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Abstract. This work continues the series of papers in which new approach of constructing alge-
braic multilevel preconditioners for mixed finite element methods for second order elliptic problems
with tensor coefficients on general grid is proposed. The linear system arising from the mixed meth-
ods is first algebraically condensed to a symmetric, positive definite system for Lagrange multipliers,
which corresponds to a linear system generated by standard nonconforming finite element methods.
Algebraic multilevel preconditioners are then constructed for this system based on a triangulation of
parallelepipeds into tetrahedral substructures. Explicit estimates of condition numbers and simple
computational schemes are established for the constructed preconditioners. Finally, numerical results
for the mixed finite element methods are presented to illustrate the present theory.
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1. Introduction. Let Q be a bounded domain in IR?, with the polygonal boundary
0€). We consider the elliptic problem

—V - (aVu) = f in Q,

(1.1) u=>0 on 02,

where a(z) is a uniformly positive definite, bounded, symmetric tensor and f(z) €
L*(Q). Let (-, -)s denote the L*(S) inner product (we omit S if S = Q), and let

V = H(div;Q) = {v e (L}(Q)*: V-ve L)},
W = L*Q).

Then (1.1) is formulated in the following mixed form for the pair (q,u) € V x W:

(V-q,w) = (f,w), Yw e W,

(1.2) Sl v V) =
(e 'q,v)— (u,V-v)=0, VveV.

It can be easily seen that (1.1) is equivalent to (1.2) through the relation

q= —aVu.

In applications of fluid flow in porous media, u(z) is referred to as pressure and q
as to Darcy velocity vector. It is well known that (1.2) has a unique solution u(z) €
H;(2) N H*(Q), and that the following elliptic regularity estimate holds true (cf. [14]):

lullz.0 < ellfllo.c

* Institute for Scientific Computation and Department of Mathematics, Texas A&M University, 326
Teague Research Center, College Station, TX 77843-3404.

1



2 S. Maliassov

where c is a constant dependent only on 2 and where || - ||p.o and || - ||2.o are the L?(Q)
and H?(Q) Sobolev norms, respectively defined by

1 ‘ 3
Jullos = ( [ wtz)”. ||u||m=(/g )3 |a“u|2dx) |

|| <m

To define a finite element method, we need a partition 7; of €2 into elements 7',
say, simplexes, rectangular parallelepipeds, and/or tetrahedra. In 75, we also need that
adjacent elements completely share their common edge or face; let 97, denote the set
of all interior faces e of 7;,.

Let \N/'h x W, € V x W denote some standard mixed finite element space for
second order elliptic problems defined over 7, (see, e.g., [5], [6], [11], [21], and [22]).
This space is finite dimensional and defined locally on each element T" € 7;, so let
Vi (T) = V3|7 and Wj,(T) = Wy,|p. Then the mixed finite element method for (1.1) is
to find (qh, uh) € \N/'h X Wh:

(13) (V " qpn, ’UJ) - (f7 w)7 Yw € Wim
(a™'qn,v) = (up,V-v) =0, VveV,

The requirement V, C V implies that the normal component of the vector g
is continuous across the interelement boundaries 977. Following [2|, we relax this
constraint on Vj, by defining V;, = {q € (L3(Q))* : q|r € V,(T) for each T' € 7;,}. In
order to enforce the interelement continuity of the normal component of q we need to
introduce the space of the Lagrange multipliers

L, = A€L2< U e):)\|e€\7h-u6 for each e € 9073, 7,
e€dTy,

where v is the unit normal to e. Also, to establish a relationship between the mixed
method and the nonconforming Galerkin method and to construct efficient precondition-
ers, following [9] and [10] we introduce the projection of the coefficient, i.e., aj, = Pra™?,
where P, is the L2-projection onto Wj,. Then the hybrid form of the mixed method for
(11) is to find (q;,/,uh, )\},/) € V;, x W, x L;, such that

Z (V - QIuw)T - (f7w)7 Vw € Wh7

Te 77:,

(1.4) (cnqn, v) — TZT (un, V- V)r = (An, V- vr)omaa| =0, Vv € Vy,
€1p

Z (Qh - vr, IU)BT\BQ = 07 V,u € Lh-

Te’]’;,
Note that the last equation in (1.4) enforces the continuity requirement mentioned
above, so in fact q, € Vj,. In [2] and [20], it was shown that the solution to (1.4)
can be obtained from a certain modified nonconforming Galerkin method by means
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of augmenting the latter with bubble functions. Such a relationship has been studied
recently for a large variety of mixed finite element spaces [1, 8, 9].

In this paper, following [10] it is shown that the linear system generated by (1.4)
can be algebraically condensed to a symmetric, positive definite system for the Lagrange
multiplier A,. It is then shown that this linear system can be obtained from the standard
nonconforming Galerkin method without using any bubbles.

The main objective of this paper is to construct algebraic multilevel preconditioners
for the mixed finite element method. We first use the above equivalence to construct
multilevel preconditioners for the linear system for the Lagrange multipliers. Then the
mixed method solutions q; and u;, are recovered via these multipliers.

The construction of multilevel preconditioners for the mixed methods is inspired by
the fundamental work [4], [16], where new systematic representations for preconditioners
in the Neumann-Dirichlet domain decomposition methods for conforming finite elements
were suggested. The multilevel domain decomposition versions of these methods were
outlined in detail in [17, 18]. In addition, the superelement approach used here to
estimate condition numbers for two level methods is based on that used in [3, 12, 17, 19].

