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Domain Splitting Algorithm for Mixed Finite Element
Approximations to Parabolic Problems
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Abstract — In this paper we fromulate and study a domain decomposition algorithm for solving
mixed finite element approximations to parabolic initial-boundary value problems. In contrast to the
usual overlapping domain decomposition method this technique leads to noniterative algorithms, i.e. the
subdomain problems are solved independently and the solution in the whole domain is obtained from
the local solutions by restriction and simple averaging. The algorithm exploits the fact that the time
discretization leads to an elliptic problem with a large positive coefficient in front of the zero order term.
The solutions of such problems exhibit a boundary layer with thickness proportional to the square root of
the time discretization parameter. Thus, any error in the boundary conditions will decay exponentially
and a reasonable overlap will produce a sufficiently accurate method. We prove that the proposed
algorithm is stable in L?-norm and has the same accuracy as the implicit method.

Keywords. parabolic equations, domain decomposition, error estimate, stability, mixed finite elements,
convergence.

1. INTRODUCTION

The main idea of the Schwarz alternating algorithm for solving partial differential equa-
tions is to divide the domain into a number of overlapping subdomains and solve a simi-
lar problem on each subdomain (alternatively or in parallel) with boundary information
about the solution from the neighboring subdomains. This general idea has been applied
to various elliptic problems (for a recent review on Schwarz methods we refer to Dryja and
Widlund [11]). Since time discretization of parabolic problems leads to certain elliptic
problems on the consecutive time level, domain decomposition algorithms can be applied
to this class of problems as well. However, discretizations of parabolic equations have
one very important feature: a large parameter in front of the zero order term. Exploring
this property of the discretizations of time dependent problems, Kuznetsov proposed and
studied in [14], [15], [16] a special class of domain decomposition algorithms (see also
Blum, Lisky, and Rannacher [2], Rannacher and Zhou [17], Cai [5]).

We demonstrate the main idea of this method on the following problem. Let €2 denote
a spatial domain in R? or R®. Assume ) has a piecewise uniformly smooth Lipschitz
boundary, 9. Assume that F, g, f, p°, a, and b are smooth real-valued functions
on the domain of definition, with a being a uniformly positive definite matrix and b
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nonnegative. For some 7' > 0, the function p(x,t) satisfies

pe— V- (aVp)+bp=F inQ x (0,71,
p=g on 0 x (0,71, (1.1)
p(x,0) = p°(2), in Q.

We discretize the time variable by introducing ¢,, = mAt and write the implicit Euler
approximation of (1.1):

Lp" = Ait "=V -aVp" 4+ b0"p" = Ait L FT in Qo pm=g", ondQ. (1.2
Here p™ denotes the approximation to p(z,t,) and m = 1,2, ---. Therefore, to find the
solution at time level m we have to solve an elliptic problem with a large parameter in
front of the zero order term. This in turn can be done by applying finite elements, finite
differences, or finite volumes (see, e.g. [4], [8], [21]). In order to explain the idea of the
domain-splitting algorithm, for a moment we shall assume that we can solve the elliptic
problem (1.2) exactly. We also consider the problem

1
Eﬁm — Epmfl + Fm, in Q, ﬁm = gm, on aQ, (13)

where g™ is a perturbation of the boundary data ¢”. Then the difference ¢™ = p™ — p™
will be a solution to the homogeneous equation with nonhomogeneous boundary data:

Le" =0, inQ, e"=g¢g"—g"=06"on 0. (1.4)

From the theory of elliptic problems with a large parameter (A¢)~! in front of the zero
order term it is well known that the solution will exhibit a boundary layer of thick-
ness proportional to v/At. Namely, near the boundary the solution has the following
behaviour €™ (x) = O(6™ exp(—p(x)/v/At)), where p(z) = dist(x,0). Similarly, if Neu-
mann boundary condition dp™/0n = ¢™ is prescribed on 0f, then the solution will have
the following behavior near the boundary: e™(z) = O(6™VAtexp(—p(z)/v/At)). For
small At the solution will be almost zero outside the boundary layer. Model computa-
tions performed on PLTMG [1] that demonstrate the behavior of €™ (x) in the case of Q
being a unit square for h = 0.03, At = 0.005, a3 = a3 = 1, a1o = as; = 0, b = 0,
and 0™ = —1 are shown in Figure 1 and Figure 2 for Dirichlet and Neumann boundary
conditions, respectively. These computations indicate that Neumann boundary condi-
tions should lead to more accurate results since the error compared with the error of the
Dirichlet problem is smaller by a factor of v/At. Nevertheless, in both cases the decay of
the boundary data has the same exponential rate.

