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Abstract. We consider multigrid algorithms for the biharmonic problem discretized by conforming C 1

finite elements. Most finite elements for the biharmonic equation are nonnested in the sense that the coarse
finite element space is not a subspace of the space of similar elements defined on a refined mesh. To
define multigrid methods, certain intergrid transfer operators have to be constructed. We construct intergrid
transfer operators that satisfy a certain stable approximation property. The so-called regularity-approximation
assumption is established by using this stable approximation property of the intergrid transfer operator.
Optimal convergence properties of the W-cycle and a uniform condition number estimate for the variable
V-cycle preconditioner are established by applying an abstract result of Bramble, Pasciak and Xu. Our theory
covers the cases when the multilevel triangulations are nonnested and the spaces on different levels are defined
by different finite elements.
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1. Introduction. Multigrid methods are among the most efficient methods for solving

elliptic partial differential equations discretized by the finite element or finite difference

methods; cf. e.g. [5, 13, 10, 4] and the references therein. In this paper, we consider

some multigrid algorithms for the biharmonic equation discretized by conforming C1 finite

elements. Most of the finite elements for the biharmonic problem are nonnested in the

sense that the finite element space defined on a coarse mesh is not a subspace of the finite

element space defined by similar elements on a finer mesh, even when the finer meshes

(triangulations) are obtained from the coarser meshes by a uniform refinement.

Because of this lack of “nestness” of multilevel spaces, certain space connection

operators, which we refer to as intergrid transfer operators, have to be constructed in order

to define multigrid algorithms. In the case in which the multilevel spaces are nested, the

natural inclusion operator from coarse to fine space is used as an intergrid transfer operator.

For the nonnested case, the most natural intergrid operator seems to be the nodal value

interpolation operator, or a simple modification of it when the nodal value interpolant is not

well defined. This happens when certain second order derivatives are part of the degrees of
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freedom of the finite element space. In such a case, we can either drop the terms associated

with the second order derivatives from the interpolation or use a local average for the second

order derivatives.

We will assume some minimum relations between the multilevel triangulations so that

the cost in each iteration depends linearly on the number of mesh points on the finest

triangulation. This, together with the optimal convergence properties of the multigrid

algorithms, guarantees that the overall solution process is optimal. Since the multilevel

finite element spaces are nonnested in general even on nested meshes, we will assume,

throughout this paper, that the triangulations (meshes) are not necessarily nonnested.

We will not assume the multilevel spaces are defined by the same finite elements (the

spaces are nonnested anyway). The coarser spaces are used only in the construction of

the preconditioner and/or in the correction of the residual, therefore, we can use simpler

finite elements on coarser grids to reduce the cost per iteration and to make the algorithm

computational more efficient. There seems to be no reason to use more complicated finite

elements on coarser grids, although our theory does apply to such cases.

There are some earlier papers on multilevel methods for the biharmonic problem.

Peisker [16] studied the W-cycle multigrid methods using a mixed formulation. Peisker

and Braess [17] considered the W-cycle for the Morley element. The W-cycle multigrid for

some C1 elements were studied in S. Zhang [20]. In [6], Brenner studied the W-cycle for

the Morley elements and simplified the algorithm and analysis of [17]. Hanisch [11, 12]

considered the multigrid for mixed formulation as well as Morley element. Oswald [15]

studied some additive multilevel methods for bicubic element. X. Zhang [21] studied

additive multilevel methods and V-cycle multigrid for bicubic elements. All these papers

considered the cases when the multilevel spaces are defined by the same finite element and

none of them discussed nonnested meshes.

This paper is organized as follows. In x2, we briefly describe the multigrid algorithms

and summarize the basic theory of Bramble, Pasciak and Xu [3]. In x3, we define some

intergrid transfer operators and establish a certain stable approximation property of these in-

tergrid transfer operators. Using this stable approximation property of the intergrid transfer

operator together with some standard finite element estimates, we prove the regularity and

approximation assumption in the abstract multigrid theory. We remark that once the stable

approximation properties of the intergrid transfer operators are established, the verification

of the regularity and approximation assumptions follows in a way similar to that in x7 of [3]
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or [19].