A detailed description of procedures to construct such preconditioners can be found
in [10, 12, 13]. In all these works authors defined partitioning 7;, of the whole domain
subdividing it into topological parallelepipeds and splitting each parallelepiped in turn
into six tetrahedra. The present paper prolongates these results to the case of splitting
each topological parallelepiped into five tetrahedra. Briefly, the approach used here
to construct preconditioners includes two main stages. First, using the idea of parti-
tioning (decomposing) a parallelepiped grid into tetrahedral substructures a three-level
preconditioner is constructed with a “7-point” algebraic system on the coarse level, and
the condition number of the preconditioned matrix is estimated. The explicit bounds
of spectrum of the preconditioned matrix are obtained with help of the superelement
approach [12, 17].

On the second stage, we define the preconditioner for the above 7-point algebraic
system with one unknown per parallelepiped and show that this preconditioner is equiv-
alent to the standard finite element approximation of the equation (1.1) with modified
coefficient tensor a(x). To solve this problem we can use any well known technique.
Namely, in this paper we use multilevel domain decomposition method [16, 17] to solve
this auxiliary coarse level problem. The constructed preconditioners are spectrally
equivalent to the original stiffness matrix and their arithmetic cost does not depend on
the mesh size h and jump of the coefficient a(z).

Explicit estimates of condition numbers are obtained for these multilevel precon-
ditioners. A computational scheme for implementing these preconditioners is also con-
sidered, and a three-step preconditioned conjugate gradient method using the present
technique is described as well.

In this paper the case where a(z) is a scalar tensor and € is a regular parallelepiped
is analyzed in detail for the three-level and multilevel preconditioners.

The rest of the paper is organized as follows. In the next section we consider an
elimination procedure for (1.4). Then, in section 3 we develop three-level preconditioner



4 S. Maliassov

for the resulting linear system. Development of three-level preconditioner to multilevel
one and the multilevel domain decomposition method for solving coarse level problem
is described in section 4. Finally, in section 5 extensive numerical results are presented
for both nonconforming and mixed methods on logical parallelepipeds to illustrate the
present, theory.

2. The mixed finite element method. We now consider the most useful par-
tition 7, of Q into tetrahedra. In this section we outline the elimination procedure for
the system (1.4). Detailed description can be found in [1, 10].

The lowest-order Raviart-Thomas-Nedelec space [22, 21] defined over T € 7, is
given by

Vu(T) = (R(T)) & ((2,y,2)Py(T)),
Wh(T) = PO(T)7
Li(e) = Pye),

where P;(T') is the restriction of the set of all polynomials of total degree not bigger
than i > 0 to the set T € 7,. For each T in 7y, let fr = ﬁ(f, 1)r, where |T| denotes

the Volume Of T zAISO7 set ap = (Oéij) and qh|T = (ququ27qT3) = (T’%v + th,T'% +
try,r3 + trz). Then, by the first equation of (1.4) it follows that

(2.1) tr = fr/3.

Now, take v. = (1,0,0) in 7 and v = 0 elsewhere, v = (0,1,0) in 7 and v = 0 elsewhere,
and v = (0,0,1) in 7" and v = 0 elsewhere, respectively, in the second equation of (1.4)
to obtain

3 4 o
(22) (Z O‘jiqT'in 1)T + Z |e’T| VTLSJ) >‘h|eﬁ% - 07 .7 - 17 27 37
=1 =1

where |ef| is the area of the face €%, and vi. = (VA" P i) Let g7 = ( L) =
((cvijy 1)7)~". Then (2.2) can be solved for r4:

(3
r% = - Z |6T|< leT + 32 T()+ 33 IS)> >‘h|e,§~_
(2.3)

- /3
- (2 Benn +any +anz)1) L =123
=1 T
Let the basis in L; be chosen as usual. Namely, take 4 = 1 on one face and © = 0
elsewhere in the last equation of (1.4). Then, apply (2.1) and (2.3) to see that the
contributions of the tetrahedron 7' to the stiffness matrix and the right-hand side are

; ; Jf —i )
A'j; - vTﬂTﬁéW F/T = _% (JJI:7 VT)eén T €Ty,



Substructuring Preconditioners For Mixed Methods )
where 7, = |eb|vi and Jf = fr(z,y, z)/3. Hence we obtain the system for Aj:
(2.4) AN =F.

After the computation of A, we can recover q via (2.1) and (2.3). Also, if uy is
required, it follows from the second equation of (1.4) that

1 4 A
ur = m <(aqh7 (*737:‘/7 Z))T + Z >‘h|eé, ((x7 Y, 2)7 V%)pi ) ) T e 7;1-
i=1 T

The above result is summarized in the following lemma (see [10]).

LEMMA 2.1. Let

Mh(X7 ,U,) = Tg]' (X7 VT)OTﬂT(:UJ? VT)0T7 X, M € Lh7
h
Fp(p)=— % ‘%'(Jf, Dr- (g, vr)or + X (0¥, vr)ar, p € Ly,
TeTy, TeT,,

where J is such that Jf|T = J{;. Then \;, € Ly, satisfies
(25) Mh(>\h7 ,u) = Fh(,u)7 v,u € Eim
where

Ly, =A{u€ Ly:pl.=0 for each e C 00Q}.

Note that there are at most seven nonzero entries per row in the stiffness matrix
A. Also, it is easy to see that the matrix A is a symmetric and positive definite matrix;
moreover, if the angles of every T in 7j, are not bigger than /2, then it is an M-matrix.
Finally, (2.4) corresponds to the P; nonconforming finite element method system, as
described below. This equivalence is used to construct our multilevel preconditioners
later.

Following [10], let

N, ={ve L*Q): vlr € P(T), YT € Tp; v is continuous
(2.6) at the barycenters of interior faces and
vanishes at the barycenters of faces on 0$2}.

Then the following proposition can be proved ([10]).

PROPOSITION 2.2. Let f, = Pnf. Then (2.4) corresponds to the linear system
produced by the problem: find v, € N} such that

(27) ah(wha QP) = (flw 90)7 VQP € -/\/‘lm

where ay (Y, @) = Yrer, (g Viby, Vo)r.