These observations were the basis of the domain splitting algorithm, proposed and
studied by Kuznetsov [14] (see also Blum, Lisky and Rannacher [2], Cai [5], Rannacher
and Zhou [17]). This algorithm can be explained in the following simple manner. The
domain € is covered by a fixed number of overlapping subdomains Q¢ with overlap of
two adjacent subdomains no less than 2d. Then the domain splitting algorithm reads as
follow:

1. Initialize p%; for m = 1, ... perform the following two steps:

2. For each subdomain Q¢, solve approximately the boundary value problem:

{ Lo = Aepl — V- aVpl + bmplt = p™ H F7, w e Qf (L5)

Ipm = Ip*~" on 9Q4.

)
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where [ is a linear operator associated with some boundary conditions. For example,
[ being the identity operator will correspond to Dirichlet boundary conditions, which
will produce the method of Kuznetsov [14], and Blum, Lisky and Rannacher [2].

3. From the patch-wise solutions p}", i = 1,---, N recover the solution p” in {2 by
restricting p” to ); and performing some averaging along the common boundary
between two adjacent subregions.

square

Figure 1. Unit square; Dirichlet boundary condition

This algorithm has one remarkable feature. The subdomain problems for level m
are completely independent and can be solved in parallel on a distributed computer
architecture. Synchronization is needed only once when computing the values of p™
along the interior boundaries. Furthermore, when advancing from t,, ; to t¢,,, one can
use different time step-sizes in each subdomain QY.

square

Figure 2. Unit square; Neumann boundary condition
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Obviously, the choice d = 0 will lead to a meaningless algorithm. However, following
Dawson, Du, and Dupont [9] (see, also, [10]) one can modify the boundary conditions in
(1.5) by explicit approximation along the boundary 99¢, using a much coarser mesh at
level m — 1 with step size H >> h. Dawson, Du, and Dupont [9] have shown that such a
method is stable if At = O(H?) and has O(h% + H® + At) asymptotic rate of convergence
in the maximum norm. The choice H = O(h%3) will balance the terms in the error
estimate and the scheme will be stable for At = O(h*3). This stability condition is
much less restrictive than the Courant condition for a fully explicit scheme making the
algorithm a good candidate for parallel realization.

If d >> /At then the pollution due to an inaccurate boundary condition in (1.5) will
be very small and the domain decomposition method should work quite well. Theoreti-
cally, this can be proved by using the general theory of local error estimates for singularly
perturbed reaction-diffusion problems (see, e.g. Schatz and Wahlbin [19], lemma 2.2 and
lemma 5.1). However, a larger overlap means more arithmetic work and more information
to be exchanged between the adjacent subregions. This in turn relates to more intensive
communications in the computer realization. The obvious question that arises is what
is the minimal overlap that guarantees stability of the method and provides the same
asymptotic order of accuracy as the global method (1.1) ?

The computational experiments performed on model problems by Blum, Lisky, and
Rannacher in [2] show that this algorithm is stable and has the same accuracy as the
global method (1.2) for an overlap that is proportional to the space-grid size. In these
experiments d is typically 2h — 4h. Unfortunately, the existing theory puts much more
severe restriction on the overlap parameter d, than those observed in the computational
experiments. Kuznetsov (e.g., [14],[16]) has shown that the domain decomposition scheme
has the same accuracy as the standard implicit Galerkin scheme for d ~ v/At|log At|.
This analysis is purely algebraic and is done for discretizations of convection-diffusion
problems. Using analytic technique Blum, Lisky, and Rannacher [2] have proved that
there is a constant v such that d > /At log%| is sufficient for the stability of the
method (1.3). Also, the method will have the same asymptotic convergence rate as the
global method (1.2). Actually, Blum, Lisky, and Rannacher [2] have considered more
general domain splitting schemes, namely, Crank-Nicolson approximations in time, linear
and quadratic extrapolation of the Dirichlet boundary data from levels m — 3, m — 2,
and m — 1, and general convex averaging along the subdomain interfaces.