Our result is based on the abstract result of Bramble, Pasciak and Xu [3] for the

multigrid methods with nonnested spaces.

2. Abstract theory. Let fVkg be a family of spaces which are subspaces of a common

Hilbert space V with an inner product ��� ��. Denote by k � k the norm induced by ��� ��. Let

a��� �� be an uniformly bounded and coercive bilinear form on V . Consider the following

problem: Find uk � Vk such that

a�uk� �k� � �f� �k�� �k � Vk�

Define Ak : Vk �� Vk by

�Akuk� vk� � a�uk� vk�� �uk� vk � Vk�

Let Rk : Vk �� Vk be a linear smoother and set R�s�k � Rk if s is odd and R�s�
k � Rt

k if s is

even. Here Rt
k is the ��� �� adjoint of Rk. The spaces Vk�1 and Vk are related by “intergrid”

transfer operators Ik : Vk�1 �� Vk. We define Itk : Vk �� Vk�1 and I�k : Vk �� Vk�1 to be

adjoints of Ik with respect to ��� �� and a��� �� respectively. If the spaces fVkg are nested and

Ik is the natural inclusion operator, then Itk and I�k are the projections with respect to ��� ��

and a��� ��. We remark that only Ik and Itk will be used in the multigrid algorithm and I�k

is used only in the theoretical analysis.

The multigrid operator Bk : Vk �� Vk is defined by induction as follows.

ALGORITHM 2.1. Set B0 � A�1
0 . Define Bkg � y2mk in terms of Bk�1 as follows:

(1) Set x0 � 0 and q0 � 0 and define

xs � xs�1 �R
�s�mk�
k �g � Akx

s�1�� s � 1� � � � �mk�

(2) Define ymk � xmk � Ikqp, where qi for i � 1� � � � � p is defined by

qi � qi�1 �Bk�1�I
t
k�g �Akx

mk�� Ak�1q
i�1��

(3) Define ys for s � mk � 1� � � � � 2mk by

ys � ys�1 �R
�s�mk�
k �g �Aky

s�1��

Here mk is the number of smoothing iterations on level k. The cases p � 1 and p � 2

correspond respectively to the V- and the W-cycle.
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We now summarize the theory of multigrid methods with nonnested spaces [3].

Let �k � �max�Ak� be the maximum eigenvalue of Ak. The first assumption relates

the regularity of the continuous problem and the approximation properties of the intergrid

transfer operator.

A.1 (REGULARITY/APPROXIMATION ASSUMPTION): There exists 0 � � � 1 such that

a��I � IkI
�
k�u� u� � C2

�

�
kAkuk2

�k

��
�Aku� u�

1��� �u � Vk�

Let Kk � I � RkAk; and K�
k � I � Rt

kAk, the adjoint of Kk with respect to a��� ��.

Let �Rk � �I �K�
kKk�A

�1
k � Rt

k �Rk �Rt
kAkRk. The following assumptions regard the

properties of the smoother and the number of smoothing in each space.

A.2.1 (SMOOTHER ASSUMPTION):

C��1
k �u� u� � � �Rku� u�� �u � Vk�

A.2.2 (SMOOTHER ASSUMPTION): There exist 1 � �0 � �1 such that the smoothings

for variable V-cycle satisfy

�0mk � mk�1 � �1mk�

Let �k or � be the contraction number for the multigrid algorithm,

ja��I �BkAk�u� u�j � �ka�u� u��

THEOREM 2.1 (W(m�m)-CYCLE). Assume A.1 and A.2.1 hold. Then there exists M �

0, independent of k such that for m large enough, but independent of k

� �
M

M �m�
�

THEOREM 2.2 (VARIABLE V-CYCLE). Assume A.1, A.2.1 and A.2.2 hold. Then there

exist 	0� 	1 � 0, independent of k, such that

	0a�u� u� � a�BkAku� u� � 	1a�u� u��

Remark: Notice that there is no requirement on the number of smoothing steps on

the finest level for the variable V-cycle multigrid preconditioner. This is in contrast with

the requirement of sufficiently many smoothing steps for the W-cycle multigrid method.