6 S. Maliassov

3. Three level preconditioner over a cube. In this section we consider multi-
level preconditioners for (2.4) based on partitioning regular parallelepipeds into tetra-
hedral substructures, following the ideas in [12] and [13]. Here we treat the case where
2 is a unit cube and a(z) is a scalar tensor.

Our goal is to introduce an algebraic formulation of the approximate problem using
a type of static condensation that eliminates some of the unknowns. In this way we
can reduce substantially the size of the problem. For this approach we need a special
partitioning of the domain into tetrahedra that have some regularity and preserve the
simplicity of the algebraic problem.

Let C;, = {C%)} be a partition of  into uniform cubes with the length h = 1/n,
where (z;,y;, 2;) is the right back upper corner of the cube C@3k) - Next, each cube
C7#) is divided into 5 tetrahedra as shown in Figure 1 and denote this partitioning of
Q2 into tetrahedra by 77.

Let W,; be the space of piecewise constants associated with Cj, and P, be the
L*-projection onto W, ;. To define our preconditioner, we introduce aj, = P.,a™" in the
hybrid form (1.4) instead of o, = Pra™!. Obviously, Lemma 2.1 and Proposition 2.2 are
still valid for this modification since 7}, is a refinement of C,. With this modification,
;! is a constant on each cube. For notational convenience, we drop the subscript h
and simply write ;' = a, diag{1,1,1}.

Let A, be the nonconforming finite element space associated with 7;, as defined in
(2.6), and let its dimension be N. All the unknowns on the faces of 9Q are excluded.
For this reason N = 10n® — 6n2. For any function v, € A}, we denote by v € IRY the
corresponding vector of its degrees of freedom. Introduce the inner product

(3.1) (w,v)y =k > wp(pi)vn(pi), Vup, vy € N,

pi 68771

where the p;’s are the barycenters of the interior faces. It is easy to see that the norm
induced by (3.1) is equivalent to the L?-norm on €.

For each cube C' = C%) ¢ ¢, denote by N the subspace of the restriction of the
functions in N}, onto C. For each v € N, ,f, we indicate by v, its corresponding vector.
The dimension of N is denoted by N¢. Obviously, for a cube without faces on 9 its
dimension is 16, i.e., N¢ = 16.

The local stiffness matrix A° on cube C' € C;, is given by

(32) (Acuc, VC)_NC = Z (ahVuh, VU}L)T, Vuh, Up - ./\/’}Sj

TCC

Then the global stiffness matrix is determined by assembling the local stiffness matrices:

(3.3) (Au,v)y = Y (A%, vo)ye, Vu,v e R".
CeCy,

Now we consider a cube C' that has no face on the boundary 92 and enumerate
the faces s;, 7 = 1,...,16 of the tetrahedra in this cube as shown in Figure 2. Then
the local stiffness matrix of this prism has the following form:



AC =

Substructuring Preconditioners For Mixed Methods

9/2 -1/2 -1/2 -1/2|-1 -1 =1 0 0 O O 0O O O 0 O
~1/2 9/2 -1/2 -1/2{0 0 0 -1 -1 -1 0 0 0 0 0 0
~-1/2 -1/2 9/2 -1/2{0 0 0 0 0O 0 -1 -1 -1 0 0 0
-1/2 -1/2 -1/2 9/2 |0 0 0 0 O 0O 0 0 0 -1 -1 -1
-1 0 0 0 1
-1 0 0 0 1
-1 0 0 0 1
s, 0 -1 0 0 1
2 7¢ 0 -1 0 0 1
0 -1 0 0 1
0 0 -1 0 1
0 0 -1 0 1
0 0 -1 0 1
0 0 0 -1 1
0 0 0 -1 1
0 0 0o -1 1
which we write as
(34) AC _ %a( [ All,(, A12,(: ]
2 A21,(, AZZ,(:
where
3 -1 -1 -1
(3.5) AH’C:leLch% 0 T T Ame=1n,
-1 -1 -1 3

FI1GURE 1. Partition of cube into tetrahedra.

Along with matrix A® we also introduce the matrix B¢ as

_3h

(3.6) B¢ =

2

Bll,(: AIZ,(:
AZI,(: AZZ,(:

|
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where

Biie=3111,+2

PROPOSITION 3.1. It holds that kerA® = ker B©.

Proof. It is easy to see from the definitions of A and B¢ that kerA® = kerB® =
{v=(v,vy, ,v)f €eRY 10, =0v,i=2,---,16}. O

Remark. If the cube C € C,, has a face on 02, then the matrix A does not have
the rows and columns which correspond to the nodes on that face; the blocks Ay, . and
By are the same as in the previous case and the modification of Ay, . is obvious.

We now define the N x N matrix B by the following equality:

(3.7) (Bu,v)y = > (Bu., vo)ye, Vu,v € RY.
CeCy,

Since the matrix B is used for preconditioning the original problem (2.4), it is
important to estimate the condition number of B~ A.
LEMMA 3.2. Let pi. satisfy the equality

(3.8) A%, = p.Bu,, C €.
Then we have

(Au? u)-N . (Au7 u)n .
(3.9) max -———— <maxpy. and min ——— > min K.
(Buu)y20 (Bu,u)y ~ CeC, (Buaw)y20 (Bu,u)y — CeC,

Proof. For each C' € Cy, it follows from (3.8) that
(Acum uc)Nc = He (Bcum uc)Nc-

It then follows from the fact that all local stiffness matrices are nonnegative that

Z (Acumu(:)Nc = Z e (Bcumu(:)Nc
CEC},, CEC},,
< . “u,,u,)ye.
< maxu, C;}L(B u., u,) e

Hence from the definitions of A and B, we see that

(Au,u)y < max (Bu,u)y.
Consequently, the first inequality in (3.9) is true. The same argument can be used to
show the second inequality. O
From Lemma 3.2, we see that, to estimate the condition number of B! A, it suffices
to consider the local problems (3.8). Using a superelement analysis [16, 19], to estimate
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(b) Cube of type II

FI1GURE 2. Local enumeration of faces in cubes.
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(II}%X (e and émcn e, 1t suffices to treat the worst case where the cube C' € C;, has no
. eCp, eCp

face on the boundary 9. From (3.4) and (3.6), a direct calculation shows that the
eigenvalues p,. are within the interval [1/4,1].

