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Abstract� The purpose of this paper is to develop and analyze a least�squares ap�
proximation to a �rst order system� The �rst order system represents a reformulation
of a second order elliptic boundary value problem which may be inde�nite and�or

nonsymmetric� The approach taken here is novel in that the least�squares functional
employed involves a discrete inner product which is related to the inner product in
H
����� �the Sobolev space of order minus one on ��� The use of this inner product

results in a method of approximation which is optimal with respect to the required
regularity as well as the order of approximation even when applied to problems with
low regularity solutions� In addition� the discrete system of equations which needs to
be solved in order to compute the resulting approximation is easily preconditioned�
thus providing an e�cient method for solving the algebraic equations� The precon�
ditioner for this discrete system only requires the construction of preconditioners for
standard second order problems� a task which is well understood�

�� Introduction�

Substantial progress in the �nite element methods and in the solution techniques
for solving the corresponding systems of algebraic equations in the last three decades
has resulted in the development of mathematical formulations that introduce phys�
ically meaningful quantities as new dependent variables ��uxes� velocity� vorticity�
strains and stresses� etc�	� These problems can be posed in a weak sense and approx�
imated by �nite element methods� In many cases �for example� Stokes equations	�
this procedure leads to a saddle point problem� Due largely to Babu
ska ��
 and
Brezzi ���
� it is now well understood that the �nite element spaces approximat�
ing di�erent physical quantities �pressure and velocity� or temperature and �ux�
or displacement and stresses� etc�	 cannot be chosen independently and have to
satisfy the the so�called inf�sup condition of Ladyzhenskaya�Babu
ska�Brezzi ���
�
��
� ���
� Although substantial progress in approximation and solution methods for
saddle point problems has been achieved� these problems may still be di�cult and
expensive to solve�
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In recent years there has been signi�cant interest in least�squares methods� con�
sidered as an alternative to the saddle point formulations and circumventing the
inf�sup condition� Examples of application of the least�squares to potential �ows�
convection�di�usion problems� Stokes and Navier�Stokes equations can be found
in ��
� ��
� ���
� ���
� ���
� ���
� ���
� ���
� In general� the corresponding problem
is written as a system of partial di�erential equations of �rst order with possibly
additional compatibility conditions� For example� �r � u � f � u � r p provides
a �rst order system for the Poisson equation ��p � f which can be augmented
by the compatibility equation curl u � � �see ���
� ���
	� Alternatively� the system
curl u � � and r � u � f � � has been used �cf� Chen and Fix in ���
� ���
	 for
�uid �ow computations�

There are two main approaches for studying least�squares methods for systems of
�rst order� The �rst approach introduced by Aziz� Kellogg and Stephens in ��
 uses
the general theory of elliptic boundary value problems of Agmon�Douglis�Nirenberg
�ADN	 and reduces the system to a minimization of a least�squares functional that
consists of a weighted sum of the residuals occurring in the equations and the
boundary conditions� The weights occurring in the least�squares functional are
determined by the indices that enter into the de�nition of the ADN boundary value
problem� See also the paper of Chang ���
� This approach generalizes both the
least�squares method of Jespersen ���
� which is for the Poisson equation written
as a grad � div system� and the method of Wendland ���
� which is for elliptic
systems of Cauchy�Riemann type� Recently� Bochev and Gunzburger ��
� ��
� have
extended the ADN approach to velocity�vorticity�pressure formulation of Stokes
and Navier�Stokes equations and have produced some very interesting theoretical
and computational results�

The second approach� mostly used for second order elliptic problems written as
systems of �rst order� introduces a least�squares functional and studies the resulting
minimization problem in the framework of the Lax�Milgram theory establishing the
boundness and the coercivity of the corresponding bilinear form in an appropriate
space� Interesting computational experiments in this setting have been done by
Chen and Fix in ���
 and by Carey and Shen in ���
 that were a basis for the
theoretical analysis of Pehlivanov� Carey and Lazarov in ���
 for selfadjoint and of
Cai� Lazarov� Manteu�el and McCormick in ���
 for non�selfadjoint second order
elliptic equations� The main result in ���
� ���
 is that the least�squares functional
generates a bilinear form that is continuous and coercive in a properly de�ned
subspace of Hdiv��	 �H���	 and� therefore� any �nite element approximation of
Hdiv��	 can be used since the approximating space need not to satisfy the inf�sup
condition� A recent paper by Pehlivanov� Carey and Vassilevski ���
 considers a
least�squares method for non�selfadjoint problems�

One problem with the above mentioned least�squares methods is that the error
estimates require relatively smooth solutions� The known estimates do not guaran�
tee any convergence when the methods are applied to problems with low regularity
solutions� The least�squares method developed in this paper will be stable and
convergent as long as the solution belongs to the Sobolev space H�����	� for any
positive ��

In this paper� we introduce and study a new least�squares norm for systems
arising from splitting convection�di�usion and reaction�di�usion equations into a



LEAST�SQUARES APPROACH FOR FIRST ORDER SYSTEMS 


system of equations of �rst order� The problem may be inde�nite and nonsymmet�
ric as long as it has a unique solution� We introduce a least�squares functional that
involves a discrete inner product that is related to the inner product in the Sobolev
space H����	� The use of this inner product results in a method which is optimal
with respect to the required regularity as well as the order of approximation and
extends to problems with low regularity solutions� In addition� the discrete system
of equations which needs to be solved in order to compute the resulting approxi�
mation is easily preconditioned thus providing an e�cient method for solving the
algebraic equations� The preconditioner for the algebraic system corresponding to
the new least�squares system only requires the construction of preconditioners for
standard second order problems� a task which is well understood�

The paper is organized as follows� In Section � we describe the least�squares
approach using a discrete H����	 inner product� We then discuss some of the
properties of more standard least�squares methods already studied in the literature
and show how this inner product results in a more balanced quadratic form� Next we
de�ne the computational algorithm and study its properties� In Section � we derive
an error estimate for the least�squares �nite element approximation� in Section � we
discuss the issues of implementation of the iteration methods and �nally in Section
� we provide the results of numerical experiments on some model problems�

�� The discrete H�� least�squares approach�

In this section� we describe the least�squares approach using a discrete H����	
inner product� We start by de�ning the second order boundary value problem
which we shall be approximating� We next give some notation for norms and
Sobolev spaces� We then discuss some of the properties of more standard least�
squares methods already studied in the literature and show how the use of the
inner product in H����	 in the least square functional provides a more balanced
quadratic form� Finally� we de�ne the computational algorithm by introducing a
discrete version of the H����	 inner product�

We shall consider least�squares approximations to the solutions for the following
second order elliptic boundary value problem� Let � be a domain in d dimensional
Euclidean space with boundary �� � �D � �N and let u satisfy

����	

Lu � f in ��

u � � on �D�

�u

��
� � on �N �

Here �u
�� denotes the co�normal derivative on �N and the operator L is given by

Lu � �
dX

i�j��

�

�xi
aij�x	

�u

�xj
�

dX
i��

bi�x	
�u

�xi
� c�x	u�

We assume that the matrix faij�x	g is symmetric� uniformly positive de�nite and
bounded� We further assume that bi � L���	� for i � �� � � � � d�
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To describe and analyze the least�squares method� we shall use Sobolev spaces�
For non�negative integers s� let Hs��	 denote the Sobolev space of order s de�ned
on � �see� e�g�� ���
� ���
� ���
	� The norm in Hs��	 will be denoted by k�ks� For
s � �� Hs��	 coincides with L���	� In this case� the norm and inner product will
be denoted by k�k and ��� �	 respectively� The space W is de�ned to be the closure
of �

v � C���	 j v � � on �D
�
�

with respect to the norm in H���	� In the case where �D � �� we de�ne W to be
the set of functions in H���	 with zero mean value� The space H����	 is de�ned
by duality and consists of the functionals v for which the norm

����	 kvk
�� � sup

��W

�v� �	

k�k�

is �nite� For noninteger values of s� Hs��	 is de�ned by the real method of inter�
polation �cf�� ���
	 between consecutive integers� We use the same notation for the
norms of vector valued functions� Thus� if � is a vector valued function with each
component �i � Hs��	� then

k�k�s �
dX
i��

���i���
s
�

Let A��� �	 be the form corresponding to the operator L� i�e�� for u� v � H���	�

A�u� v	 �
dX

i�j��

Z
�

aij�x	
�u

�xi

�v

�xj
dx

�
dX
i��

Z
�

bi�x	
�u

�xi
v dx�

Z
�

c�x	uv dx�

The weak formulation of ����	 is given by the problem� Given f � L���	� �nd
u �W satisfying

����	 A�u� �	 � �f� �	 for all � �W�

We assume that the solutions of ����	 are unique� This means that if v � W and
satis�es A�v� �	 � � for all � � W then v � �� As usual �cf�� ���
� ���
	� the
uniqueness assumption implies the existence of solutions as well�

The particular space H����	 chosen above is related to the boundary conditions
used in our boundary value problem ����	� We consider the symmetric problem

����	

w ��w � f in ��

w � � on �D�

�w

�n
� � on �N �
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Let T � H����	 ��W denote the solution operator for the above problem� i�e�� for
f � H����	� Tf � w is the solution to ����	� The following lemma provides the
relationship between T and the norm in H����	� Its proof is a simple consequence
of the de�nition of T �
Lemma ���� For all v � H����	�

����	 �Tv� v	 � sup
��W

�v� �	�

k�k��
� kvk�

��

and thus the inner product on H����	 � H����	 is given by �Tv�w	� for v�w �
H����	�

To de�ne the least�squares approximation to ����	 we start by considering the
following reformulation of ����	 into a system of �rst order equations� Let u be the
solution of ����	 and de�ne � � �Aru where A � A�x	 is the matrix with entries
faij�x	g� i� j � �� � � � � d� In addition� for � � H���	� de�ne

X � �
dX
i��

bi�x	
��

�xi
� c�x	��

Then� ����	 can be rewritten as

����	

� �Aru � � in ��

r � � � Xu � f in ��

u � � on �D�

� � n � � on �N �

Here n denotes the outward normal on �N �
In order to motivate our new least�squares formulation� we shall consider for the

moment a standard least�squares approach to ����	� In particular� we shall point
out some undesirable features which are not present in our new method� To this
end� let Hdiv��	 denote the linear space of vector functions � whose components
�i� for i � �� � � � � d� are in L���	 and whose divergence is also in L���	� The
corresponding norm k�kHdiv

is de�ned by

k�k�Hdiv
� k�k� � kr � �k� �

The subset Hdiv��	 consisting of functions with vanishing normal component on
�N will be denoted H�

div��	� The solution ��� u	 of ����	 obviously minimizes the
quadratic functional

����	 Q���� v	 � kr � � � Xv � fk� �
���A������ �Arv	

����

for all � � H�
div��	 and v � W � It is known that for some positive numbers C��

C��

����	
C��k�k

�
Hdiv

� kvk��	 	 kr � � � Xvk� �
���A������ �Arv	

����
	 C��k�k

�
Hdiv

� kvk��	
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for all v � W and � � H�
div��	� The one dimensional case was proved in ���
 and

the case of higher dimensions was proved in ���
�
Numerical approximations are de�ned by introducing spaces of approximating

functions Vh 
 H�
div��	 and Wh 
 W � The discrete approximations are de�ned

to be the pair �h � Vh and uh � Wh which minimize ����	 over all pairs ��� v	 in
Vh �Wh� It follows from ����	 �cf� ���
� ���
	 that the errors e� � � � �h and
eu � u� uh are quasi�optimal with respect to the norm appearing in ����	� i�e��

����	 ke�kHdiv
� keuk� 	 C inf

���v��Vh�Wh

�
k� � �kHdiv

� ku� vk�

�
�

Although ����	 is optimal with respect to this norm� it does not provide an optimal
estimate with respect to regularity of the solution� Consider� for example� the case
when Vh and Wh consist of standard conforming piecewise linear �nite element
approximation subspaces on a triangulation of size h� In that case� ����	 gives rise
to the estimate

ke�kHdiv
� keuk� 	 Ch kuk� �

Thus� to get �rst order convergence in L���	d for � �or H���	 for u	� we need three
Sobolev derivatives on the solution� Moreover� there is no theoretical convergence in
the case when f is only in L���	 or u is only inH���	� In addition to this de�ciency
there is no obvious e�cient way to solve the resulting algebraic equations�

The problem with the above least�squares formulation is that there are too many
derivatives on �� i�e�� the L���	 norm is too strong in the �rst term on the right hand
side of ����	� This suggests the use of a weaker norm� Consider the least�squares
method based on the following functional�

�����	 Q���� v	 � kr � � � Xv � fk�
�� �

���A������ �Arv	
���� �

The above functional makes sense for � � H�
div��	 �and in fact somewhat more

generally as we will see in Section �	 and v � W � The solution pair ��� u	 is its
minimum� The following lemma will be proved in the next section�
Lemma ���� There are positive numbers c� and c� such that

�����	
c��k�k

� � kvk��	 	 kr � � �Xvk�
�� �

���A������ �Arv	
����

	 c��k�k
� � kvk��	�

for all ��� v	 � H�
div��	 �W � The constants c� and c� above depend on faijg� fbjg

and c�
We now consider least�squares approximation based on Q�� Let Vh 
 H�

div��	
andWh 
W and let ��h� uh	 minimize �����	 over Vh�Wh� It follows from Lemma
��� that the resulting errors e� � � � �h and eu � u� uh are quasi�optimal with
respect to the norm appearing in �����	� i�e��

�����	 ke�k � keuk� 	 C inf
���v��Vh�Wh

�
k� � �k � ku� vk�

�
�
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This method gives rise to estimates which are optimal with respect to the the or�
der of approximation as well as the required regularity� Let us consider the case
when Vh consists of standard conforming piecewise linear �nite element approxi�
mation subspaces and Wh consists of the lowest order Raviart�Thomas spaces on a
triangulation of size h� In that case� �����	 gives rise to the estimate

ke�k � keuk� 	 Ch kuk� �

Thus� we get �rst order convergence in L���	d on � �or in H���	 on u	 when
u is only in H���	� This estimate is optimal both with respect to the order of
approximation as well as the required regularity�

Although minimization with respect to the functional Q���� �	 appears attractive
from the point of view of stability and accuracy� it is unfortunately not computa�
tionally feasible� This is because the evaluation of the operator T de�ning the inner
product in H����	 involves the solution of the boundary value problem ����	�

To make the method computationally feasible� we will replace the operator T
appearing in �����	� Note that the �rst term of �����	 can be rewritten

�����	 �T �r � � � Xv	�r � � �Xv	

Our goal is to replace T by an operator Th which is computable and is equivalent
to T in the sense that there are positive constants c�� c� not depending on h such
that

�����	
c��T �r � � � Xv	�r � � �Xv	 	 �Th�r � � � Xv	�r � � � Xv	

	 c��T �r � � � Xv	�r � � � Xv	�

for all ��� v	 � Vh �Wh�
We construct Th from a preconditioner for the �nite element approximation of

����	� Let Th � H����	 �� Wh be de�ned by Thf � w where w is the unique
element of Wh satisfying

D�w� �	 � �f� �	 for all � �Wh�

Here D��� �	 denotes the form on H���	 and is de�ned by

D�v�w	 �

Z
�

�rv � rw� vw	 dx�

A preconditioner Bh � Wh �� Wh is a symmetric� positive de�nite operator with
respect to the L���	 inner product� A good preconditioner is one which is compu�
tationally easy to evaluate and is spectrally equivalent to Th in the sense that there
are positive constants c	� c
 not depending on h and satisfying

�����	 c	�Thw�w	 	 �Bhw�w	 	 c
�Thw�w	 for all w �Wh�

Remark ���� We extend the operatorBh toH����	 byBhQh whereQh is the L���	
orthogonal projection ontoWh� This results in an operator which is symmetric and
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semide�nite on L���	� Note that Th � ThQh� Thus �����	 holds for all w in L���	
if it is satis�ed for all w in Wh�

We will assume that Bh is a good preconditioner� We then de�ne Th � h�I�Bh

where I denotes the identity operator on Wh� The purpose of this paper is to
analyze least�squares approximation based on the functional

�����	 Q���� v	 � �Th�r � � � Xv � f	�r � � � Xv � f 	 �
���A������ �Arv	

���� �
The quadratic form Q���� �	 shares many of the properties of Q���� �	 when re�

stricted to the approximation subspaces� For example� the inequality analogous to
�����	 holds under reasonable assumptions �the norm k�k

�� is replaced by �Th�� �	���	�
This allows us to construct e�cient iterative methods for the solution of the re�
sulting discrete equations� We will discuss more fully in Section �� Inequalities
analogous to �����	 also enable one to prove error estimates which are optimal both
in order of approximation and required regularity �see� Section �	�

Remark ���� Note that we require that the operator Th be equivalent to T on
functions of the form appearing in �����	� The h�I term is necessary since the
operator Bh alone may fail to satisfy the lower inequality in �����	�

Remark ���� The exact weighting in the de�nition of Th is not critical� For example�
one could take

Th � 	h�I � �Bh

for �xed positive constants 	 and �� These parameters could be used to tune the
iterative convergence rate� The order of convergence is not changed�

�� Error analysis�

We provide in this section an analysis of the least�squares approximation based
on the functional Q���� �	 de�ned in �����	� First we prove Lemma ��� and then
establish a stability estimate involving the norms corresponding to the quadratic
functional Q���� �	� We then prove error estimates which are optimal in order and
regularity for e� in L���	d and eu in H���	 and conclude this section by proving
an optimal L���	 estimate for eu�

In the remainder of this paper� C� with or without subscript will denote a generic
positive constant� These constants will take on di�erent values in di�erent occur�
rences but are always independent of the mesh parameter h�

Proof of Lemma ���� We will use an additional function space for the proof� De�ne
the boundary norm

����	 k�k
������N

� sup
��W

h�� �i

k�k�

where h�� �i denotes the L����	inner product� We consider the norm

����	 �j�� vj
 � �k� � nk�
������N

� k�k� � kvk��	
���
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and let H be the closure of Hdiv��	�W with respect to this norm�
We �rst prove that there is a constant C satisfying

����	
�j�� vj
� 	 C

�
kr � � �Xvk�

�� �
���A������ �Arv	

����
� k� � nk�

������N
� kvk�

�

for all ��� v	 � H� Indeed� for smooth � and v�

�Arv�rv	 � ����rv	 � �� �Arv�rv	

� �r � � � Xv� v	� h� � n� vi

� �A������ �Arv	�A���rv	� �Xv� v	�

By the Poincar�e inequality�

kvk�� 	 C�Arv�rv	�

Thus� the Schwarz inequality and obvious manipulations imply that

kvk�� 	 C
�
kr � � � Xvk�

�� �
���A������ �Arv	

����
� k� � nk�

������N
� kvk�

�
�

The inequality ����	 immediately follows for smooth � and v� We clearly have that

����	 kr � � � Xvk�
�� �

���A������ �Arv	
���� � k� � nk�

������N
� kvk� 	 C�j�� vj
��

It follows that inequality ����	 holds for all ��� v	 � H by continuity�
We next show that

����	
�j�� vj
� 	 C

�
kr � � �Xvk�

��

�
���A������ �Arv	

���� � k� � nk�
������N

�

for all ��� v	 � H by applying a standard compactness argument� This argument is
by contradiction� Assume that ����	 does not hold for any constant C 
 �� Then
there is a sequence f��i� vi	g� for i � �� �� � � � � with f��i� vi	g � H� �j�i� vij
 � � and

����	 kr � �i �Xvik
�
�� �

���A������i �Arvi	
���� � k�i � nk

�
������N

	
�

i
�

SinceW is compactly contained in L���	� we may assume without loss of generality
that vi converges in L���	� It immediately follows from ����	 and ����	 that the
sequence f��i� vi	g is a Cauchy sequence with respect to the norm �j�� �j
� Let ��i� vi	
converge to ��� v	 in H�
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For any � �W � we then have

A�vi� �	 � �Arvi�r�	 � �Xvi� �	

� ���i�r�	 � �Xvi� �	 � ��i �Arvi�r�	

� �r � �i � Xvi� �	 � ��i �Arvi�r�	� h�i � n� �i �

Hence�
jA�v� �	j � lim

i��
jA�vi� �	j

	 lim
i��

�
kr � �i � Xvik

�
�� �

���A������i �Arvi	
����

� k�i � nk
�
������N

����

k�k� � ��

By our assumption that solutions of ����	 are unique� it follows that v � �� In
addition�

k�k� � k� � nk�
������N

	 C lim
i��

�
kr � �i � Xvik

�
��

�
���A������i �Arvi	

���� � k�i � nk
�
������N

�
� ��

This contradicts the assumption that

�j�� vj
 � lim
i��

�j�i� vij
 � �

and hence completes the proof of ����	� The lemma follows by restricting ����	 and
����	 to H�

div��	 �W and hence completes the proof�

We next state some hypotheses which we shall require to hold for the approx�
imation subspaces� It is well known that these properties hold for typical �nite
element spaces consisting of piecewise polynomials with respect to quasi�uniform
triangulations of the domain � �cf�� ��
� ��
� ���
� ���
� ���
	� Let r be an integer
greater than or equal to one�

�H��	 The subspace Vh has the following approximation property� For any � �
Hr��	d �H�

div��	�

����	 inf
��Vh

�
k� � �k � h kr � �� � �	k

�
	 Chr k�kr �

�H��	 The subspace Wh has the following approximation property� For any w �
Hr����	 �W �

����	 inf
v�Wh

�
kw � vk � h kw � vk�

�
	 Chr�� kwkr�� �

�H��	 We assume that Wh is such that Qh� the L���	 orthogonal projection op�
erator onto Wh� is a bounded operator with respect to the norm in W �
i�e��

����	 kQhuk� 	 C kuk� for all u �W�
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Remark ���� It follows from ��
 that if �H��	 and �H��	 hold for r � �r then they
hold for r � �� �� � � � � �r� The property �H��	 is studied in ��
�

We note some properties implied by the above assumptions� It follows from ����	
that

�����	
k�I �Qh	vk�� � sup

��W

�v� �I �Qh	�	

k�k�
	 Ch kvk for all v � L���	�

In addition� ����	 implies that

�����	 kQhuk
�
�� 	 C��Thu� u	 	 C� kuk

�
�� for all u � H����	�

Indeed� the upper inequality follows from ����	 and the analogous equality

�Thv� v	 � sup
��Wh

�v� �	�

k�k
�
�

�

For the lower inequality of �����	� ����	 implies that

�TQhv�Qhv	 � sup
��W

�v�Qh�	� kQh�k
�
�

kQh�k
�
� k�k

�
�

	 C sup
��Wh

�v� �	�

k�k��
� C�Thv� v	�

We next prove a result analogous to Lemma ��� for the functional Q���� �	� For
convenience� we de�ne the corresponding form