Another interesting study of this algorithm applied to streamline diffusion finite ele-
ment approximations to convection-diffusion problems has been done by Rannacher and
Zhou in [17]. Again, the keys in their analysis are the decay property of the solution to
a homogeneous equation with nonhomogeneous boundary data, strong L2-stability, and
an a priori estimate for the differences p™ — p™~L.

The goal of this paper is to extend the formulation of the domain splitting algorithm
to the mixed finite element approximations to parabolic problems and prove its stability
and convergence. In section 2 we introduce the finite element spaces that are being
used for second-order elliptic equations and formulate a backward in time Euler mixed
finite element approximation to problem (1.1). Next, we introduce the domain splitting
algorithm for this discretization. This algorithm is based on setting Neumann boundary
conditions on the artificial internal boundaries of the subdomains, which in our opinion
are more natural for the mixed finite element formulation. The main result of this paper
is proved in Theorem 1.: under the condition d > cov/At|log hAt| the domain splitting
algorithm is stable and is O(At)-close to the solution of the standard implicit mixed finite
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element method. The proof of Theorem 1. is the main result in this paper. Lemma 2.
plays a key role in the proof, whereby a decay property of the the mixed finite element
solution to a homogeneous reaction-diffusion equation with a small parameter in front of
the second-order term and nonhomogeneous Neumann boundary conditions is established.
Since the mixed finite elements approximate the pressure p and the velocity uw = aVp as
independent variables, we had to first find the correct formulation of the decay property
for both p and uw and prove it for their mixed finite element approximations P and U.
This was the major theoretical difficulty we had to overcome. We note that the proof uses
the inverse property of the finite element spaces and the weighted super-approximation
property (3.1). Condition (2.14) on the overlapping parameter d plays an essential role
in the proof. Also, in the inductive part of the proof we use the estimate (3.18) for the
expression || U™ — U™"||. This estimate, formulated in Lemma 1. is derived in [7].

2. DOMAIN SPLITTING ALGORITHM

For the purpose of simplicity we shall consider the problem (1.1) with homogeneous
Dirichlet boundary conditions, i.e. g = 0. To describe the mixed variational form for
(1.1), as usual, we introduce two Hilbert spaces. Let

W=1%Q), V={pecl’Q? V-pcl’Q)},

and the space V' be equipped with norm || ¢ |lyy= ([[¢ > + || V- ¢ ||*)'/2. The inner
product and norm in L?(Q2) are denoted by (-,-) and |||, respectively. And for the sake
of simplicity, (+,-) and || -|| are also respectively be used as the inner product and norm
in the product spaces L*(2)? or L?(Q)3.

Throughout this paper H'(2) denotes the standard Sobolev spaces W%?(Q), with
H(Q) = L*(Q2) and

Hy(Q) = {ve H'(), v=0in 00Q}.

We also denote by H'(Q) the vector analog of H*(f2).

Let u = aVp; then the pair (p,u) € W x V satisfies the following mixed variational
equation:

(ptﬂ/))—(vU,¢)+(bpﬂ/)):(Fﬂ/))7 VT/)GVVJG(O,T],
(au, @) + (V- p,p) =0, VeeV,te(0,T], (2.1)
p(0) = p°,

where p; = dp/0t and a = a~'. We note that the boundary condition p = 0 on 9 is
implicitly contained in (2.1).