Hence, when both algorithms may be applied, the variable V-cycle is more robust.
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3. Multigrid methods for biharmonic finite element problems. Consider the weak

formulation of the biharmonic Dirichlet problem: Find u � H2
0 ��� such that

a�u� v� � �f� v�� �v � H2
0 ����(1)

where, ��� �� denotes the usual L2 inner product and a�u� v� � �u� v�H2 � ��u��v�.

In this paper, we consider conforming C1 finite elements approximations to (1). Some

examples of the C1 elements are the Argyris and Bell elements, the Hsieh-Clough-Tocher

(HCT) element, the reduced HCT (RHCT) element, the singular Zienkiewicz (SZ) element,

the reduced SZ (RSZ) element, the Birkhoff–Mansfield (BM) triangle, the reduced BM

(RBM) triangle, the Powell-Sabin (PS) element, Bogner-Fox-Schmit’s (BFS) bicubic ele-

ment, the Fraeijs de Veubeke-Sander (FdVS) quadrilaterals, and the reduced FdVS (RFdVS)

quadrilaterals. The definitions and approximation properties can be found in Ciarlet [8] and

Powell and Sabin [18]. We will assume that the finite elements are also in W2�����. Note

that this condition is not part of the definition of C1 elements, however, all the C1 elements

we know are in fact in W2�����.

Let fTkg be a family of quasi-uniform triangulations. We allow nonnested triangula-

tions, however, we assume that the triangulations are essentially nested in the sense that the

mesh parameters satisfy 0 � 
1 � hk�1�hk � 
2 � 1. Let Vk be a family of finite element

spaces defined by some conforming C1 elements with respect to Tk . Our theory does not

require that the spaces fVkg on different level are defined by the same finite element. It is

computationally more efficient to user simpler elements on coarser grids. The finite element

solutions uk � Vk satisfy

a�uk� �k� � �f� �k�� ��k � Vk�(2)

All the finite elements listed above, except the BFS and PS elements, are nonnested

even when the triangulations fTkg are nested. For the BFS and PS elements defined

with respect to a family of nested triangulations fTkg, a uniformly convergent theory for

multigrid V-cycle can be established along the line of [2]; cf. [21] for more details.

We will denote by k � ks�p�D and k � ks�D the standard norm on Sobolev spaces Ws�p�D�

and Hs�D� �W s�2�D�, and by j � js�p�D and j � js�D the semi-norms.

We will make the following standard assumption on the finite element spaces Vk . The

verification of these assumptions is straightforward.
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ASSUMPTION 3.1. The following local inverse properties hold for v � Vk:

jvjs�q�� � Ch
2� 1

q
� 1

p
�

k jvjs�p�� � 1 � p� q � �� 0 � s � 2� � � Tk�(3)

The basis functions �i are uniform to order 2:

jtjs�q�� � Ch
2�q�t�s
k � 1 � q � �� 0 � s � 2� � � Tk�(4)

Here t stands for any basis function associated with a derivative of order t.

Let Ak : Vk �� Vk be defined as

�Akuk� vk� � a�uk� vk�� �uk� vk � Vk�

The L2 projections Qk : L2 �� Vk are defined by

�Qku� �k� � �u� �k��

It can be shown (cf. e.g. [22]) that

j�I �Qk�ujs � Ch2�s
k juj2� �u � H2��� �

It is convenient to use the following discrete Sobolev norms defined by

jjjujjj2s � �As�2
k u� u�� �s � R� u � Vk�

It is trivial to see jjjujjjs � jjjujjj1�2
s�� jjjujjj

1�2
s�� , �s� 
 � R. Using eigen-expansion and the Hölder

inequality, we have the convexity for the discrete norms (cf. e.g. [4]),

jjjujjjs � jjjujjj�s1
jjjujjj1��s2

� s � �s1 � �1� ��s2� 0 � � � 1�

In particular,

jjjujjj2�2� � jjjujjj1��2 jjjujjj�4 � 0 � � � 1�

The norm equivalence

jjjujjjs 	 jujs� 0 � s � 2�

is easy to see as follows. The cases s � 0 and s � 2 follow from the definition of the