�����	
��� v� ��w
 � �Th�r � � �Xv	�r � � � Xw	

� �A���� �Arv	� � �Arw	�

for all �� � � H�
div��	 and v�w � W � The corresponding norm will be denoted by

jjj�� �jjj and is de�ned by

jjj�� vjjj � ��� v� �� v
����

We then have the following lemma�
Lemma ���� Assume �H��� � �H��� hold and that Th is constructed as described

in Section � with a preconditioning operator Bh satisfying ������ with constants c	
and c
 not depending on h� Then� for all � � H�

div��	 and v �W �

�����	 C��k�k
� � kvk��	 	 jjj�� vjjj � 	 C��h

� kr � �k� � k�k� � kvk��	

holds with C� and C� which are independent of h�

Proof� By Lemma ���� the lower inequality of �����	 will follow if we can show that

�����	 kr � � � Xvk�
�� 	 C�Th�r � � �Xv	�r � � � Xv	�
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for all � � H�
div��	 and v �W � For any w � L���	�

kwk
�� 	 k�I �Qh	wk�� � kQhwk��

and hence �����	 and �����	 imply that

kwk�
�� 	 C�h� kwk� � �Thw�w		 	 C�Thw�w	�

We used Remark ��� for the last inequality above� This veri�es �����	 and completes
the proof of the lower inequality in �����	�

For the upper inequality in �����	� we note that by �����	� for w � L���	�

�����	 �Thw�w	 	 C�h� kwk� � �Thw�w		 	 C�h� kwk� � kwk�
��	�

The upper inequality of �����	 follows from Lemma ��� and �����	� This completes
the proof of Lemma ����

Remark ���� If Vh satis�es an inverse inequality of the form

�����	 kr � �k� 	 Ch�� k�k�

then the upper inequality of �����	 can be replaced by

�����	 jjj�� vjjj � 	 C��k�k
� � kvk��	�

for all � � Vh and v �W �

The following theorem gives estimates for the least�squares approximation using
the functional Q���� �	�
Theorem ���� Assume that the hypotheses of Lemma ��� are satis	ed� Let

��h� uh	 in Vh �Wh be the unique minimizer of Q���� �	 over all ��� v	 in Vh �Wh�
If the solution u of ����� is in Hr����	 then the errors e� � ���h and eu � u�uh
satisfy the inequality

�����	 ke�k � keuk� 	 Chr kukr�� �

The constant C above is independent of the mesh size h�

Proof� It is immediate from the de�nition of the approximation scheme that the
error �e� � eu	 satis�es

�����	 �e�� eu� �� v
 � � for all ��� v	 � Vh �Wh�

Thus� by Lemma ����

C��ke�k
� � keuk

�
�	 	 �e�� eu� e�� eu
 � inf

���v��Vh�Wh

�e�� eu�� � �� u� v
�
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By the Schwarz inequality and �����	� using �H��	 and �H��	� it follows that

ke�k
� � keuk

�
� 	 C inf

���v��Vh�Wh

jjj� � �� u� vjjj �

	 C inf
���v��Vh�Wh

�h� kr � �� � �	k� � k� � �k� � ku� vk��	

	 Ch�r kuk�r�� �

This completes the proof of the theorem�

Often solutions to elliptic boundary value problems may not be in the Sobolev
spaceHr����	 for any r � �� Problems on nonconvex polygonal domains� problems
with discontinuous coe�cients and problems with arbitrary �N all give rise to
solutions which are only in H�����	 for some positive � strictly less than one� The
following corollary shows that the least�squares method with a simple modi�cation
will still give stable and accurate approximation�
Corollary ���� Assume that the hypotheses of Theorem ��� are satis	ed and

that the inverse inequality

�����	 kvk� 	 Ch�� kvk for all v �Wh�

holds� Let Q	��� �	 denote the functional which is de	ned by replacing f by Qhf in
����
�� Let ��h� uh	 in Vh�Wh be the unique minimizer of Q	��� �	 over all ��� v	 in
Vh �Wh� If the solution u of ����� is in H�����	 with � 	 � 	 r then the errors
e� � � � �h and eu � u� uh satisfy the inequality

�����	 ke�k � keuk� 	 Ch� kuk��� �

The constant C above is independent of the mesh size h�

Proof� Note that

jjj�h� uhjjj
� � ��h� uh��h� uh
 � �ThQhf�r � �h � Xuh	�

By the Schwarz inequality

jjj�h� uhjjj
� 	 �ThQhf�Qhf	

����Th�r � �h � Xuh	�r � �h � Xuh	
����

It easily follows that
jjj�h� uhjjj

� 	 �ThQhf�Qhf	�

By �����	 and duality�

h� kQhfk
� 	 C kQhfk

�
��

and hence �����	 implies that

�ThQhf�Qhf	 	 C kfk�
�� �

Using ����	 and ����	� it follows that

kfk�
�� 	 C kuk�� �
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Combining the above inequalities with Lemma ��� gives

k�hk
� � kuhk

�
� 	 C kuk��

and hence

�����	 ke�k
� � keuk

�
� 	 C kuk�� �

We next show that �����	 holds for discrete solutions resulting from the functional
Q	��� �	� Assume that u � Hr����	� Let ���h� u

�

h	 in Vh�Wh be the unique minimizer
of Q���� �	 over all ��� v	 in Vh �Wh� Then�

jjj�h � ��h� uh � u�hjjj
� � ��h � ��h� uh � u�h��h � ��h� uh � u�h


� ��Th�I �Qh	f�r � ��h � ��h	 � X �uh � u�h		�

As above�

jjj�h � ��h� uh � u�hjjj
� 	 �Th�I �Qh	f� �I �Qh	f	 � h� k�I �Qh	fk

�
�

By ����	 and the fact that r � ��

jjj�h � ��h� uh � u�hjjj
� 	 Ch�r kfk�r�� 	 Ch�r kuk�r�� �

The above estimate and Lemma ��� imply that

k�h � ��hk
�
� kuh � u�hk

�

� 	 Ch�r kuk�r�� �

Thus by Theorem � and the triangle inequality� it follows that

�����	 ke�k
� � keuk

�
� 	 Ch�r kuk�r�� �

The corollary follows interpolating �����	 and �����	�

We conclude this section by proving an improved error estimate for eu in L���	�
For this result� we need somewhat stronger assumptions on the operator Bh used
in the de�nition of Th� We assume that Bh is such that there is a positive number
c� satisfying