For the spatial discretization of problem (2.1), let 7, = {T'} be a quasi-uniform family
of partitions of the domain €2 into closed triangles or rectangles with diameter A > 0, i.e.
Q= U{T € T}. The mixed finite element spaces W;, C W and V; C V, are defined in
a standard way. Examples of various particular spaces can be found in the monograph
of Brezzi and Fortin [4], p. 125-128. We assume that

V-V, cWw, (2.2)
and there exists a linear operator I, : V — V, such that

V-, =Q,V -.
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Here, the operator @, : W — W), is the L? projection on W, i.e.,

(V¥ — Qub,vn) =0, Y € W, ¢y, € W,

Below, and throughout the paper, the letter C' is used as a generic constant, which is
independent of h, p, u, etc.

We assume that the partition 7, and the finite element spaces W}, and V', satisfy the
inverse inequality

||(Ph||H1(Q)§ Cht lenll, Y, € Vi, (2.3)
10n 1@< Ch™" [ ll, Y ¢ € Wh, (2.4)
and the following approximation properties: there exists an integer r > 0 such that
lo-Tpll< C @l gy @€ H©@), 1<i<r+1,  (25)
14 = Quy |< Ch Y ||miey, Yo € H(Q), 0<i<r+1. (2.6)

After these preliminaries we state the backward in time Euler mixed finite element
approximation in space of the problem (1.1). The global mixed finite element approxi-
mation (P, U.") € W), x V7, to the exact solution (p(-, ), u(,t,)) € W x V of (2.1)
is the solution of the problem,

Pm_Pm—l m ™ m -
*—At*i,\lf>—(V-U*—b P™ W) = (F™,0), V¥ e W, .
(@™U™, ®) + (V- &, P™) =0, V& eV, (2.7)

Pf :tho € Wh.

Here, m > 0, At > 0 is the time-step size and t,, = mAt. The initial approximation P?
is taken as the L? projection in W} of p° only for the sake of simplicity; any other choice
that guarantees approximation can be used. For a function (3(t), we denote its value at
t =t,, by g™

Note that U? is determined by P? through the relation

QU @)+ (V-®,P") =0, VIV, (2.8)

To solve problem (2.7), we apply an overlapping domain decomposition method. To
this end, let the domain €2 be divided into a finite number of polygonal subdomains €2;,
i=1,---, N, each of which is a union of elements of 7}, and has diameter O(1). To each
();, we associate a convex extension

Qf =U{T €Ty, : dist(T, ;) < d},
where d > h is the overlap width. Further, let
Fi = 8(2;1\89, Fij = Fji = Qz N Qj,

denote the interior boundary of subdomain Q¢ and the common interior boundary of
subdomains €2; and €2, respectively.
For each subdomain Qf, we denote the restrictions of W}, and V', to Q¢ by W,(Q4)

and V', (Q9), respectively. And let

Vi) ={veVv,Q): v nl, =0},
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where n denotes the exterior unit normal direction.

Now, we describe the overlapping domain splitting algorithm for problem (2.7).

Step 0. We choose some approximation P° € W}, to the initial value p(0), e.g., its L*-
projection in W,. The initial approximation U° for w(0) is determined by (2.8).

If approximations (P!, U") € W), x V, to (p*,u?) = (p(-, ;),u(-,t;)) € W x V, have
been calculated for all 0 < i < m, then (P™, U™) € W), X V1, is determined through the
following steps:

Step 1. On each artificial interior boundary I'; # (), we calculate the normal component
U - n by constant extrapolation in time from the previous time level:

U" - n=U""n. (2.9)

Step 2. In each subdomain Q¢, i = 1,...,N, the local approximations (P™ U") €

Wi(Q4) x V1,(924) are computed independently by solving the following local mixed finite
element problems:

mo m—1
(R Ktp ’\II> - (V ’ U;n - bm_le, \II)Qd = (fm, \I])Q‘.ia VVe Wh(Q;i),
4 ! :
(@™U", @)ga + (V- @, P™) g4 = 0, V& e V%(Q;i), (2.10)
U -nl, =U L