Then the inequalities (3.9) yield:

ProrosiTION 3.3. The eigenvalues of problem

(3.10) Au = pBu
belong to the interval [1/4,1] and the condition number is thus estimated by

cond(B'A) < 4.

We stress that the condition number of the matrix B~'A is bounded by a constant
independent of the step size of the mesh h and the jump of the coefficient a(x). Since
we introduced a two level subdivision, the matrix B can be referred to as a two level
preconditioner.

Then, in this section we propose a modification of the matrix B and consider its
properties. Toward that end, we divide all unknowns in the system into three groups:

1. The first group consists of the one unknown per cube corresponding to the 1st
faces of the tetrahedra that are internal for each cube C' € C), (see Figure 2,
faces 1).

2. The second group consists of all unknowns corresponding to faces of the cubes
in the partition C,, excluding the faces on 9Q (Figure 2, faces 5,6, ..., 16).

3. The third group consists of the unknowns corresponding to the faces of the
tetrahedra that are internal for each cube and which are not in the 1st group
(these are unknowns on faces 2, 3 and 4 on Figure 2).

This splitting of the space IRY induces the presentation of the vectors: v? =

(vI,vT), where vi € R™ and v, € IR™, where v, corresponds to the unknowns of
the 3-rd group. Obviously, N, = 3n? and N; = N — 3n3. Then the matrix B can be
presented in the following block form:
Bii By .

3.11 B = , dimBy; = Ny.
(@) [ By By R

Denote now by 311 = By — 31232_21321 the Schur complement of B obtained by
elimination of the vector v,. Then B;; = By, + BmBQ}lBQl, so the matrix B has the
form

(3.12)

B— [ Bu + B13B3;' By By ]
Bo By

Note that for each cube C' € C) the unknowns of the 3rd group (unknowns on
the faces 2, 3 and 4 in local enumeration, see Figure 2) are connected only with the
unknowns of the 1st and 2nd groups and therefore the matrix By, is diagonal and can be
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inverted locally (cube by cube). Thus, matrix By is easily computable. The proposed

modification of the matrix B from (3.12) is of the form

|

where BO is to be defined later.

By + B12By;' By Big

B
B21 B22

|

Consider now the restriction of the matrix B on a single cube

Bll,c Bl2,c

B¢ =
[ B21,(: B22,(:

|

and define the Schur complement on a cube by Benﬂc = B — 3125032’21’6321’0. In the

local enumeration introduced on Figure 2 the matrix Bll,c has the form

[ 33/5

—1 -1 -1 =2/5 =2/5 =2/5 —2/5

—2/5

—2/5

—2/5

—2/5

—2/5

—1
~1
~1

—2/5
~2/5
~2/5
~2/5
—2/5
~2/5
—2/5
~2/5
| —2/5

1
1

4/5
~1/5
~1/5

~1/5
4/5
~1/5

~1/5

~1/5

4/5
4/5
~1/5
~1/5

~1/5
4/5
~1/5

~1/5
~1/5
4/5

4/5
~1/5
~1/5

~1/5
4/5
~1/5

~1/5
~1/5
4/5 |

Remark. If the cube C € Cj, has a face on 02, then the matrix BH,C does not have the
rows and columns which correspond to the nodes on that face.
Following [12], we introduce on each cube a modification of the matrices By in

the form:

[ 12

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

—1 17

-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1

| -1

_ 3

Bll,(: 2

1

1

1

PrROPOSITION 3.4. The matrices Bll,(: and Bll,(} have the same kernel, i.e., kerBH’C =

keI’Bch.
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Proof. Tt can be easily checked that kerl%mC = kerBH,C ={v = (v,v9, - -,v13)7 €
RY:v;=v,i=2,---,13}. O
We now consider the eigenvalue problem

(313) Ben,cu = ,U,BILCU, uc IR,13.

It is easy to check the proposition
PROPOSITION 3.5. The eigenvalues of problem (3.13) belong to the interval [2/5,1].
Now defining a new matrix on each cube:

. B, + Bi2.B3'Boi. Bia
314 BC — 11,¢ 12,c222,cP21,¢ 12.¢ ]
( ) BQI,C B22,c

we define the symmetric positive-definite N; x N; matrix By by

(Boul,vl) = Z (Bll,cul,wvl,c)?
CEC}L

where vi,u; € R™, and u;,. and vy . are their respective restrictions on the cube C.
As in (3.12), we introduce the matrix

5 By + B12B3y' By Bis
3.15 B =
(3.15) By By

Using Propositions 3.3 and 3.5, and the same proof as in Proposition 3.2 we have
the following theorem.

