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�� Introduction

Flow of underground water has been studied by hydrologists and soil scientists in
connection with applications to both civil and agricultural engineering� The reservoir
modeling of multi�phase and multicomponent �ows has been used in the petroleum
industry for production and recovery of hydrocarbon� Transport of radionuclides into
the aquifer has been studied by nuclear engineers in connection to possible leaks from
tanks with radioactive materials� Finally� various problems of �ows in porous media
are related to the design and evaluation of remediation technologies and water quality
control�
In the last several decades hydrology and petroleum engineers have become in�

creasingly involved in modeling and computer simulation of �ows and transport in
underground reservoirs� These e�orts have led to development of a wide range of
mathematical models for saturated single phase �ow� saturated�unsaturated two�
phase �ow and multi�phase� multicomponent �ow and transport� In general� these
are systems of nonlinear partial di�erential equations of convection�di�usion�reaction
type� The formulation of the di�erential model is usually based on the mass conser�
vation principle enhanced with constitutive relations such as the Darcy�s and Henry�s
laws�
In many practical situations the system of equations can be simpli�ed substan�

tially� For example� incompressible �uid �ow in fully saturated reservoir is adequately
described by a single elliptic equation for the pressure and transport equation�s	 for
the concentration�s	 of the pollutant�s	� This model has been successfully used in
underground hydrology in the past century�
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Driven by the needs for design of technologies for production and recovery of oil
and gas the petroleum industry has developed and implemented a variety of compo�
sitional models of multi�phase multicomponent �ows �see� e�g� 
��� 
��	� In environ�
mental protection considerations the problems are similar to those of the petroleum
industry� but di�er in many respects� Here the pressures are much lower� the va�
riety of species is much larger� the topography of the reservoir plays an important
role� and the needed accuracy is often very high �especially for the concentration of
the pollutants	� This requires adequate modeling and accurate numerical techniques�
An example of such complex phenomenon is the transport of radionuclides in multi�
phase groundwater �ow in combination with sorption� desorption and radioactive
decay 
���
���
In this paper we present a variety of models in groundwater hydrology that have

been used in computer simulation for design of remediation and clean�up technolo�
gies� We also discuss the important question of the choice of the approximation
method for the corresponding mathematical problem� In �uid reservoirs �aquifer and
petroleum reservoirs	 there are two imperative practical requirements� the method
should conserve the mass locally and should produce accurate velocities ��uxes	 even
for highly nonhomogeneous media with large jumps in the physical properties� This
is the reason that the �nite volume method with harmonic averaging of the coe��
cients has been very popular and successful in computer simulation of �ows in porous
media� However� when the problem requires accurate description of the topography
and the hydrological structure� a more general technique based on the �nite element
approximation is needed� The mixed �nite element method has these properties�
Since its introduction by Raviart and Thomas 
�� and its implementation by Ewing
and Wheeler 
��� for �ow problems� it has become a standard way of deriving high�
order conservative approximations� It should be noted that the lowest�order mixed
method realized on rectangles �or parallelepipeds	 with certain numerical integration
produces cell�centered �nite di�erences with harmonic averaging�
In Section � we describe brie�y the mixed �nite element method for the linearized

pressure equation using Raviart�Thomas �nite elements� This will lead to a symmet�
ric but inde�nite system for the unknown pressure and velocity ��ux	� Next� we
discuss brie�y the algorithms involved in the solution of this saddle point type prob�
lem and introduce a variant of the classical Uzawa method� This variant was studied
recently in 
��� 
��� and tested on a variety of saddle point problems �see 
���	�
Finally� in the last section we discuss the results of numerical simulation of trans�

port of a dense contaminant in a homogeneous water reservoir with a complex three�
dimensional reservoir topography�

�� Fluid Flow and Transport Models

In order to establish our notation and terminology we shall use the �naive� ap�
proach of mixtures 
��� A mixture is a collection of overlapping continua called
constituents� In �ow in porous media we shall distinguish two types of mixtures� in
one� the segregation among the di�erent constituents occurs at a molecular scale but
not at the microscopic scale �the later� characterized by the typical length of the pore
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diameter	� We shall call such mixtures multi�species or multi�component media� Salt
water is a good example� In the second type of mixture� segregation among the con�
stituents occurs at the microscopic level� where the constituents behave as continua�
but their small scale motions are inaccessible to direct measurement� These are called
multi�phase media� As an example� consider sand with water and air inside� This we
call an unsaturated �ow regime�
Our goal is to formulate a selection of models that describe accurately various soil

processes including coupled water and air phase �ows and contaminant transport in
both phases� We shall assume that there are two phases water �liquid	 and gas� The
solid phase is immobile and consolidated �i�e� does not move	 and therefore is left
out of our considerations� The gas and liquid phases are assumed to be mobile� but
immiscible� and the temperature is assumed to be constant�
We assume that the porous media is represented by a polyhedral domain � in the

three dimensional Euclidean space� For time dependent problems the initial moment
is t � ��
The simplest and the most popular model is that of fully a saturated� incompress�

ible porous media� In this case the water �or the liquid	 phase occupies the whole
pore space and the �ow is due to the nonuniform pressure distribution� The mathe�
matical formulation is based on the mass balance equation and Darcy�s law �see� e�g�

�� 
���	�

r � ��u	 � F�

u � �
K

�
�rp� �g	�

in �� ���	

where u is the volumetric �ux of water� F is a source or sink of �uid� � is the �uid
density� K is the absolute permeability tensor� � is the dynamic �uid viscosity� p is
the �uid pressure� and g is acceleration vector due to gravity�
Darcy�s law provides a relation between the volumetric �ux in the mass con�

servation equation and the pressure in the �uid� This relation is valid for viscous
dominated �ows that occur at relatively low velocities�
The transport of a contaminant that is dissolved in the water is described by the

following equation�

���c	

�t
�r � �uc	�r � ��Drc	 � ��c � G�c	� in �� t � ��

��	

Here c is the concentration of the contaminant� D is the dispersion tensor� � is the
reaction rate� � � ��� � is the porosity� and G is the source�sink term�
These two equations supplied with appropriate boundary and initial conditions�

represent the simplest model of single phase �ow and transport in porous media�
An important aspect of the groundwater �ow and transport models is the adoption

of adequate well models� The wells often play an essential role in simulating the
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groundwater �ow and for this reason their nature as generators of certain types of
�ow behavior must be understood very well� A widespread consensus is that the most
common type of extraction�injection well used in �eld applications is one consisting of
a screened subsurface region from which �uid is being extracted or injected at a known
pump rate� Since the inside of the screened region does not contain porous media�
the �ow there is determined by the Navier�Stokes equations� A good formulation
of the �ow model requires coupling Navier�Stokes �ow to the Darcy �ow outside�
However� such a coupling is a very challenging mathematical problem and for this
reason various simpler models have been proposed� Perhaps the simplest way of
simulating a partially �or fully	 penetrating well is to treat the well surface �well as
an additional boundary where the prescribed pumping rate is distributed in some
fashion� One problem� though� is that in general the correct �ux distribution is not
known� If the �ux is assumed to be distributed uniformly� then one can consider this
to be a �constant �ux� well model� Another popular assumption is that the hydraulic
pressure head along the well is constant but unknown� This is often referred to as a
�constant head� well model� Mathematically� these models can be given by

Z
�well

u � 	 � q� and p� �gz � Const� ���	

where z is the vertical spatial direction pointing downward� 	 is the outward normal
vector to the well surface� and g is the acceleration constant due to gravity� The
constant head model results in variable extraction rates on the well surface�
Alternatively� much more complex well models based on resolving �ow in the

interior of the well with some simple di�erential model with corresponding restrictive
assumption for �ow inside are also possible� e�g� �bottom hole pressure� model�
This model has been very popular in the petroleum industry� In principle� such an
approach leads to signi�cant numerical di�culties�

�� Unsaturated Porous Media� Richards Equation

The �ow in a system of water and air phases can naturally be described in terms
of conservation laws applied to each �uid phase combined with Darcy�s law and other
empirical material�dependent constitutive relationships� In the unsaturated zone the
latter are the capillary pressure and relative permeability as functions of saturation�
The following equations for an air�water system are used in the groundwater hydrol�
ogy 
��� 
�� 
���� 
����

�����S�	

�t
�r � ���u�	 � F��

u� � �
Kkr�
��

�rp� � ��g	�


 � a� w� ����	

where S� is the saturation� �� is the density� ��p	 is the porosity� u� is the volumetric
�ux of phase 
� and F� is the source term� The index 
 refers to the air �a	 and water
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�w	 phase� respectively� The �rst equations represent mass conservation of phase 

and the second equation is Darcy�s law �established experimentally	�
Within the groundwater literature� the pressure normally is scaled by the gravity

potential function� Equation ����	 would then be given in terms of the pressure head�
This is especially useful when the process allows the elimination of the air�phase
equation by the assumption that the air�phase remains essentially at atmospheric
pressure� This assumption does not imply that the air phase is stagnant but rather
just the opposite� it has a very high mobility 
��� In this case the air�phase mass
balance equation is eliminated and the remaining water�phase equation is used to
describe the movement of water in the reservoir� This is the well known Richards
model �see� e�g� 
�� 
���	�

�w�
��

�t
� Ss

�

�

�p

�t
	 � �

��

�c

�c

�t
�r � ��wuw	 � Fw

uw � �
Kkrw
�
�rp� �wg	

in �� t � ��
���	

Here Ss is the speci�c storativity� � � �wSw is the moisture content with Sw the
water saturation� and � is the porosity of the media� This is a nonlinear equation for
the unknown pressure since the moisture content � and the relative permeability krw
depend on the pressure p� The constitutive relationships � � ��p	 and krw � krw�p	
are established experimentally and then �tted by some functional form �see� e�g� van
Genuchten� 
��	� The popularity of the van Genuchten �ts comes from the fact that
they produce smooth functions that are easy to handle numerically� For example�
one of the most commonly used functions to model the dependence � � ��p	 is given
by

��p	 �
�s � �r


� � ��jHj	n�����n
� �r� ����	

Here H � p����g	� �� is a reference density and �s� �r� � and n are �tting parameters�
Similarly� the function krw � krw�p	 can be given by

kr�p	 � R

�� ��H	n���� � ��jHj	n	�m�

�


� � ��jHj	n�m��
� ����	

where R is a �tting parameter and m � �� ��n� H � p����g	� �� and n are the van
Genuchten �tting parameters used to characterize � � ��p	�
In addition� functional forms � � ��c	 and � � ��p� c	 may be speci�ed� Here c is

the concentration of the most dominant contaminant or some e�ective concentration
obtained by averaging the concentrations of all components�
Equations ���	�����	 and ��	 now form the system describing the �ow and

transport processes in underground reservoirs� Further assumptions of constant water
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density and negligible porosity changes lead to simpler forms of equation ���	 �see�
e�g�� 
���	�

�� Multi�phase� Multi�component Flow and Transport

There are important practical cases when the Richards equation is insu�cient to
describe adequately the �ow and transport processes� Example are vapor extraction
systems or soil venting in which there is substantial dynamic interaction between
the two phases and the contaminant can be transported both in the air and water
phases �see� e�g�� 
��� 
��	� Another example where the air phase has to be solved
explicitly is the presence of injection wells which pump �uid into the porous media at
high pressure� In such situations the coupled nonlinear system ����	 for the air�water
complex has to be solved�
Next� we present the two�phase �uid �ow and contaminant transport model using

the well known fractional �ow formulation coupled with a transport equation 
�� 
���

���� This approach results in a mathematical problem which is well behaved when
solved numerically� The fractional �ow formulation involves a global pressure p and
total velocity u� This provides a two�phase water �w	 and air �a	 �ow model which
is described by the following equations 
���� 
����

C�p� Sw	
�p

�t
�r � u � f�p� Sw	�

u � �K�rp�G�	�

in �� t � �� ����	

����wSw	

�t
�r � �w�fwu�Kafw��g �D�Sw	 � rSw	 � Fw� in �� t � ��

���	

The global pressure and total velocity are de�ned by 
���� 
����

p �
�


�pw � pa	 �

�



Z Sw

Sc

a � w


dpc
d�

d� and u � uw � ua� ����	

Here

C�p� Sw	 �
�Sw
�a

d�a
dt

� ����	

f�p� Sw	 � �Fa � ua � r�a � �Sa
��a
�t
	��a � �Fw � uw � r�w � �Sw

��w
�t
	��w�

����	

 � w � a is the total mobility� and � �
kr�
��
� 
 � w� a� is the mobility for water

and air� where kr� is the relative permeability� The capillary pressure pc is given by
pc � pa� pw� The gravity forces G� and capillary di�usion term D�S	 are expressed
as

G� �
w�w � a�a


g and D�S	 � �Kafw

dpc
dS

�
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The phase velocities for water and air� which are needed in transport calculations�
are given by�

uw � fwu�Kafwrpc �Kafw��g�

ua � fau�Kwfarpc �Kwfa��g�
����	

where f� � ��� 
 � w� a� and �� � �a � �w� To complete the model� we assume
constitutive relations between capillary pressure and saturation and also between
relative permeabilities and saturation� i�e�

pc � pc�Sw	 and kr� � kr��Sw	�

Notice� that the phase velocity for air is given by ����	 even if the Richards approxi�
mation is used�
In conjunction with the above �ow model we consider transport equations based

on a kinetic phase transfer� The rate of contaminant transfer from one phase to
the other is determined by the degree of disequilibrium� a kinetic phase transfer
coe�cient and the water content� Then the transport of contaminant is described by
the following equations 
��� 
���

���wcw	

�t
�r � �uwcw	�r � ��wDwrcw	 � �w�wcw � Gw� in �� t � ��

���aca	

�t
�r � �uaca	�r � ��aDarca	 � �a�aca � Ga� in �� t � ��

����	

Here c� is the concentration of the pollutant in phase 
� �� � �S�� D� is the dis�
persion tensor for phase 
� �� is the reaction rate for phase 
� u� is the volumetric
�ux of phase 
� and G� is the source�sink term� 
 � a� w� Similarly to the Richards
model� constitutive relations � � ��c	 and � � ��p� c	 may be speci�ed here�
In the case of radionuclide transport� cw and ca are vectors of the concentrations of

various radionuclides in the water and air phases� respectively� Then one should add
a set of ordinary di�erential equations to the above model that describes the change
of the corresponding concentrations in the rock as a consequence of the processes of
sorption and desorption �see� e�g� 
��	�
The boundary conditions are an important element of the above model� Standard

types of boundary conditions� namely Dirichlet� Neumann and Robin� are assumed
for the transport equations ����	� The pressure�saturation formulation of the �ow
model ����	����	 deserves special attention�
Let the boundary � of � be partitioned into non�overlapping parts �i� i � �� � ��

Then boundary conditions for ����	 can be given by a combination of the following
expressions�

p � p��x� t	� x � ��� t � �� ����	

u � 	 � b�x� t� Sw	p � G��x� t� Sw	� x � ��� t � �� ����	
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uw � 	 � bw�x� t� Sw	p � Gw�x� t� Sw	� x � ��� t � �� �����	

where 	 is the outward normal vector to the corresponding boundary part and p��x� t	�
b�x� t� Sw	� G��x� t� Sw	� bw�x� t� Sw	� and Gw�x� t� Sw	 are given functions�
We note that incorporating di�erent well models may result in additional bound�

ary conditions for this system of equations� For example� the constant head well
model ���	 normally results in a boundary condition of the formZ

�well

u � 	 � q�t	� and p� �gz � Const�t	� on �well� t � ��

where �well is the well surface and Const�t	 is the unknown value that actually may
change in time�
A corresponding set of boundary condition for the saturation equation must be

speci�ed� From a physical point of view� a Dirichlet condition for the saturation
imposed on the boundary � makes very good sense� Of course� boundary conditions
of the form ����	������	 make a perfect mathematical sense here but their physical
meaning is not necessarily well de�ned�
Since the total pressure and velocity are not physical quantities� boundary con�

ditions involving only these variables may not be available for many applications�
Most commonly� the boundary conditions for the two phase system involve variables
that are nonlinear functions of the boundary values of the physical quantities in the
original two�pressure formulation 
��� e�g� uw in equation �����	� This means that we
have to iterate on the boundary conditions as a part of the solution process�

�� Discretization Technique

Three main factors have played an important role in selecting our discretization
strategy� �a	 the mass conservation expressed by the di�erential equations� �b	 the
geometry of the domain� �c	 nonlinearities in the model and their linearization� There
are nonlinearities on multiple levels in the coupled �ow and transport model ����	�
����	� within each of the equations� between the pressure and saturation equations�
and between the pressure and transport equations� One way of solving this system
is to �rst linearize each equation by lagging in time the setup of the coe�cients in
order to get an initial guess� After that a Picard or Newton iteration can be applied
in order to resolve the non�linearities� Such an approach is used successfully in 
�� in
the case of unsaturated �ows� Other approaches to linearization are discussed in 
���
and 
����
The mathematical nature of the transport ����	� saturation ���	 and pressure

����	 equations is di�erent and speci�c methods for their approximation should be
considered� Typically� the transport and the saturation equations are convection
dominated and thus special care should be taken in their discretization� Also� the
di�usion terms there are small but important and cannot be neglected� On the other
hand� the pressure equation has a strong elliptic part and this fact should in�uence
the choice of the discretization method�
Based on these observations� we have used two types of �nite element approxima�

tions� the standard conforming Galerkin method and the mixed method� Advantages
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of the former are its simplicity� smaller number of unknowns� allowance for isopara�
metric techniques for arbitrary shaped domains� and availability of a vast variety of
e�cient methods for solving the resulting system of linear equations� These features
are particularly important for three�dimensional problems� Combined with upstream
weighting� Godunov type approximations or Riemann solvers such discretizations can
be used for the transport and the saturation equations �for a combination with the
mixed method� see� e�g� 
���	� An enhanced performance results from the use of log�
ically rectangular grids� This is the approximation method we use for the saturation
and transport equations�
Among the disadvantages of the conforming discretizations are the lack of local

mass conservation of the numerical model and some di�culties in computing the
phase velocities needed in the transport and saturation equations� The straightfor�
ward numerical di�erentiation is far from being justi�able in problems formulated
in highly heterogeneous medium with complex geometry� On the other hand� the
mixed �nite element method 
�� o�ers an attractive alternative� In fact� this method
conserves mass cell by cell and produces a direct approximation of the two variables
of interest � pressure and velocity� Below we explain brie�y the mixed �nite element
method for the pressure equation�
To describe the mixed method we introduce two Hilbert spaces� Let

W � L���	� V �
n
� � L���	�� r �� � L���	

o
�

and let the space V be equipped with the norm k� kV � �k� k
� � k r � � k�	����

The inner product and the norm in L���	 are denoted by ��� �	 and k�k� respectively�
For the sake of simplicity� ��� �	 and k�k are also used as the inner product and norm�
respectively� in the product space L���	��
The pressure equation ����	 is written in the following mixed weak form� �nd

�p�u	 � W � V such that

�Au��	� �p�r ��	 � �G���	� � � � V � t � ��

�C�p� Sw	pt� �	 � �r � u� �	 � �f�p� Sw	� �	� � � � W� t � ��

p��	 � L���	 is the given initial pressure�

����	

Here pt � �p��t and A � �K	��� We note that A is always symmetric and positive
de�nite which leads to a well de�ned problem� This is in contrast to ����	 where the
relative permeability kr� vanishes when the phase 
 is absent in some subregion of ��
We note that if there were nonhomogeneous boundary conditions on �� they should
be added to the right hand side �f�p� Sw	� �	� Corresponding changes in the bilinear
forms in the left hand side should be introduced in the case of Robin boundary
conditions� Obviously� ����	 forms a nonlinear problem� To solve it one can use
Picard linearization �see� e�g�� 
���	 or any other feasible approach�
We triangulate the domain � in tetrahedra with characteristic diameter h� Next

we introduce the �nite element spaces Wh � W and V h � V of piece�wise polynomi�
als with respect to the triangulation and time discretization tn � n t� n � �� �� �����
The mixed �nite element approximation �P n�Un	 � Wh � V h of �p�tn	�u�tn		 �
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W � V is the solution of the following problem�

�AnUn��h	� �r ��h� P
n	 � �Gn

���h	� � �h � V h�
�

 t
�Cn�P n � P n��	� �h	 � �r �Un� �h	 � �f

n� �h	� � �h � Wh�

P � � Wh is expressed through given initial data�
���	

This is an implicit in time Euler approximation of nonlinear problem ����	 which
can be solved by Picard or Newton iterations� Obviously� one can formulate easily
the Crank�Nicolson scheme�
To ensure the existence and optimal convergence of the solution of the linearized

version of the above formulation� we assume that

r � V h � Wh

and there exists a linear operator IIh� V � V h such that

r � IIh � Qhr � � ����	

Here� the operator Qh � W �Wh is the L
��projection� i�e��

�� �Qh�� �h	 � �� � � � W��h � Wh�

The identity ����	 guarantees that the classical inf�sup condition is satis�ed� Exam�
ples of spaces of piece�wise polynomials that satisfy the conditions stated above are
the triangular and rectangular Raviart�Thomas elements from 
�� and the tertahe�
dral elements of Nedelec 
� �for other examples see 
��	� Our implementation is
based on partition of the domain on tetrahedra and using the lowest�order Raviart�
Thomas elements that involve piece�wise constant pressure �see� e�g� 
��	�
The resulting system of linear equations has the form of a saddle point problem

de�ned on a pair of �nite�dimensional spaces Wh and V h��
B� A BT

B �D

�
CA
�
B� Un

P n

�
CA �

�
B� F

G

�
CA � ����	

where F � V h and G � Wh are given and P n � Wh and U
n � V h represent the

unknown approximate solution on the time level tn� Here A � V h �� V h is a linear�
symmetric� and positive de�nite operator� In addition� the linear mapBT �Wh �� V h

is the adjoint of B � V h �� Wh� D � Wh �� Wh is either
�

�t
M with M similar to

the mass matrix in Wh for time dependent problems or 	� for steady state problems�
The existence and uniqueness of a solution is guaranteed by the fact that the pair of
spaces �Wh�V h	 satis�es the inf�sup condition of Babuska�Brezzi 
���
This is an inde�nite system with a large number of unknowns� Such a type of

system is more di�cult to solve compared with the de�nite systems� However� the
popularity of mixed methods has increased considerably as a consequence of the
progress made in the recent years in developing e�cient methods for solving these
equations �see� e�g� 
��� 
��� 
��� 
��	�
The saturation equation has more hyperbolic nature and should be treated with

related techniques �see� e�g� 
��	� It exhibits features of a hyperbolic conservation law
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and techniques based on the method of characteristics� Rieman solvers and�or other
Godunov type approximations are widely used in its solution� For a survey of various
methods and discussion concerning their construction� analysis� and performance
related to petroleum applications we refer to 
��� In groundwater applications these
equations have been e�ectively resolved using the modi�ed method of characteristics
�MMOC	 
���� 
��� or the related ELLAM method 
��� 
��� These methods can be
viewed as special time�stepping procedures that can be combined with any spatial
discretization�
MMOC gives rise to a symmetric discrete model which can be e�ectively solved

by iterative methods� However� this method requires accurate approximation of the
velocity in order to accurately follow the characteristics� For this reason combinations
of MMOC with mixed discretizations often lead to better numerical models�


� Iterative Methods

Because of signi�cant progress made in developing iterative techniques for systems
coming from Galerkin discretizations� we shall not concentrate on this issue� We only
mention that domain decomposition preconditioners are particularly useful when the
models are implemented on distributed parallel computers 
���
The inde�nite systems resulting from mixed �nite elements are much more di��

cult to solve iteratively� In general� the properties of the discrete operators involved
in the de�nition of the system must be understood well in order to design an e�cient
iterative solution scheme� For example� Raviart�Thomas pairs of �nite dimensional
spaces produces a well conditined operator A� whereas the Schur complement op�
erator D � BA��BT exhibits a condition number growth like h��� where h is the
discretization parameter� It is well known that in our setting BA��BT behaves like
a discretization of a second order elliptic operator�
A standard approach used in 
��� to solve ����	 is to perform Gaussian block

elimination and obtain the reduced system

�D�BA��BT 	P n � BA��F �G� ����	

The classical Uzawa algorithm is a linear iteration for solving ����	� Alternatively�
one can apply preconditioned conjugate gradient to ����	� A disadvantage of these
approaches is that they require the action of A�� which reduces substantially the
e�ciency� The inexact Uzawa algorithm which avoids the evaluation ofA�� is de�ned
by