Step 3. The global approximation (P™, U™) € W), x V, is formed from the restrictions
of the patch-wise solutions (P/™, UT") € W, (%) x V,(Q%) on €;:

and by averaging of the normal components of the velocity U;" along the artificial interior
boundaries:

m 1 m m

The main result in this paper is a proof of the stability of the domain decomposition
method. This result is established in the following theorem:

THEOREM 1. Let the solution of problem (1.1) be sufficiently smooth and let the over-
lapping parameter d satisfy the condition

d > cyV At|log(hAt)|  for some constant ¢y > 0. (2.14)

Then the domain decomposition algorithm (2.9) — (2.13) is stable in the L*-norm and the
following estimate holds true:

| P = PP A |UT - U™ P< C(AD. (2.15)

This theorem says that the domain splitting algorithm is O(At)-close in L?-norm to the
solution of the global method (2.7). In order to estimate the error of the algorithm we
can use the existing estimates for || p(t,,) — P™|| and ||u(t,,) — U™ || Chen and Lazarov
[7]. Namely, the following estimate has (see, e.g. [7]):
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LEMMA 1. Form > 1 let (p(ty,), u(ty)) = (p™, u™) € W, x Vi, and (P, UT) €
Wy, x V', be the solutions of problems (1.1) and (2.7), respectively. If the solution to
problem (1.1) is sufficiently smooth, then

[p™ — P™|| + ||[u™ — U™||< C(K"" + At). (2.16)

Combining the results of Theorem 1. and Lemma, 1. we conclude that the domain splitting
algorithm will produce an approximate solution that is as accurate as the solution of the
global method (2.7).

Theorem 1. will be the subject of our study in section 3.

3. STABILITY ESTIMATE

In this section, we give a proof of Theorem 1. from Section 2. The proof is based on
the decay property of the mixed finite element solution of a singularly perturbed elliptic
equation with nonhomogeneous Neumann boundary data.

For our analyisis V(%) has to satisfy the so-called weighted super-approximation
property. First, we define p(z) = dist(z, ;) and ¢(z) = e?@/VAL where v € (0,1] is a
constant which will be determined later. We say that the finite element space V()
satisfies the weighted super-approximation property if there is a constant C' independent
of h and such that for any W € V,(Q¢) the following inequality is valid:

1672 (oW = W) 1200 < O |62 W |20, (3.1)

where W is the quasi-interpolant of ¢W in V;,(Q9), i.e. W = I, (¢W) € V,(Q%).

The LP-error analysis for 1 < p < oo of conforming finite element approximations
often uses this type of property (see, e.g. [12], [20]). We are not aware of a direct proof
of this property based only on the definition of mixed finite element spaces V', and W),
in section 1. One can verify this super-approximation property for each particular pair
of spaces V';, and W), provided that I, is defined element by element. To be specific we
consider the Raviart-Thomas rectangular element of order zero [18]. In the same way
one can treat the triangular Raviart-Thomas element of order zero. Let K € 7T, and [;,

i =1,2,3,4 be the edges of K. For W we define Ix (¢W') € V,(K) by

/Z(qﬁw Mg (W) - mds =0, i=1,2,3,4 (3.2)

Then I, (W) € V1,(2¢) is given by

Obviously, W = W on the boundary 00¢. This implies that g (pW) -n=W -n
on 0Q¢. Due to (3.2) W satisfies the following identity:

(V- (6W = W), W)q =0, YT eW, (), W-W eV

Once W is constructed locally, then the super-approximation property (3.1) is derived
by using the locality of the operator II;, and the following inequality

sup ¢(x)/mlng( o(r) < Co, VYK €T, (3.3)

zeK
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with a constant Cy independent of h. Indeed, let £ € K, where K € 7T, and denote by
b0 = ¢(&). Then

W — Mg (oW)l[2) < [[(¢ — do) W — L (¢ — ¢0) W) | L2(x)
< Chl[(¢— do)W ||m (k)
< Ch(||VW ||12(x) +max (¢ — ¢o)| | W ||k
<

vh
C Wil :
Y 2161[13 o(x) | W |2y

Here we have used the fact that V¢ is a piece-wise smooth vector function and there is
a positive constant C, independent of h, such that |V¢| < %d) with |.| denoting the