THEOREM 3.6. The matriz B defined in (3.15) is spectrally equivalent to the matriz
A, ie.,

B <A< B,
where p, = 1/10 and p* = 1. Moreover,
(3.16) cond(B~'A) <@ = p*/p, < 10.
Instead of the matrix B in the form (3.12) we take the matrix B from (3.15) as a

preconditioner for the matrix A. As we noted earlier, the matrix Bss is block-diagonal
and can be inverted locally on cubes. So we concentrate on the linear system

(3.17) Bou = G.
In terms of the group partitioning in section 3, the matrix By has the block form

) Cll 012
3.18 By = )
(3.18) ‘ l Co1 Cay ]
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where the block Uy, corresponds to the nodes from the second group, which are on the
faces of tetrahedra perpendicular to the coordinate axes. From the definition of By, it
can be seen that the matrix Uy, is diagonal. In the above partitioning, we present u
and G in (3.17) in the form

(3.19) u:H;] G:lg;]

Then, after elimination of the second group of unknowns:
w, = C5)' (Gy — Cyay),
we get the system of linear equations
(3.20) (C11 — C15C5 091 )uy = Gy — 1,05, Gy = Gy,

where the vector u; and the block Cy; correspond to the unknowns from the first group,
which have only one unknown per each cube. The dimension of vectors u; and Gy is
obviously equal to

M = dim(u;) = n®.

Thus, defining as above Schur complement of matrix BO by C’H =C - 01202}1021
matrix B can be presented in the form

Cii + C12C55' Cyy C ~
(3.21) B— H Cl,; 22 22 C';z + 3123221321 By
By, By

where matrices By, and Cy, are diagonal and can be inverted locally cube-by-cube.
Again, we have to stress that the condition number of the matrix B~'A is bounded by
the constant independent of the step size of the mesh A and the jump of the coefficient
a(z). The matrix B can be referred to as a three-level preconditioner.

By making straightforward calculations it can be shown that the Schur complement
Chy is “T-point-scheme” matrix. Introducing for each cube C"7*F) the coefficients

NN 3h a(".‘t'/"]") . a(i+1,,7',l::)
K0 = <_>

2 alidk) 4 qlitlk)’

ik 3h (irjok) . o (iag+1,k)
(3.22) Kéw’k) _ ((3h) 4, o at” |
2 a(wak) + a('z,]+1,k)

~(i.:%) 3h aliik) L q(igk+1)
K - 7 alidk) 4 qlidk+1)’

matrix Cy; can be schematically represented in the following form for C+/%) N 9Q = ()
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< 7:5 ‘,k
i Lk) Ry gD g g ik

-

[ K Y)

If 3R N oQ # @ then the previous scheme is modified in a natural way, for
example for i =1, j, k # 1,n, for unknown in cube C***) we have the scheme

[— K5

Fo(li—1h) (%) 2 (130 4 TR g (MR
[— K5 ] — LR L) )

-

e a"-k

In the next section we consider the solution techniques for problem (3.20) with the
matrix C;:

(3.23) Chv=g.

4. Multilevel preconditioner over a cube. While the preconditioner B has
good properties, it is still not economical to invert it because the entries of the matrix
iy depend on jump of the coefficients. In this section we propose a modification of the
matrix Cy; provided additional assumptions on the behavior of the function a(z) and
show that for that modification we can use any well known multilevel procedure.

Assumption (A1): Suppose that unit cube 2 can be represented as a union of a
certain number m of pairwise disjoint cubes G;, + = 1,...,m with the size of edge H
(H > 2h) in such a way that in each cube G; the function a(z) is a positive constant.

— m —
In other words, we set Q@ = J G; and a(z) =const; >0,z € G, 1 =1,...,m.
i=1

For each cube C"/*) € T consider the following submatrices

(4.1)  SHP = ﬁ“”l_i_}y [=1,2,3, 4,5.k=2....n—1,
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with obvious modifications for boundary cubes,

(LIJ‘) (1 7 ]{) 1 _1 1 3_h 2a(1-/~k) 0
S N Ky [ —1 1 ] + ( 2) l 0 01’
Lk=1,...,n,
(nilﬂ‘]-k) _ (7171,]‘71‘3) 1 - 3_h 0 0
(i.Lk) (4,1.k) 1 -1 ] 3h 2@(’ Lk) 0
S2 B K2 [ — 1 | T < 2 > [ 0 0|’
n,k=1,...,n,
(im—1k) (i.n—1,k) 1 -1 3h 0 0
> B K2 -1 1 T < 2 ) I 0 2a('i,n,k) ’
S(.i,,j,1) . D) [ 1 -1 n (3_h> 24031
N -1 2 0 o0l
_ . ) ,7=1,...,n.
(lk]-nfl) _ f(i,j,n*l) 1 _1 3_}] 0 0
53 o A?’ -1 1 ] + ( 2 > [ 0 2a(v'.,j,n) | 5

The following statement plays very important role in all further arguments. It can
be established by straightforward computations.

PROPOSITION 4.1. The matriz Cyy of the system (3.23) can be defined by the
relation

n—1 n n—1

(Chu,v) = % (S{i’j””’>u§‘i’j”“>,vgi’ja’ﬁ) I (Sgi,j,mu(;u,k),ngiu,w) n
J.k=1 =1 k=1 j=1
n n—1 o o o
(42) + (Sél’,"y’k)ug’w%k), Vg/.,j,k)>
=1 k=1

which is assumed to hold for any u,v € RM, and w;, v, are the restrictions of vectors
u, v into R%:

: (#:7,k) .. (4.9.k) o (i3,
(4.9:k) __ u (i.4.k) u (igk) Uu
h N l it Ldk) l ’ e - l y(Bit+1E) ] ’ U3 - l (k1) ] :

Now define on  auxiliary cubic mesh 7¢ with vertices in the middle points of cubes
C®i*%) ¢ To. Enumerate the nodes of this mesh accordingly enumeration of the cubes
of 7c and introduce for each node (¢, j, k) of 7o the matrices

1 -1

& (4.7.k o-(4,7.k
(4.3) §R) _ i) l—l 1

], [=1,2,3.
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Here coefficients [(’l(i’j’k)7 [ =1,2,3 are given by
~ (i 3h\ 1 ¢ ik . ; o
O & A A e e B
2/ 2
i, 3hN 1 ¢ ik , ; o
a0 R = ()G e el Y el ),
2 ) 2
(I IL) = % 1 ("/J‘) (I 1 } ]{) (, 1 1 L) (".'—1.”’}'—1,]{;)
K == ( 9 ) 9 [ min +a Qopin, +a Qppin —+ in :| ,
where aﬁ,,/,, ) —  min {a(i+a,j+/j,k+7)}‘
ag[j”Y:O,l

Define the matrix C' by the relation

n n—l1 o ) n  n—l1
(Cu,v) = Z Z (Sft-,fhk)ugwl ('1L> Z < (i:.k) ('15) ('M)>
jk=1 i=1 k=1 j=1
(4.5) - Xj}:(#”k G Vi)
t,j=1 k=1
and consider the eigenvalue problem
(4.6) Chiu = pCu, uc RY.

