MULTIGRID ALGORITHMS FOR NONCONFORMING AND MIXED
METHODS FOR SYMMETRIC AND NONSYMMETRIC PROBLEMS
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Abstract. In this paper we consider multigrid algorithms for nonconforming and mixed finite
element methods for symmetric and nonsymmetric second order elliptic problems. We prove optimal
convergence properties of the W-cycle multigrid algorithm and uniform condition number estimates
for the variable V-cycle preconditioner for the symmetric problem. For the nonsymmetric and/or
indefinite problem, we show that a simple V-cycle multigrid iteration converges at a uniform rate
provided that the coarsest level in the multilevel iteration is sufficiently fine (but independent on
the number of multigrid levels). Various types of smoothers for the nonsymmetric and indefinite
problem are discussed. Extensive numerical results for both symmetric and nonsymmetric problems
are given to illustrate the present theories.
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1. Introduction. In this paper we study some multigrid algorithms for
second order elliptic problems including nonsymmetric and/or indefinite problems.
We consider the solution of the discrete systems which arises from the application
of nonconforming and mixed finite element methods. For the nonsymmetric and
indefinite problem, we assume that the nonsymmetric/indefinite terms are a “compact
perturbation”; the convection-dominated problems are not studied here.

In the second section we study multigrid algorithms for solving the symmetric
problem by the standard P, nonconforming finite elements. The P, nonconforming
multigrid algorithms have been studied in the past few years. There have heen two
types of multigrid algorithms for solving the symmetric problem. The first one ex-
ploits the nonconforming finite elements in both smoothing iterations and coarse-grid
corrections in the multilevel iteration. For this type of multigrid algorithm, only the
W-cycle algorithms were proven to be convergent under the assumption that the num-
ber of smoothing iterations on all levels is big enough [8], [9], [12]. The arguments in
these earlier papers follow the standard proof of convergence of multigrid algorithms
for conforming finite element methods [2], and do not apply to the V-cycle algorithm.

The second type of multigrid algorithm uses the nonconforming finite elements in
the smoothing iterations on the finest level, but the P; conforming finite elements in
the coarse-grid corrections in the multilevel iteration. For this approach, uniform it-
erative convergence estimates for the V-cycle multigrid algorithm with one smoothing
step have been obtained for the symmetric problem [12], [19].

In this paper we re-examine the first type of multigrid algorithm for the symmetric
problem. We present a different convergence analysis for these multigrid algorithms
than those in [8], [9], and [12]. This analysis applies to both the W-cycle and the vari-
able V-cycle. The variable V-cycle algorithm is one in which the number of smoothing
steps increase exponentially as the number of grid decreases; there is no requirement
on the number of smoothings on the finest level for the variable V-cycle. We prove
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optimal convergence properties of the WW-cycle multigrid algorithm and uniform con-
dition number estimates for the variable V-cycle preconditioner. Furthermore, explicit
bounds for the convergence rate are determined, which have not been given in the
earlier papers.

In the third section we study multigrid algorithms for solving the nonsymmetric
and/or indefinite problem by the nonconforming finite elements. We first consider the
problem of existence and uniqueness of the solution of the discrete systems arising from
application of the nonconforming method to the nonsymmetric and/or indefinite prob-
lem. We prove that the discrete systems have a unique solution and produce optimal
order error estimates provided that the size of meshes is sufficiently small. We then
provide a convergence analysis for the multigrid algorithms. There has been intensive
research on the multigrid algorithms for the nonsymmetric and indefinite problem
using the conforming finite elements. Paper [5] has a good survey in its introduction,
and is most closely related to the subject of this paper. For the nonconforming multi-
grid algorithm of the nonsymmetric and indefinite problem under consideration, we
only analyze the second type of multigrid algorithm mentioned above. We show that
the result for the symmetric problem can carry over to the nonsymmetric and indef-
inite case. Namely, we prove uniform iterative convergence estimates for the V-cycle
multigrid algorithm for the nonsymmetric and indefinite problem under rather weak
assumptions (e.g., the domain need not be convex). We mention that the present
argument does not cover the first type of multigrid algorithm for the nonsymmetric
and indefinite problem since the V-cycle algorithm for the symmetric problem in this
case has not been proven to converge.

A variety of smoothers are considered here. One type of smoothers is defined in
terms of the corresponding symmetric problem, and the other type is entirely based
on the original nonsymmetric and indefinite problem. These two types of smoothers
include point and line Jacobi and Gauss-Seidel iterations.