AT
Euclidean norm. Then using (3.3) and assuming that h*> < CAt we get
|6~ 2 (oW — W) (2250 < C7* | 6"° W 1y - (3.4)

The required super-approximation property (3.1) follows by summing (3.4) over all finite
elements K € 7,. The analysis of all other mixed finite elements which contain the
lowest, order Raviart-Thomas rectangles or triangles applies the same argument and the
technique developed by Dupont and Scott [12]. A super-approximation property of this
type was used by Wang [22] in the convergence and superconvergence analysis of mixed
finite element approximations to second order elliptic problems.

The decay property is discussed and established in the following lemma:

LEMMA 2. (decay property lemma) Let (Q, W) € W;,(Q4) x V() satisfy

(Q,9)qa — AL(V-W —b0Q,¥)qe =0, V ¥ e W,(QY),
(W, B)g + (V- &, Q)gy =0, V& e VD), (3.5)
W n|. =G n|.,

with G € V',. Then, there exist positive constants C' and vy, such that

QU + 1W [ < Ce VS| G sy +5¢ 1V -G o), (36)
where d = dist(Q;, ;).
Proof : Since p > d on €);, we have

i 1@y + 1W< e 775 (500, Qo + (6W. W)y ) . (37)

We shall bound the right-hand side of (3.7). Let Q denote the L? projection of ¢Q in
W (Q4). From the first equation of (3.5), it follows that

Ait(qﬁcz,@)gg = Ait@, Qo = (V- W = bQ, Q)gt = (V- W, 6Q) gt — (bQ, Q)
= (V- (oW), Q)Qg — (Vo WaQ)Q;.i - (anQ)Qg- (3.8)

From (3.8) and the second equation of (3.5), and taking into account that W — G €
V9(Qd), we get

A%((Z)Q,Q)Qg = (V- (W=G),Q)q — (Vo W,Q)gs + (V- G, Qs — (bQ, Q)
= —(@W. W = G)o: — (Vo W, Q)gz + (V+ G, Q)as — (bQ, Q)
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which implies

L (0Q. Qo +00(6W, W)gy < (0W,0W — W)o — (Vo W, Qs
+(V: G, Q)i + (aW, G)q1 — (bQ, Q)Qd (3.9)

Now we estimate the terms on the right hand side of (3.9). For the first term we use
the weighted super-approximation property (3.1) to get:

(W, W —W)o < C[[¢"*W || 1202 - 072 (6W — W) | 1200
< Cy(gW, W), (3.10)

Using the estimate |V¢| < \?—X_td) we get, the following bound for the second term in the

right hand side of (3.9):

(Vo W, Qs | < 5116 Qe + C(6W, Wy (3.11)

The next two terms in (3.9) are estimated in the following manner:

At

€ _

C
(CYW, G)Qf < €(¢W7 W)Qf + 4_6(¢71G7 G)Qfa
where € > 0 is arbitrary.

Finally, for the last term in (3.9) we apply the local inverse inequality for @ € W, (K)
and K € T:

MIVQ|| L2y < ClIQIN L2 ()
and get

(00, Qs < (0, @~ Qo < (D B0, Q).

We use these estimates for the terms in the right hand side of (3.9). Next, we fix v
sufficiently small, then choose At < 7, and note that ¢~ * < 1 in Q4. This completes the
proof of the decay property lemma.