PROPOSITION 4.2. The eigenvalues of the problem (4.6) belong to the interval
[1/2,1].

Proof. Consider first eigenvalue problems
(4.7) St = g §fF P, (S u) £0,  ueRY
1=1,2,3, 4,5,k=1,...,n—1.

Direct calculations show that eigenvalues of the problems (4.7) are £ = K, l('i"j k) /K l(i’j k)
For [ =1 using (3.22) and (4.4) we can write

k) _ 3h 9 alik) . qli+1:k)
1 2 a(i,j,k) + a(i+1aj,ﬂk)7

R (%) % {a(” B) |y qUed—Lh) | (k1) (L))

2 man mm mm man

Suppose that ali##) = q(+13%) = g Then K" = (3") a and taking into account the
(%)

min

Assumption Al in the expression (4.4) of f(f’"’j’” at least two terms a, ; are equal to

a. Thus, possible cases are

either K(' Gk) <3h> %46%
or f(gi,,j,k) _ (3h) %(Sa +b), where b < a.

o Kfi,,j,k) _ <3h> %(2& + 20),
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then we get, respectively,

2a ¢ a
or £ =
3a+b’ a+b’

either & = i, or £ =
2a
with b < a. So, we obtain £ € [1/2,1].
i,5,k) i+1.7, _ 1,5.k) 3 ab
) “If a®h) = ¢ and o+ = p £ ¢ (suppose a > b) then K\"M = <%) 2 b
KR = <37"> 2b (by Assumption A1) and we obtain

B K;I,]}:) a 1

N f(fﬁﬁk) Ta+tb 1+b/a

¢ e [1/2,1].
For [ = 2,3 we have the same arguments.

Since all matrices S\"* and S* | in the relations (4.2) and (4.5) are nonnegative
then repeating the proof of Lemma 3.2 we obtain the conclusion of proposition. 0O

Now instead of the matrix (3.21) we define new matrix B by

B C+ C1C3'Coy Chy

(4.8) B = Co1 &
Bsy By

+ B13B3;' By By

Then we can formulate the following theorem .
THEOREM 4.3. The matriz B defined in (4.8) with the block C' defined in (4.5) is
spectrally equivalent to the matriz A and

cond(B™'A) < 20.
Proof. Proof is based on Proposition 4.2 and Theorem 3.6. O

We remind here that matrices By and Chy are diagonal and taking B as a precon-
ditioner for the matrix A we have to develop procedure of solution the linear system of
equations

(4.9) Cu=G, ueRM

Define on cubic mesh fc standard partitioning into tetrahedra ’j7, Direct calcula-
tions show that the matrix C' defined by (4.5) is finite element approximation of the
boundary value problem

-V-(aVu)=g in Q,

(4.10) u=>0 on JS2,

on the partitioning 7; where function @ is defined to be constant on each cube CU4%) ¢
ic!

SN - (i+a.j+B.k+7) “(ig.k)
(4.11) a(x) = , fnin, {a } ) zel .
We have to stress that the function a(z) is piecewise constant. Thus, any multilevel
procedure which works well for such kind of problems (4.10) can be used. Below we
outline the multilevel domain decomposition method (MGDD) [16, 17, 18, 19] which
we used to solve the problem (4.9).
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4.1. Multilevel domain decomposition method. Here we assume that pro-
vided the Assumption Al we can choose a positive ¢ > 1 and for values [ = 0,1,...,¢
find grid domains Q&f) as unions of pairwise disjoint cubes (_J,El), 1=1,...,my, with the
edge length h; = 27'H, where m; = 8'm and h; = h = 1/n. Then we partition each
cube GEZ), 1 = 1,...,m into tetrahedra in such a way that the resultant tetrahedral
partitioning of the domain €2 permits the application of the finite element method with
piecewise-linear basis functions. Denote such tetrahedral partitions of the domain 2 by
ol 1=0,1,...,t

Let us consider variational problem: for given g € Ly(Q) findu € U = {v € H(Q) :
v =0 on 902} such that

(4.12) / i Vu - Vo dQ) = / udQ,  Yeel,
o o
where a is defined by (4.11).

. I . . . :
Determine a sequence of spaces U,(,/) as a set of functions continuous in €2 linear

in eash tetrahedron from ng), [ = 0,1,...,t, and vanishing on 02 and denote the

dimensions of such spaces by M; = dim U,gl). To approximate the problem (4.12) we

consider the finite element problem: find u, € U, = U,Et) such that

(4.13) / i Vg, - Vo d = / dQ,  Yoel,
2 2

which leads to the system (4.9) with the symmetric positive definite M x M matrix
C and the vector G € RM. Here M is equal to the dimension of the space Uj:
M = M, = n3. Then we assume that the utilized tetrahedral partitioning of the
domain 2 is such that the system (4.9) is a classical 7-point difference scheme.
Following [16], define now the sequence of grids i&f) as unions of faces 8(},5[71),

1=1,...,m;_y with the edge length h;_;

mi—1
=)= U o,
=1

and the sequence of grids ng) as restrictions of grids Qg) into ig), fori=1,...,t

Also define the sequence of grids Fg) as unions of edges of cubes G,,(;l), 1=1,...,my,
and the sequence of grids Fg - 2), which differ from the grids Fg - by additional nodes
in the middle of the edges of G,Elil), 1=1,....my_q, for I =1,... ¢, as it is shown on
Figure 3.