discrete norms. The result for 0 � s � 2 follows by interpolating the operators I and Qk;

cf. Bank and Dupont[1]. For polynomial or piecewise polynomial elements, the result can

be extended to the case 2 � s � 5�2 based on the same reasoning as in [3], where it is

shown that Vk 
 H1�s and jjjujjjs 	 jujs with 0 � s � 3�2 for C0 polynomial elements Vk.

We do not know however whether or not this equivalence still holds for singular elements.

We do not even know if Vh � H2�s for some s � 0.
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3.1. Intergrid transfer operators. Let Nk be the set of nodes associated with the

degrees of freedom of Vk . Let �i be the nodal basis functions of Vk at xi � Nk , where �

indicates the order and directions of the derivative of the corresponding degree of freedom.

With a slight abuse of notation, we denote by j�j the order of the corresponding degrees of

freedom. Let deg�Vk� be the maximum order of the derivatives in the degrees of freedom

of Vk. Note that for the fourth order problem, deg�Vk� � 1 or 2. Let 	i be the index set for

the degrees of freedom at xi. Let 	0
i � f�;� � 	i� j�j � 0g, 	1

i � f�;� � 	i� j�j � 1g,

	2
i � f�;� � 	i� j�j � 2g. Note that if deg�Vk� � 1 then 	2

i � � and 	i � 	0
i � 	1

i .

Our first choice for the intergrid transfer operator is the (modified) nodal value inter-

polation operator: Ik : Vk�1 �� Vk , defined by

Iku �
X
i

X
���0

i
��1

i

��u�xi�
�
i �(5)

If deg�Vk� � 1, e.g. Vk defined by the HCT, RHCT, SZ, RSZ, PS, RBM, FdVS or RFdVS

element, then the intergrid operator is in fact the standard nodal value interpolation operator.

If all the spaces fVkg are defined by the Argyris, Bell, BFS or BM element, we can

also use the following intergrid transfer operator:

Iku �
X
i

X
���0

i
��1

i

��u�xi�
�
i �

X
i

X
���2

i

u�i 
�
i �(6)

where, u�i � �1�xi���u�a1� � �2�xi���u�a2� � �3�xi���u�a3�, with xi � �a1a2a3 � Tk�1

and �i�x� is the ith barycentric coordinate of x. Alternatively, we could define u�i to be the

average value of ��u at xi.

Note that for Ik defined by (5)–(6), we need to evaluate ��u�mi� at midpoints mi of

the edges of Tk�1, which means that we have to evaluate ��

�
j �mi� for the basis functions


�
j of Vk�1. To avoid that, we can use the following simplified “P1 preserving interpolation

operator” which is determined by

��Iku�xi� � �1�xi���u�a1� � �2�xi���u�a2� � �3�xi���u�a3�� � � 	0
i � 	1

i �(7)

where xi � ��a1a2a3� � Tk�1.

Note that (5) and (7) are well defined on C1���, and (6) is well defined only on a

subset of C1���. If in addition, u is also in H2
0 ���, then Iku � Vk 
 H2

0 ��� automatically

satisfies the homogeneous boundary conditions.
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We note that Ik defined by (5)–(7) preserves linear functions; i.e.

Ikpj� � p� �p � P1� � � Tk�

By definition, Ik defined by (6) also preserves quadratic functions, and if deg�Vk� � 1, then

Ik defined by (5) is the standard nodal value interpolation and thus also preserves quadratic

functions.