�����	 c�
��B��h v

�� 	 ��T��h v
�� for all v �Wh�

In contrast to �����	� there are far fewer examples of operators Bh known to satisfy
�����	� If the operator T gives rise to full elliptic regularity� then it is known that
the W�cycle multigrid algorithm with su�ciently many smoothings on each level
gives rise to an operator Bh which satis�es �����	 �cf�� ��
	�

Improved L���	 estimates depend upon elliptic regularity� We consider the
adjoint boundary value problem in weak form� Given g � L���	 �nd v � W
such that

�����	 A��� v	 � ��� g	 for all � �W�
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Solutions of �����	 exist and are unique since we have assumed uniqueness and
existence for solutions to ����	� We assume full elliptic regularity� i�e�� solutions to
����	� ����	 and �����	 are in H���	 �W and satisfy the inequalities

�����	

kuk� 	 C kfk �

kTfk� 	 C kfk �

kvk� 	 C kgk �

Theorem ���� Assume that the hypotheses for Theorem ��� are satis	ed� In
addition� assume that Bh also satis	es ������ and that solutions of ������ ����� and
������ satisfy ����
�� Then�

keuk 	 Ch jjje�� eujjj �

Proof� The proof is by duality� Let v solve �����	 with g � eu� Then�

�����	
keuk

� � A�eu� v	

� �Th�r � e� � X eu	�Th
��v	 � �A���e� �Areu	�Arv	�

We want to de�ne w and � so that

�����	 Th
��v � r � � � Xw and Arv � � �Arw�

To this end let w be the solution of

�����	 A�w��	 � �Th
��v �r � Arv� �	 for all � �W�

By �����	� v is inH���	 and hence the data appearing in �����	 are in L���	� Thus�
w is in H���	 and satis�es

Lw � Th
��v �r � Arv�

Setting � � Ar�v�w	 we see that �����	 is satis�ed� Hence �����	 and �����	 give

keuk
� � �Th�r � e� �X eu	�r � � � Xw	 � �A���e� �Areu	� � �Arw	

� �e�� eu� ��w
�

By �����	 and the Schwarz inequality�

�����	 keuk
� 	 jjje�� eujjj jjj� � ��w � �jjj

for all ��� �	 � Vh �Wh� Applying Lemma ��� and Remark ��� implies that there
exists ��� �	 � Vh �Wh such that

�����	

jjj� � ��w � �jjj � 	 C�h� kr � �� � �	k� � k� � �k� � kw � �k��	

	 Ch��k�k�� � kwk��	 	 Ch��kwk�� � kvk��	

	 Ch��
��Th��v��� � kvk��	�
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The last inequality above follows from �����	� By the triangle inequality�

��Th��v�� �
��Th��T �v ��v	

��
	
��Th���T � Th	�v ��v	

�� �
��Th��Th�v ��v	

�� �
It is easy to see from eigenfunction expansions with respect to the operator Bh that

��Th����� 	 ��B��h �
�� for all � �Wh

and ��Th����� 	 h�� k�k for all � � L���	�

It follows from �����	� Remark ��� and standard �nite element theory that

k�T � Th	fk 	 Ch� kfk for all f � L���	�

Combining the above estimates gives

�����	
��Th��v�� 	 C

�
kvk� �

��B��h Th�v ��v	
��� 	 C kvk� �

We used �����	 for the last inequality above� Combining �����	� �����	 �����	 and
�����	 completes the proof of the theorem�

�� Implementation and the iterative

solution of the least�squares system�

In this section we consider the implementation aspects of the least square method
corresponding to Q���� �	 described in Section � and analyzed in Section �� The
resulting equations are solved by preconditioned iteration� There are two major
aspects involved in the implementation of a preconditioned iteration� the operator
evaluation and the evaluation of the preconditioner� These tasks will be considered
in detail in this section�

Our goal is to solve the equations which result from the minimization of the
functional Q���� �	 over the space Vh �Wh� The solution pair ��h� uh	 satis�es the
equations

����	 ��h� uh� �� v
 � �Thf�r � � � Xv	

for all pairs ��� v	 � Vh �Wh� As a model application� we will consider the case
when Vh and Wh consist of continuous piecewise linear functions with respect to a
quasi uniform triangulation of � of size h� We only consider the case when �N � �
and when � is a subset of R�� The functions in Wh vanish on �� while those in Vh
are piecewise linear vector functions without any imposed boundary conditions� We
also let  Wh denote the set of continuous piecewise linear functions on � �not sat�
isfying any boundary conditions	� Extensions to higher dimensional �nite element
subspaces are straightforward� We shall avoid the question of quadrature in the
case of variable coe�cient problems� Instead� we shall assume that all coe�cients
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are piecewise constant with respect to the triangulation de�ning the mesh� We will
also replace f by its interpolant �f �  Wh�

Remark ���� For general polygonal domains with �N 
� �� it is not suitable to
use spaces of continuous piecewise linear functions for Vh� This is because the
boundary condition in H�

div��	 may force all components of continuous piecewise
linear vector functions to vanish on �N resulting in a loss of accuracy� For these
problems we could de�ne Vh to be the spaces designed for mixed �nite approxi�
mation such as the Raviart�Thomas or the Brezzi�Douglas�Marini spaces� In such
spaces� the boundary conditions can be easily satis�ed while retaining the desired
approximation properties�

Let f�ig and f�ig be the nodal bases for the spaces Vh andWh respectively� The
two bases provide a natural basis for the product space Vh �Wh which we shall
denote by f�ig� Each basis function �i is of the form ��iv� �

i
m	 where �iv is a basis

element for Vh and �im � � or �im is a basis element for Wh and �iv � ��
As usual� one writes the solution