Let us denote the set of the faces of the cubes Ggl), 1 =1,...,my by P,,;(l)j 1=
1,...,s;, where s; is the number of these faces QGEU, [=0,1,...,t. Then

S1—1

ig) — Agl P‘i(lfl),

o U apt1.

[ .
=1
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(c) Fragment of the grid F;f_l/ 2 (d) Fragment of the grid Fgf_l)
® — nodes of 1-st group ] — nodes of 3-rd group
O — nodes of 2-nd group O — nodes of 4-th group

F1GURE 3. Fragments of the grids Qg), Eg), Fﬁf‘l/”, Fg_l) and partitioning of the
nodes into groups

Thus, grid domains Q;f) consist of cubes, grid domains Q;f) consist of tetrahedra, grids

ng) consist of squares, and grids Fg) and Fgf_l/ 2 consist of edges of length h;, | =
0,1,...,t.
Let us partition the nodes of the grid domain Qg) into four groups (see Figure 3):
1. to the first group we refer the vertices of the cubes GEZ_I) (the nodes of Fgf_l)),
2. to the second group we refer the centers of the edges of these cubes (the nodes
of FE}‘W) which are not in Fgf_l)),
3. to the third group we refer the centers of the sides of the cubes (the nodes of
Zg) which are not in F;fflm),
4. and to the forth group we refer all the remaining nodes which are at the same
time the centers of the cubes Ggl)
According to such partitioning of the nodes any vector v € IR™ (M is the number of
nodes of Q") can be represented in the form v = (vZ, vZ v v)T where v; € RM-1,

vy € IR™-1 and vy € IR”-!. Considering the equation (4.13) in the spaces U,(Ll) we define

yr=1,...,m_1.
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the sequence of matrices C¥) which according to the partitioning of nodes introduced
above can be presented in the following block form

cy 0o
(1 ~(1 ~(1

Gyl Co Cy 0
0 Oy Cy Cy)
0o o Cy ¢y

(4.14) cO =

Note that éff), i =1,2,3,4 are diagonal matrices and the matrix C® coincides with
the matrix C' from (4.9).

Define V,f” and W,El_l/ %) as the spaces of restrictions of functions from U,El) into Eg)
and F§f‘1/2’, respectively, [ =1,...,t.

Then, following [17, 19] using relations

5 mip—1 h .
(4.15) (DYa,%) = 3 5’ / a Vi Vi, ds, Vi, o, € VY,
=1 )
s

define symmetric positive definite (N; —m;_1) x (N, — m;_1)-matrices
D _ | Aa 1
(10 oo~ ol b o, |.

and using the relations

S1—1

—~ h? : duy, dvy, _
(417) (D(Z)U,V> = Z Z[ / a (;: ;; dS, V’UJ}“’U}L € WIEZ 1/2)7
i=1 ra=1/2)
h

define symmetric positive definite n; X n;—matrices

_ DY po
4.18 DY = l 1 2
( ) D(l)zl D(l)22

where n; = M; — my_1 — sj_1, for Il =1,...,t.
Now define symmetric positive definite M; x M; matrices

Dyy + D1yD3y Dy Dy 0 0
Do — Dy Day + Dy3 Dy D, Dy 0 | _
0 D3 D33 + D3y Dy Dyg Day
0 0 Dys Dy
(4.19) = F/"[D11 ® D3y ® D3 @ Dyy] F,
where

Dll - 511 - D12D2_21D217 D34 = 6347 D44 = 6447
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Iy 0 0 0
D3yt Dy Iy 0 0

Fl - —1 )
0 0 DDy Iy

and index [ of matrices D, CN/‘,,-,‘,,-, and 1;;, 1,7 = 1,2, 3,4 was skipped for simplicity.

By making straightforward calculations [16] it can be shown that the following
statement is true.

LEMMA 4.4. D) =100, [=1,....,t

Define now multilevel preconditioner for the matrix C' from (4.9). Using (4.14)-

(4.19) define the sequence of the preconditioners D for matrices CV). Fix some integer
r > 1 and define H12) = [DW]-! = [DW]!. Then following [16] for [ = 2, ..., ¢ define
the sequence of M;_; X M;_;—matrices

l ! a ! ! _ ~ 111
(4.20) RY = |10~ [ (1 - ructv)| [c00]
= 1 —1
oY) = J[RY]
where the parameters 7;, g = 1,...,r, are chosen such that the polynomial
1) =11 (- o)
j=1

is least deviating from zero on the interval [dy, ds], where the constants dy, d, are the

boundaries of the spectrum of the matrix Hﬁ)D(l)H.
Then, define M; x M;—matrices

(4.21) DY = BI[DY) ® DYy @ D3 @ DY) B,

oty = [5(”}71, [=2,... ¢

Finally, set the matrix
(4.22) D =DW

as an multilevel preconditioner for the matrix C' of the problem (4.9).
The following statements can be proved [16, 17].

LEMMA 4.5. The eigenvalues of the matrices {D(”}_l C'D belong to the interval
[1,b], where b= (74 /19)/2, and

cond [D(l)]il CW < b < 5.68, l=1,...,t.
LEMMA 4.6. The following estimates are valid:
if =23 then cond DIC < 31 997,

3—vb

if =4 then cond DLC < vyy0n < 6.6,
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where

2/20—2vVb+1—3Vb—2
V’IH,(I,.’L‘ = .
4 —/b

Let us apply the generalized conjugate gradient method to solve the system (4.9)
with the matrix C":

B+l k1 [p=1¢k ko k=1
ut=ut - [D " —ep 1(u" —u )]

—1¢k 2 k+112
DR ez

4.23 S eV — g, 5 lp-1
( ) qk Hfl"”%,l €r—1, €L qr ka||i)71

60:0, k’:l,...,k’g

with matrix D from (4.22) for the value r = 3 or r = 4, where ¢ = Cu* — G and
1€lle = (CE, €)% ¢ e RM.