It is well known that Ik is not bounded in j � j2–norm, however, restricted to the finite

element space Vk�1 (and thus a local inverse property holds), Ik has the following stable

approximation properties.

LEMMA 3.1. Let � � Tk and �� � � � ��Tk�1
� ��� ���

� �. There exists C � 0 independent of �

such that Ik defined by (5)–(7) satisfies

jIku� ujs��k � h2�s
k juj2��� � �u � Vk�1� 0 � s � 2�

As a consequence,

jIku� ujs�� � h2�s
k juj2��� �u � Vk�1� 0 � s � 2�(8)

Proof. Note that j��u�xi�j � jujj�j���� and ju�i j � jujj�j����� . By the definitions of Ik

and Assumption 3.1, we have

jIkujs�� �
deg�Vk�X
r�0

Ch1�r�s
k jujr����� �

2X
r�0

Ch1�r�s
k jujr����� �

Since �� is a union of �� � Tk�1, the inverse inequality (3) holds for u � Vk�1 on �� ,

jujr����� � Ch�1
k�1jujr��� � C�hk�hk�1�h

�1
k jujr��� � Ch�1

k jujr��� �

By the triangle inequality

j�I � Ik�ujs�� �
2X

r�0

Chr�sk jujr��� �

Now using Ikpj� � p for p � P1 and the Poincaré inequality, we obtain

j�I � Ik�ujs�� � inf
p�P1

2X
r�0

Chr�sk ju � pjr��� �
2X

r�0

Chr�sk h2�r
k�1juj2��� � Ch2�s

k juj2��� �

Squaring and summing the above inequality over � � Tk, we obtain

j�I � Ik�ujs�� � Ch2�s
k juj2��� s � 0� 1� 2�
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The result for 0 � s � 2 follows from the convexity of the norms.

If fTkg are nested, the proof can be slightly simplified, in particular, �� can be replaced

by � � � Tk�1 which contains � .

Remark: In the case when Ik preserves quadratic polynomials, instead of the Poincaré

inequality, we can use the Bramble-Hilbert lemma

inf
p�P2

2X
r�0

hrk�1ju� pjr��� � Chtkjujt��� � 2 � t � 5�2

in our proof to obtain a stronger result

jIku� ujs�� � Cht�s�
X
��

juj2t��� �
1�2 � Cht�sjujt��� u � Vk�1� 0 � s � 2� 0 � t �

5
2
�

If fTkg are also nested and Vk as well as Vk�1 are polynomial elements, then the above

inequality also holds for 2 � s � 5�2. This property will not be used in our analysis.

3.2. Multigrid theory for C1 elements. We now verify the regularity and approxi-

mation assumption A.1. We assume the following a priori estimate (cf. [9])

juj2��0 � k�2uk�2��0� for some �0 � 0�(9)

Note that the estimate also holds for 0 � � � �0.

We now establish the regularity-approximation assumption in a series of lemmas.

LEMMA 3.2. Let Pk�1 : H2
0 ��� �� Vk�1 be the Galerkin projection. Then

j�I � Pk�1�uj2�� � Ch�k juj2� �u � H2
0 � 0 � � � �0(10)

j�I � Pk�1�uj2 � Ch�k jjjujjj2��� �u � Vk� 0 � � � �0(11)

Proof. The first inequality follows from the standard finite element error estimate and

a duality argument. To prove the second, we note

j�I � Pk�1�uj
2
2 � a�u� �I � Pk�1�u� � a�u� Pk�I � Pk�1�u�

� jjjujjj2��jjjPk�I � Pk�1�ujjj2��

� Cjjjujjj2��jPk�I � Pk�1�uj2��

By the triangle inequality and (10), we have

jPk�I � Pk�1�uj2�� � j�I � Pk��I � Pk�1�uj2�� � j�I � Pk�1�uj2��

� Ch�k j�I � Pk�1�uj2 �Ch�k�1j�I � Pk�1�uj2

� Ch�k j�I � Pk�1�uj2�
9



In the second inequality, we have used obvious facts that �I � Pk�1�
2 � �I � Pk�1� and

�I � Pk�1�u � H2
0 ���.