Proof of Theorem 1.: We compare (P™ U™) with the pair (P™, f]m), which is the
solution of the following auxiliary problem:

f)m_Pm—l rr’ m pm _ m
<T~m ! ,qz)—gv.U —pn P W) = (F™,0), V€ W, 12
(@U",®) + (V- ®,P™) =0, Ve eV,

First, for any ¢ € (0, 1], we write the inequalities
]_ ~.m ~_m
jom Tt < (14 2) Um -0+ (o) |0 - U
9

ON m ~_m ~.m m
< X NUP =U ey + (1 +2) (U U,
=1

m m C N m =m pm m
[P = PrIP< =3 1P = P™ g2y + (1 +2) | P = P

=1
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Combining these two estimates and applying Lemma 2. to @ = P/" — P™ and W =
U"-U we get:

| P7 = PP +agAt [T — U

< (L+2) (IP™ = PP +aoAt [T - U )
OAt N —m— ~_m —m— ~_m
e VAT (1T = O iy +A V(O = 0" i)

=1

< (1+2) (IP™ = PP|1? +aot |[T™ = UT|1?) (3.13)
CAt At ~m
e YA L ) (JUT T - U P U U P U TP,

Next, we show that there exists a constant A > 0 such that

IP™ = PP +aoAt | U — U™ |P<

e WV LAy ) PR CREY

*

Indeed, subtracting (2.7) from (3.12) and denoting W™ = U —U™ and Q™ = P™— P™
we get

{ (Q™,0) — AV - W™ — pmQ™, ¥) = (P! — P10, VU € Wy,

(aW™ &) + (V- &,Qm) =0. (3.15)

Then, by taking ¥ = Q™ and ® = W™ in (3.15), using the fact that b is nonnegative,
and a > «y, it follows that

1Q™[I* +aoAt | W™ |*

< (QM,QM) — AUV -W™ —p"Q™, Q™) = (P = P™ Q™)
1 I i
< Goag 1P P A ann e
< g 1P - P (197 e Q)
= 214+ AAn) 5
1 1
< m—1 _ pm-1)2 4 = m ||2 m 2 ‘
< saaoan T P +5 (lQmP +cxat [wm|?),  (3.16)

where in the last step we have used the inequality || Q™ ||< C || W™ ||. Choosing A
sufficiently small, we obtain the desired estimate (3.14). Now, to complete the proof, we
employ an induction argument. Since U° — U? = 0 and P° — P? = 0, we assume that

| Pt — P2 +apAt [|U™ — U™ P< M(AL)®. (3.17)
Here, the constant M is assumed to be the same constant as in the estimate
U = U H]P< M(A)? (3.18)

established by Chen and Lazarov in [7].
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Substituting (3.14) into (3.13), we obtain

| P7 = PP +agAt [T — U7 P

—yd/VAL
< A (1+5+%(1+%)) | Pt — Pt (3.19)

- (i) S B

First we set AL CeL A J
e=5 1= — (1+?), L:\/—A_t

and then, choose L sufficiently large so that

I+e+ Z—l 1

T)\Ato <l—¢g, and L>Cj logm for some Cj.

Now, from (3.19) and for sufficiently small ¢, we get
1™ = P |? +apAt U™ - U |)*
< aAt|Ur-UTT?
At

9
_|_(1 _ 61) (“Pml o P:rzfl ||2 _|_1 1 - ||Um—1 . U;n—l ||2>
1

IN

st U U
+(1 =) (1P = PP oot U - UTTH?)

Now, using the induction assumption (3.17) and (3.18), we obtain
[ P™ = P[|* +ooAt [U™ — U |[*< M(At)?,

which completes the proof of Theorem 1..

4. REMARKS AND CONCLUSIONS

The theory developed in this paper can be applied also to Crank-Nicolson mixed finite
element approximations of parabolic problems. In this case the decay property of the
mixed method will be the same. However, we need a theory for the error estimate of the
global method. To our knowledge the theory of the mixed finite element methods has
not covered this interesting case. Nevertheless, the necessary estimates should be derived
using the technique developed by Thomee [21], Johnson and Thomee [13], and Chen and
Lazarov [7].

Acknowledgment

This research has been partially supported by the PICS project on Groundwater
modeling funded by DOE contract, DE-FG05-92ER25143.

The authors are in debt to Professor Junping Wang for useful discussions and for
clarifying the assumption concerning the super-approximation property of the mixed
finite element spaces.



Domain Splitting Algorithm for Parabolic Problems 13

References

[1] R. Bank, PLTMG: A Software Package for Solving Elliptic Partial Differential Equa-
tions, Users’ Guide 7.0, STAM, Frontiers in Applied Mathematics, v. 15, 1994.