Algorithm 
Inexact Uzawa� For Un
� � Vh and P n

� � Wh given� the sequence
f�Un

i � P
n
i 	g is de�ned� for i � �� � � � � � by

Un
i�� � U

n
i �Q��A

�
F �

�
AUn

i �BTP n
i

��
�

P n
i�� � P n

i �Q��B �BU
n
i�� �DP n

i �G	�
���	

Here QA is a symmetric and positive de�nite preconditioner for A and is easy
to invert� Similarly� QB is a preconditioner for D � BA��BT � Recent convergence
results for the inexact the Uzawa algorithm 
�� show that under the assumption of
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appropriately scaled preconditioners QA and QB this method is guaranteed to con�
verge� It is worth mentioning that there are e�cient preconditioners that are scaled
appropriately by default� For example� multigrid is automatically scaled properly
according to the theory of the inexact Uzawa algorithms whereas a scaling constant
must be computed for the incomplete Cholesky factorization�
The conjugate residual method applied to ����	 is another approach to the so�

lution of this problem� The two level iteration implementation considered in 
��
suggests that due to the nonlinearity of the outer iteration the accuracy of the in�
ner solve should be increased considerably for stability� This� however� increases the
computational cost of the algorithm�
The positive de�nite reformulation of ����	 suggested in 
�� is a good method

for solving the inde�nite problem� This approach utilizes preconditioners for A and
D�BA��BT and results in a positive de�nite system which can be solved e�ciently
by conjugate gradient� However� the preconditioner for A must be properly scaled�
This scaling factor is either known a priori or can be obtained by employing compu�
tationally cheap procedures for estimating the largest eigenvalue� such as the power
method� In general� the linear iteration corresponding to the inexact Uzawa methods
converges slower than the conjugate gradient method just described� However� recent
numerical investigations by Elman 
��� show that the inexact Uzawa algorithm is very
competitive computationally� In addition� this method may be advantageous when
implemented on distributed memory parallel computers since inner products are not
required�
The hybrid mixed formulation 
�� provides yet another way for computing the

solution to ����	� The idea behind this method is to impose continuity of the normal
components of the velocity at the inter�element interfaces by Lagrange multipliers�
From a computational point of view� the main bene�t in this formulation is in the
fact that the resulting system of linear equation can be reduced to a system for
the multipliers which is symmetric and positive de�nite� The condition number of
the latter system is like O�h��	 and should be preconditioned� Using equivalence
arguments� a domain decomposition preconditioner for this problem is constructed
in 
���
As we mentioned earlier� adopting wells in the groundwater �ow model leads to

certain numerical di�culties that have to addressed� For example� when the simple
well model ���	 is considered� the existing groundwater literature suggests an iter�
ative technique for solving the resulting system of equations based on a a sequence
of re�ned guesses to the unknown constant until the pump rate is achieved� This is
a very ine�cient way to solve this problem� A much better method can be imple�
mented by imposing the condition of constant �but unknown	 pressure directly into
the �nite element space� Often it is convenient to introduce Lagrange multipliers in
order to solve for the unknown �ux distribution on the well surface� We note that
this approach leads to saddle point problem even in the case when a hybrid mixed
formulation is adopted as a method for solving the original inde�nite problem� In
cases where the number of wells is relatively large �say� more than �ve	� forming
the corresponding Schur complement is a very ine�cient approach� Thus� iterative
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techniques for saddle point problems are useful in such situations� In particular� the
inexact Uzawa algorithm ���	 could be very attractive for solving such problems�

�� Numerical Simulations

In this section we present some of our experience in developing computer simu�
lators based on the models described above� Clearly� most interesting and di�cult
are three dimensional transient problems and we shall discuss some issues related to
such problems�
The approach we have taken in de�ning the triangulation of the computational

domain is based on introducing �rst an underlying logically rectangular grid� Such
grid o�ers perhaps the most economical way to maintain a simple data structure
and to build �nite element approximations with minimal number of unknowns� It
essentially simpli�es many coding issues and yet allows complex geometries to be
handled� In fact� our computational grid can be as complex as any reasonable union
of logically rectangular structures including toroidal or L�shaped domains�
The basic logically rectangular grid is used for the Galerkin �nite element method�

Further� to de�ne the mixed method each grid cell is split into �ve tetrahedra� When
the lowest�order Raviart�Thomas spaces are used� one pressure and four velocity un�
knowns are attached to every tetrahedron in the grid� It is clear that the numerical
solution of such models requires extensive memory and CPU resources� In our opin�
ion� only supercomputers are capable of solving these numerical model in reasonable
time� We have experimented primarily on distributed memory architectures such as
Intel�s Paragon�
A domain decomposition approach is used in order to utilize these machines�

The original computational domain is decomposed into a set of logically rectangular
structures each of which is attached to a single processor� Then a corresponding
parallel algorithm for solving the problem is applied�
The system for remote procedure calls �IPX	� developed at the Brookhaven Na�

tional Laboratory 
��� has been used for the parallelization of our computer codes�
This system provides the user with the ability to write parallel codes in a style that is
very close the the common serial style of writing numerical codes and for this reason
reduces considerably the complexity of the development software for distributed ar�
chitectures� In addition� the resulting software is independent of the vendor supplied
primitives for parallel processing which is important for the portability� Another in�
teresting feature of IPX is that it can unite the exchange of data and a method of
its processing among the computing nodes which leads to more enhanced software
environment for creating parallel programs�
At the end of the section we give some computational results from a simulation of

groundwater problem� The application is the transport of a very dense contaminant
penetrating into an aquifer� This models the following situation� a chemical waste
has been dumped in a given area on the surface of the aquifer� A selected portion
of the aquifer is shown on Figures � and � In Figure  the lighter spot on the
upper corner of the reservoir represents the area covered by the waste� The rainfall
dissolves the chemical producing a very dense contaminant which moves through the
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unsaturated zone to the saturated zone of homogeneous porous medium� There are no
wells or other features that can change dramatically the pressure in the porous media�
In this combined process the unsaturated�saturated �ow is adequately described by
Richards equation ���	 and the transport of the miscible contaminant is modeled by
Equation ��	� We stress two aspects that play an important role in this process�
First� the bedrock is practically impermeable and has a highly irregular geometry
which is clearly shown on Figures � and � The bedrock elevations were provided
by �eld personnel from seismic measurements� Secondly� the contaminant is very
dense which make the term ���

�c
�c
�t
in Richards equation ���	 act as a strong forcing

term in addition to the existing gravity forces� This produces a velocity that has
dominant vertical �downward	 component� Thus� the contaminant is transported
mostly downward and after reaching the bedrock it follows the bottom shape� This
is clearly seen on Figure � where the isosurface of the concentration level �� ! is
shown�

Figure �� ��D simulation� pressure distribution at the surface�

The computational results show very interesting phenomena of contaminant dis�
tribution with the time progressing� due to the combination of forces driving the
process� the geometry of the domain and the properties of the medium� They are
in good agreement with experimental results obtained by measuring concentrations
in real sites with similar conditions� For example� �eld tests conducted at the site



Computer Simulation of Flow and Transport in Porous Media ��

Figure � ��D simulation� bedrock and contaminant leakage spot�

Figure �� ��D simulation� isosurface of the concentration level ��! after ��� days�

indicated contaminant movement against the groundwater �ow direction� Our simu�
lation was essential in understanding why the pollutant �owed upstream but �down�
the bedrock slope�
The simulation of the �ow and transport problem presented in a domain with

��������� grid cells was performed on a ���processor Intel Paragon� The properties
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Figure �� ��D simulation� isosurface of the concentration level ��! after ��� days�

of the porous medium were speci�ed with respect to this grid� The time step  t was
� days and the simulation period was �� years�
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