��h� uh	 �
X
i

Di�
i

in terms of this basis and replaces ����	 by the matrix problem

����	 MD � F

where M is the matrix with entries

Mij � ��iv� �
i
m� �jv � �

j
m


and F is the vector with entries

Fi � �Th �f�r � �iv �X �im	�

Clearly� M is symmetric and is also positive de�nite by Lemma ���� Although� the
implementation involves the solution matrix system ����	� the matrix itself is never
assembled� In fact� because of the operator Th appearing in the �rst term of �����	�
M is a dense matrix� Instead� one solves ����	 by preconditioned iteration�

The implementation of a preconditioned iteration for solving ����	 involves three
distinct steps� First� we must compute the vector F � Second� we must be able to
compute the action of the matrix M applied to arbitrary vectors G � Rm� where
m is the dimension of Vh �Wh� Finally� we must be able to compute the action of
a suitable preconditioner applied to arbitrary vectors G � Rm� As we shall see� all
three steps involve the preconditioner Bh�

In previous sections in this paper� we de�ned Bh as a symmetric positive de�nite
operator on Wh� In terms of the implementation� the preconditioner can be more
naturally thought of in terms of a n�n matrix N where n is the dimension of Wh�
The operator Bh is de�ned in terms of this matrix as follows� Fix v � Wh and
expand

Bhv �
X
i

Gi�
i�
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Then�

����	 NG � �G

where

����	 �Gi � �v� �i	�

The operatorBh is a good preconditioner for Th provided that the matrixN�� �N has
small condition number� Here �N is the sti�ness matrix for the form D��� �	 de�ned
in Section �� The matrix N need not explicitly appear in the computation of the
action of the preconditioner� Instead� one often has a process or algorithm which
acts on the vector �G and produces the vector G� i�e�� computes N�� �G� Thus� the
practical application of the preconditioner on a function v reduces to a prede�ned
algorithm and the evaluation of the vector �G de�ned by ����	�

We now outline the steps for computing F � We �rst compute the nodal values
of �f by evaluating f at the nodes� The data �for application of Bh	

�Gi � � �f � �i	

can be analytically calculated since the product �f�i is piecewise quadratic with
respect to the mesh triangulation� The coe�cients of Bh

�f result from application
of the preconditioning algorithm� The remaining quantities can be analytically
computed since they only involve integration of piecewise quadratic functions�

The next action required for the preconditioning iteration is the application ofM
to arbitrary vectors G � Rm� The vector G represents the coe�cients of a function
pair

��� v	 �
X
i

Gi��
i
v� �

i
m	

and we are required to evaluate

����	
�MG	j � ��� v� �jv � �

j
m
 � �Th�r � � � Xv	�r � �jv � X �jm	

� �A������ �Arv	� �jv �Ar�jm	�

for j � �� � � � � n� The quantity �r � � � Xv	 is a discontinuous piecewise linear
function with respect to the mesh triangulation� The data for the preconditioner
solve

��r � � � Xv	� �i	

can be computed since it reduces to integrals of piecewise quadratic functions over
the triangles� After application of the preconditioning process� the function Th�r �
� � Xv	 is known� Since both Th�r � � � Xv	 and A������ � Arv	 are known�
piecewise linear �discontinuous	 functions� the remaining integrals required for the
computation of �MG	j in ����	 reduce to local linear combinations of integrals of
piecewise quadratic functions over triangles�

The �nal step required for a preconditioned iteration is the action of a precon�
ditioner for M � Let G � Rm and let Gv and Gm denote the coe�cients of G which
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correspond to basis functions for Vh and Wh respectively� From Lemma ��� and
�����	� it follows that there are positive numbers C� and C� not depending on h
which satisfy

����	
C�

	
��IGv	 �Gv � � �NGm	 �Gm



	 �MG	 �G 	 C�

	
��IGv	 �Gv � � �NGm	 �Gm




for all G � Rm� Here �I is the mass matrix �Iij � ��i� �j	� It is not di�cult to see

that the matrix �I is spectrally equivalent to the h� times the identity matrix I� It
follows that the matrix M is spectrally equivalent to the block matrix

����	

�
h�I �
� N

�
�

The blocks above correspond to the partitioning of the basis functions into those
from Vh and Wh respectively� We use the inverse of the block matrix of ����	 as
a preconditioner for M � Thus� the application of the preconditioner to a vector
G � Rn involves multiplying the Vh components of G by h�� and applying the
preconditioning process �N��	 to the Wh components of G�

We now consider the amount of computational work involved in the above steps�
Each step involves the computational e�ort required to evaluate the action of the
preconditioner� The additional computations for each step require a �xed amount
of work per node since the subsequent nodal computation only involves integration
over the local support of basis functions� The work per step in the preconditioned
iteration for ����	 consists of the work for two Bh preconditioner evaluations plus
work on the order of the number of unknowns n�

�� Numerical experiments�

In this section� we report the results of numerical experiments involving the least�
squares method developed earlier� In all of these experiments� the operator Bh was
de�ned in terms of one multigrid V�cycle iteration� We �rst consider the rate of
convergence for preconditioned iterative methods for computing the minimizer over
the approximation subspace for �����	� This convergence rate can be bounded in
terms of the condition number of the precondition system which we shall report for
three sets of coe�cients� Subsequently� we will report the error in the approximation
when the least�squares approach is applied to a problem with known solution�

We consider problem ����	 when � is the unit square in two dimensional Eu�
clidean space� For our reported results we shall only consider the case of constant
coe�cients and take �N � �� The unit square is �rst partitioned into a regular
n�n mesh of smaller squares of size h � �
n� The triangulation is then de�ned by
breaking each of these squares into two triangles by connecting the lower left hand
corner with the upper right� The approximation spaceWh is de�ned to be the �nite
element space consisting of the continuous functions on � which are piecewise linear
with respect to the triangulation and vanish on ��� The approximation space Vh is
de�ned to be the continuous vector valued functions which are piecewise linear with
respect to the triangulation� Since �N � �� no boundary conditions are imposed
on Vh� This construction agrees with that discussed in Section ��
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In all of our examples� we shall use Bh to be the preconditioner for Th corre�
sponding one sweep of the multigrid V�cycle algorithm� We shall take n to be a
power of two� To de�ne the multigrid algorithm� one requires a sequence of coarser
grid spaces� These spaces are de�ned by successively doubling the mesh size� Since
the resulting sequence of triangulations is nested� so is the sequence of spaces�

