Pm � Pm

� k� �	��t k  U
m �Um

� k�
	

�
C�t

�
e��d�

p

t

NX
i��

�
k �U

m�� �  U
mk�L��d

i
� ��t kr � � �Um�� �  U

m k�L��d

i
�

	

� �� � ��
�
k  Pm � Pm

� k� �	��t k  U
m �Um

� k�
	

������

�
C�t

�
e��d�

p

t�� �

�t

h�
�
�
kUm�� �Um��

� k� � kUm��
� �Um

� k� � kUm
� �  U

m k�
	
�

Next� we show that there exists a constant � � � such that

k  Pm � Pm
� k� �	��t k  U

m �Um
� k��

�

� � ��t
kPm��

� � Pm��k� � ����
�

Indeed� subtracting �
��� from ����
� and denotingWm �  U
m�Um

� and Qm �  Pm�Pm
�

we get

�
�Qm�����t�r �Wm � bmQm��� � �Pm��

� � Pm������ � � �W h�
�	Wm��� � �r ��� Qm� � ��

������

Then� by taking � � Qm and � � Wm in ������� using the fact that b is nonnegative�
and 	 � 	�� it follows that

kQm k� �	��t kWm k�

� �Qm� Qm���t�r �Wm � bmQm� Qm� � �Pm��
� � Pm��� Qm�

� �

�� � ��t����
kPm��

� � Pm�� k � �� � ��t���� kQm k

� �


�� � ��t�
kPm��

� � Pm��k� ��




�
kQm k� ���t kQmk�

	

� �


�� � ��t�
kPm��

� � Pm��k� ��




�
kQm k� �C��t kWm k�

	
� ������

where in the last step we have used the inequality k Qm k� C kWm k� Choosing �
su�ciently small� we obtain the desired estimate ����
�� Now� to complete the proof� we
employ an induction argument� Since U � �U �

� � � and P � � P �
� � �� we assume that

kPm�� � Pm��
� k� �	��t kUm�� �Um��

� k�� M��t��� ������

Here� the constant M is assumed to be the same constant as in the estimate

kUm
� �Um��

� k��M��t�� ������

established by Chen and Lazarov in ����
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Substituting ����
� into ������� we obtain

kPm � Pm
� k� �	��t kUm �Um

� k�

� �

� � ��t

�

� � ��

Ce��d�
p

t

�	�
�� �

�t

h�
�

�
A kPm��

� � Pm��k� ������

�
C�t

�
e��d�

p

t�� �

�t

h�
�
�
kUm�� �Um��

� k� � kUm��
� �Um

� k�
	
�

First we set

� �
��t



� �� �

Ce��L

�
�� �

�t

h�
�� L �

dp
�t

and then� choose L su�ciently large so that

� � ��
��
	�

� � ��t
� �� ��� and L � C� log

�

h�t
for some C��

Now� from ������ and for su�ciently small ��� we get

kPm � Pm
� k� �	��t kUm �Um

� k�

� ���t kUm
� �Um��

� k�

���� ���


kPm�� � Pm��

� k� � ���t

�� ��
kUm�� �Um��

� k�
�

� ���t kUm
� �Um��

� k�
���� ���

�
kPm�� � Pm��

� k� �	��t kUm�� �Um��
� k�

	
�

Now� using the induction assumption ������ and ������� we obtain

kPm � Pm
� k� �	��t kUm �Um

� k��M��t���

which completes the proof of Theorem ���

�� REMARKS AND CONCLUSIONS

The theory developed in this paper can be applied also to Crank�Nicolson mixed �nite
element approximations of parabolic problems� In this case the decay property of the
mixed method will be the same� However� we need a theory for the error estimate of the
global method� To our knowledge the theory of the mixed �nite element methods has
not covered this interesting case� Nevertheless� the necessary estimates should be derived
using the technique developed by Thomee �
��� Johnson and Thomee ����� and Chen and
Lazarov ����
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