Choose the quantity k. in such a way that a given positive € (¢ < 1) will surely
satisfy the inequality

(4.24) [+ —ule < e fu’ —ulg,

where u* = C~'G, for any initial guess u® € IR™.
Taking into account that the method (4.23) obeys the estimate

o 2¢" .
(4.25) [u* —u*||s < T [u® —u*||s,

+q
where ¢ = (/v —1)/(y/v + 1) and v is an arbitrary but fixed positive number such

that cond D *C' < v, we can choose for the required value of k. the maximal integer
satisfying the inequality

Ine/2

4.26 k< .
(4.26) g

The following statements can be established ([17]).

THEOREM 4.7. To solve the system (4.9) with the accuracy € in the sense of
inequality (4.24) by the generalized conjugate gradient method (4.23) with the matriz
D from (4.22) it is sufficient to choose k. = [1.531n2] in the case of r = 3 and
ke = [1.22 In g] in the case of r = 4, where [z] denotes the integer part of number
z.

The number of arithmetic operations required in this case for the values r = 3
and r = 4 can be estimated from above by the quantities 75 M lng and 70 M lnf,
respectively.

Note that the condition numbers of the matrices D 'C determined in the Lemma
4.6 do not depend on mesh size h and the jump of the coefficients a(x). So, applying
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preconditioned conjugate gradient method to solve the problem (2.4) with the matrix
B from (4.8) as a preconditioner for the matrix A and using multilevel domain decom-
position method (MGDD) to solve the problem (4.9) with matrix C' we establish the
following results.

THEOREM 4.8. If we use MGDD method to solve problem (4.9) with matriz C
then condition number cond(B~*A) does not depend on mesh size h and jump of the
coefficients a(x).

THEOREM 4.9. The number of operations for solving system

AN=F

by preconditioned conjugate gradient method with preconditioner B and with accuracy e
in the sense

[N = XL < A = XL,

15 estimated by C'- N - 1n %, where \* = A7'F, \° € RY and C does not depend on N
and jump of the coefficients a(x).

5. Results of the numerical experiments. In this section the preconditioners
(3.21) and (4.8) are tested on the model problem

~V - (a(z)Vu) = f, inQ=]0,1?
u = 0, on 0f)

We present three numerical examples. In the first example we use the preconditioner B
in the form (3.21). The problem with M x M-matrix (1 is solved by preconditioned
conjugate gradient with diagonal Jacoby preconditioner. In the second example we
use the preconditioner B in the form (4.8). The problem with matrix C' is solved by
multilevel domain decomposition method as it is described in the section 4.1.

The domain is divided into M = n3 cubes (n in each direction) and each cube
is partitioned into 5 tetrahedra. The dimension of the original algebraic system is
N = 10n®—6n?. The right hand side is generated randomly, and the accuracy parameter
is taken as ¢ = 107%. The condition numbers of the preconditioned matrices B~1A are
calculated by the relation between the conjugate gradient and Lanczos algorithms [15].
The coefficient a(x) is piecewise constant and is defined to be

| a, (z,y,2)€[0.5,1] x [0.5,1] x [0.5,1]
(5.1) af,y,2) = { 1, elsewhere

The results are summarized in Tables 1 and 2, where n;;., and cond denote the iteration
number and condition number, respectively. All experiments are carried out on Sun
Workstation.

Finally, the method of preconditioning described in this paper is used to solve
the problem (1.2) with the constant right-hand-side function f(z) by the mixed finite
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element method with the function a(x) in the following form (see Figure 4):

0.2,0.4
0.6,0.8
0.2,0.4
0.6,0.8
0.2,0.4
0.6,0.8
0.2,0.4
0.6,0.8

0.2,0.4] % [0.2,0.4]
0.2,0.4] x [0.2,0.4]
0.6,0.8] % [0.2,0.4]
0.6,0.8] % [0.2,0.4]
(5.2) a(z,y,2) = 0.2,0.4] x [0.6,0.8]
0.2,0.4] % [0.6,0.8]
0.6,0.8] % [0.6,0.8]

[ ]

0.6,0.8] x [0.6,0.8

U
U
U
U
U
U
U

[
[
[
a=0.01, (z,y,2)€ %
[
[
[

] x|
] x|
] x|
] x|
] x|
] x|
I x|
I x|

\ 7

1, elsewhere

\

Again, the domain € is the unit cube, the domain is divided into M = 40 = 64000
cubes. The dimension of the original algebraic system for the Lagrange multipliers (2.4)
is N = 630400. Both preconditioners (3.21) and (4.8) are tested on this problem.

With the preconditioner in the form (3.21), i.e. three-level preconditioner, it takes
Niter = 18 outer iterations to solve (2.4) with the accuracy € = 107%. On each iteration
the problem (3.20) is solved by preconditioned conjugate gradient method. It takes less
than 40 iterations to solve (3.20) with the accuracy € = 1075,

With the preconditioner in the form (4.8), i.e. multilevel preconditioner when
MGDD method is used to solve the problem (4.9), it takes nj.. = 22 outer iterations
to solve (2.4). On each outer iteration it takes 18 iterations to solve (4.9) with the
accuracy € = 1078,

In both cases it takes less then 12 minutes to obtain the resulting vectors q and u.
The slices of the solution u by planes parallel to the xy—plane are shown in Figure 5.
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