M� �M� � � � � �M j � Wh�

We use the point Gauss Seidel smoothing iteration on all spaces except the �rst
�with mesh size �!�	 on which we solve directly� The resulting multigrid iterative
procedure is described in� for example� ���
� The multigrid preconditioner results
from applying one step of the iterative procedure with zero starting iterate� ��
� The
V�cycle uses one pre and post Gauss Seidel iteration sweep where the directions of
the sweeps are reversed in the pre and post smoothing iterations� This results in a
symmetric preconditioning operator Bh which satis�es

����	 ����Thv� v	 	 �Bhv� v	 	 �Thv� v	 for all v �Wh�

The above bound was computed numerically and holds for h � �
n for n �
�� �� ��� � � � � ���� The evaluation of Bh �i�e�� N�� applied to a vector where N
is given by ����		 can be done in O�n�	 operations and hence is proportional to the
number of grid points on the mesh de�ning Wh�

Table ����
Condition number of �M��M for three problems

h Problem �a	 Problem �b	 Problem �c	

�
� ���� ���� ���
�
�� ���� ���� ���
�
�� ���� ���� ���
�
�� ���� ���� ���
�
��� ���� ���� ���

We �rst report condition numbers for the preconditioned system� As noted in
Remark ���� we have some freedom in choosing the de�nition of Th� In all of the
reported calculations� we used 	 � �
� and � � � �see� Remark ���	� Let M be
the sti�ness matrix for the least�squares approximation as de�ned in Section �� We
replace the Gramm matrix �I in ����	 by the diagonal matrix  I with diagonal entries
given by

� I	ii � ��Iii�

Thus� the preconditioner for M involves the inversion of the block matrix

�M �

�
 I �
� N

�
�
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Remark ��� and Lemma ��� show that the condition number of �M��M is bounded
independently of the mesh size h� We report the actual condition numbers in
Tables ���� We give the condition numbers for three di�erent problems� For the
�rst problem �a	� the operator is given by the Laplacian� i�e��

aii � �� aij � � for i 
� j� bi � �� and c � ��

The second column �b	 corresponds to an operator with the coe�cients

aii � �� aij � � for i 
� j� b� � �� b� � �� and c � ��

Finally� the third column �c	 corresponds to ����	 with coe�cients

aii � �� aij � � for i 
� j� bi � �� and c � ����

We note a signi�cant increase in the condition numbers in the case of Problem
�c	� The reason for this increase is that this problem is more singular than the
other two� Let v � H�

� ��	 be arbitrary and set � � �Arv then Lemma ��� implies
that

����	 krvk� 	 c��� ���v �Xv� v	�

By Fourier analysis� it is straightforward to see that ����	 holds for c� � � for
Problem �a	 whereas we must take c� � �
�� in the case of Problem �c	� This
suggests that the condition number of Problem �c	 should be at least �� times
larger than that of Problem �a	� This explains much of the increase in condition
number reported for Problem �c	�

We next considered applying the least�squares method to approximately solve
problems with a known analytic solution� We do this by starting with the solution

u � x�x � �	 sin��y	�

This obviously satis�es the zero Dirichlet boundary condition� We generate the
right hand side data by applying the di�erential operator to the solution� This
resulting right hand side function is then interpolated and used as data in the
least�squares algorithm as discussed in Section �� We consider the Problems �a	�
�b	 and �c	 described above� We report the discrete L���	 norms of the errors e�
and eu as well as the number of iterations required for numerical convergence of
the preconditioned iteration�

Table ����
Error and iteration counts for Problem �a�

h eu e� Iterations

�
� ���� ���� ���� ���� ��
�
�� ���� ���� ���� ���� ��
�
�� ���� ���	 ���� ���� ��
�
�� ���� ���	 ���� ���	 ��
�
��� ���� ���
 ���� ���	 ��
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The errors and iteration counts for Problem �a	 are given in Table ���� The
discrete L���	 convergence appears to be second order for u� In this case the
method is behaving somewhat better then predicted by the theory since it is not
known whether the preconditioner Bh satis�es �����	 with c� independent h� The
error in � appears also to be converging somewhat faster than the �rst order rate
guaranteed by Theorem ����

Table ����
Error and iteration counts for Problem �b�

h eu e� Iterations

�
� ���� ���� ���� ���� ��
�
�� ���� ���� ���� ���� ��
�
�� ���� ���	 ���� ���� ��
�
�� ���� ���	 ���� ���	 ��
�
��� ���� ���
 ���� ���	 ��

Table ����
Error and iteration counts for Problem �c�

h eu e� Iterations

�
� ���� ���� ���� ���� ��
�
�� ���� ���� ���� ���� ��
�
�� ���� ���� ���� ���� ��
�
�� ���� ���� ���� ���� ��
�
��� ���� ���	 ���� ���� ��

The error and iteration counts for Problems �b	 and �c	 are reported in Tables
��� and ��� respectively� The results of Problem �a	 and �b	 are really rather simi�
lar� This suggests that e�ect the non�symmetric terms in Problem �b	 is relatively
small� We note that the moderate increase in the number of iterations for con�
vergence for Problem �c	 does not re�ect the large increase in condition number
observed in column �c	 of Table ���� One expects that the large condition numbers
are due to a few small eigenvalues which correspond to eigenvalues of the contin�
uous problem with small absolute value� In such a situation� the preconditioned
conjugate gradient algorithm is known to perform much better than predicted by
the worst case bound involving the condition number� The errors in Problem �c	
are also larger by about a factor of ten than those observed for Problem �a	 and
�b	�
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