(2] H. Blum, S. Lisky, R. Rannacher, A domain splitting algorithm for parabolic prob-
lems, Computing, 49, 11-23 (1992).

(3] F. Brezzi, J. Douglas, and L.D. Marini, Two families of mixed finite elements for
second order elliptic problems, Numer. Math., 47, 217 — 235, (1985).

[4] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer-
Verlag, New York Berlin Heidelberg, 1991.

[5] X.C. Cai, Additive Schwarz algorithm for parabolic convection-diffusion equations,
Numer. Math., 60, 41 - 61 (1991).

(6] H. Chen, R. Ewing, and R. Lazarov, Superconvergence of mixed finite element meth-
ods for parabolic problems with nonsmooth initial data, Technical Report ISC-94-
08-MATH, Institute for Scientific Computation, Texas A&M University, 1994.

[7] H. Chen and R. Lazarov, Error analysis of fully discrete mixed finite element ap-
proximations to parabolic problems, Technical Report [SC-95-06-MATH, Institute
for Scientific Computation, Texas A&M University, 1995.

[8] P. Q. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland,
Amsterdam, 1978

9] C. N. Dawson, Q. Du, and T. F. Dupont, A finite difference domain decomposition
algorithm for numerical solution of the heat equation, Math. Comp., 57, 63-71 (1991)

[10] C. N. Dawson, T. F. Dupont, Explicit/implicit, conservative, Galerkin domain de-
composition procedures for parabolic problems, Math. Comp., 58, 21-34 (1992).

[11] M. Dryja and O. Widlund, Schwarz methods of Neumann-Neumann type for three-
dimensional elliptic finite element problems, Communications on Pure and Applied
Mathematics, XLVIII, 1 — 35 (1995).

[12] T. Dupont, R. Scott, Polynomial approximation of functions in Sobolev spaces,
Math. Comp., 34, 441-463 (1980).

[13] C. Johnson, V. Thomee, Error estimates for some mixed finite element methods for
parabolic type problems, RAIRO Anal. Numer., 15, 41-78 (1982).

[14] Yu. A. Kuznetsov, New Algorithm for approximate realization of implicit difference
scheme, Sov. J. Numer. Anal. Math. modeling, v.3, 95-114 (1988).

[15] Yu. A. Kuznetsov, Domain decomposition methods for unsteady convection-diffusion
problems, Proc. of the 9rd Int. Conf. on Computing Methods in Appl. Sci. Eng., 1990,
R. Glowinski and R. Lichnewsky Eds, STAM Philadephia, 211-227.



14

[16]

[17]

[18]

[19]

[20]

[21]

22]

H. Chen and R. Lazarov

Yu. A. Kuznetsov, Overlapping domain decomposition methods for finite element
problems with elliptic singular perturbed operators, In: Proc. 4th Int. Symposium
on Domain Decomposition Methods for Partial Differential Equations, R. Glowinski,
et al., Eds., SIAM, Philadelphia, 1991, 223 - 241.

R. Rannacher, G. Zhou, Analysis of a domain-splitting method for nonstationary
convection-diffusion problems, East-West J. Numer. Math., v.2, 151-172 (1994).

P. A. Raviart, J. M. Thomas, A mixed finite element method for second order elliptic
problems, Mathematical Aspect of the Finite Element Method. Lecture Notes Math.,
606, 292-315 (1977).

A. H. Schatz and L. B. Wahlbin, On finite element method for singularly perturbed
reaction-diffusion problems in two and one dimensions, Math. Comp., 40, 47-89
(1983).

R. Scott, L*°-error estimates for finite element method on irregular domains, Math.
Comp., 30, 681-697 (1977).

V. Thomee, Galerkin finite element methods for parabolic problems, Lecture Notes
in Mathematics, 1054, Springer-Verlag, 1984.

J. Wang, Asymptotic expansion and L*-error estimates for mixed finite element
methods for second order elliptic problems, Numer. Math., 55, 401-430 (1989).