LEMMA 3.3. For 0 � � � �0, we have

j�I�k � Pk�1�ukj2 � Ch�k jjjuk jjj2���(12)

Proof. By the definition of I�k and Pk�1, we have for any vk�1 � Vk�1,

a��I�k � Pk�1�uk� vk�1� � a�uk� �Ik � I�vk�1� � a�uk� �Ik � Pk�vk�1�

� jjjuk jjj2��jjj�Ik � Pk�vk�1jjj2��

� Cjjjukjjj2��j�Ik � Pk�vk�1j2���

Using the triangle inequality, Lemma 3.1 and (10),

j�Ik � Pk�vk�1j2�� � j�Ik � I�vk�1j2�� � j�I � Pk�vk�1j2�� � Ch�k jvk�1j2�

Therefore,

a��I�k � Pk�1�uk� vk�1� � Ch�k jjjuk jjj2��jvk�1j2�

The lemma follows by setting vk�1 � �I�k � Pk�1�uk ,

LEMMA 3.4. For 0 � � � �0, we have the following estimate for I�k .

j�I � I�k�ukj2 � Ch�k jjjuk jjj2��� �uk � Vk�

Proof. The lemma follows trivially from (11) and (12),

THEOREM 3.5 (REGULARITY-APPROXIMATION). For � � �0�4, we have

a��I � IkI
�
k�uk� uk� � Cjjjukjjj

2�1���
2

�
jjjuk jjj24
�k

��
� C�Akuk� uk�

1��

�
kAkukk2

0

�k

��
�

Proof. Let � � �0�4. Then by Lemma 3.4

ja��I � IkI
�
k�uk� uk�j � ja��I � I�k �uk� �I � I�k�uk�j

� j�I � I�k�ukj2j�I � I�k �ukj2

� Ch�0
k jjjuk jjj2��0 jukj2

� Ch4�
k jjjukjjj

2�2�
2 jjjukjjj

2�
4 �

Here we have used the convexity of norms jjjuk jjj2��0 � jjjuk jjj2�4� � jjjukjjj
1�2�
2 jjjuk jjj2�4 .
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In the cases when Vk 
 H2�����  H2
0 ��� and jjjujjj2�� � juj2��, the proof of

Theorem 3.5 can be simplified slightly. If the spaces fVkg are nested and Ik � I , then

Theorem 3.5, with � � �0�2, is a direct consequence of (11).

The following is our main result. It is a consequence of Theorems 2.1, 2.2 and 3.5.

THEOREM 3.6. If the smoother Rk satisfies A.2.1, and the number of smoothing mk �

m is sufficient large, but independent of k, then there exists an M � 0 such that the the

contraction number for W-cycle multigrid satisfies

� �
M

M �m�

If the smoother Rk satisfies A.2.1 and the number of smoothing mk satisfies A.2.2, then

there exist an M � 0, such that the variable V-cycle preconditioner satisfies

m�
k

M �m�
k

a�u� u� � a�BkAku� u� �
M �m�

k

m�
k

a�u� u��

Thus, ��BkAk� 
 �
m�

k

M�m�
k

�
M�m�

k

m�
k

� and the preconditioned equations are uniformly well

conditioned.

Our algorithms and theory can be generalized easily to the cases when the coarser level

triangulations Tk are defined only on a subregion �k 
 �, with dist���k� ��� � O�hk�. In

particular, using inequalities

kuk2��n�k
� Ch�kkuk2��� 0 � � � 1�2� u � H2���

jujs��n�k
� Ch2�s

k juj2� 0 � s � 2� u � H2
0 ����

(13)

it is easy to see that conclusions in Lemmas 3.1 and 3.2 remain valid. The rest of results

follow from Lemmas 3.1 and 3.2. Inequalities similar to (13) can be found, for example,

in [14, 2, 4, 7], we refer to Bramble and Pasciak [2] for a proof.
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