Not ounly is the analysis of multigrid algorithms for nonconforming finite element
methods of interest for their own sake (see, e.g., [15], [17], [18], [21] and the bibli-
ographies therein), but it has great application to mixed finite element methods. It
has been shown [12], [14], [15] that the linear system arising from the mixed methods
of the symmetric problem can be algebraically condensed to a symmetric, positive
definite system for Lagrange multipliers. This linear system is identical to the sys-
tem arising from the nonconforming finite element methods. Hence the analysis of
multigrid algorithms for the nonconforming methods can carry over directly to the
mixed methods. The analyses of multigrid algorithms for the mixed methods of the
symmetric and nonsymmetric and indefinite problems are given in §2.2 and §3.3, re-
spectively. According to the knowledge of the authors, the multigrid algorithms for
the nonsymmetric and indefinite problem by the nonconforming and mixed methods
are analyzed here for the first time.

In the final section extensive numerical results for both symmetric and nonsym-
metric problems are given to illustrate the present theories and compare the non-
conforming multigrid methods with standard conforming finite element and finite
difference multigrid methods. Special attention is paid to the latter case. In partic-
ular, for the nonsymmetric and indefinite problem, both types of multigrid methods
mentioned above are tested for the first time. The later analysis is carried out for
the two-dimensional, triangular case; it works for the three-dimensional case without
substantial changes as noticed in [12], [14], [15]. Also, rectangular finite elements can
be similarly considered.
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2. The Symmetric Problem. In this section we develop multigrid algo-
rithms for the symmetric problem. The nonconforming finite elements are considered
in §2.1, and the mixed methods are described in §2.2.

2.1. The nonconforming multigrid algorithm. We consider as our model
problem the following symmetric equation

(2.1) -V-(AVu)+cu=f inQ,
- w=0 on 99,

where Q@ C IR", n = 2,3 is a simply connected bounded polygonal domain with the
boundary 9Q, f € L?(€), and the coefficients A € (L>(Q))"*", c € L>°(Q) satisfy

(22(1) glA('L)g 2 (1’05[6: € -Qa é € ]Rn
and
(2.2b) 0<c <c(x)<ea, z €€,

with fixed constants ag > 0, ¢y, co.
Problem (2.1) is recast in weak form as follows. The bilinear form a(-, -) is defined
as follows:

a(v,w) = (AVv, Vw) + (cv, w), v,w € H'(Q),

where (-,-) denotes the L?(2) or (L*(2))" inner product, as appropriate. Then the
weak form of (2.1) for the solution v € H} (Q) is

(23) CL(U,’U) = (fH ’U)q Vuve H&(Q)

For 0 < h < 1, let &, be a triangulation of Q into triangles of size h, and define
the Pi-nonconforming finite element space

Vi = {v € L*(Q) : v|g is linear for all E € &,,v is continuous
at the barycenters of interior edges and
vanishes at the barycenters of edges on 9Q}.

Associated with V},, we introduce a bilinear form on Vj, & H{ (Q) by

ap(v,w) = Z (AVv, Vw) g + (cv,w), v,w €V, @ Hé(Q)./
Ecgy,

where (-,-)p is the L?(E) inner product. Then the Pj-nonconforming finite element
discretization of (2.1) is to find up, € V}, such that

(2.4) an(up,v) = (f,v), Yovev,.

To develop a multigrid algorithm for (2.4), we need to assume a structure to our
family of partitions. Let hy and &,, = & be given. For each integer 1 < k < K, let
hy = 22"Fhy and En,, = & be constructed by connecting the midpoints of the edges
of the triangle in &, _1, and let £, = £ be the finest grid. In this and the following
sections, we replace subscript h; simply by subscript k.
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Following [8], [9], [12], the coarse-to-fine intergrid transfer operator Iy, : Vi1 — V;
for k =2,..., K is defined as follows. For v € V},_1. let ¢ be a midpoint of an edge of
a triangle in &; then we define I;v by

0 if ¢ € 00,
(Itv) (¢) = < v(q) ; if g OF for any FE € &1,
%{U|EI (¢) +v|g,(q)} ifq€dE NIE, for some Ey, Ey € ;.

Let Ay : Vi, — V;, be the discretization operator on level k given by
(2.5) (Arv,w) = ap(v,w), Y we V.

The operator Ay, is clearly symmetric (in both the ax(-,-) and (-,-) inner products)
and positive definite. Also, we define the operators Pr_; : V;, — Vj_1 and P,L’_l :
Vi — Vi1 by

ap—1(Pr—1v,w) = ay(v, [yw), Vwe Vi,
and
(Py_qv.w) = (v, [yw), Vwe Vit

It is easy to see that [, Pr_q is a symmetric operator wtih respect to the a; form.
Note that neither P{ nor P is a projection in the nonconforming case. Finally, the
multigrid algorithm which we shall consider also requires linear smoothing operators
Rp: Vi — Vi for k=1,...,K. Let Rl denote the adjoint of Rj, with respect to the
(+,-) inner product and define

R _ Ry if [ is odd,
k7 R, if [ is even.

Multigrid algorithms can be represented in variational and non-variational forms.
Both approaches are equivalent and connected in the sense that the multigrid processes
result in a linear iterative scheme with a reduction operator equal to I — B A, where
By : Vk — Vi is the multigrid operator. In this paper, following [7], we define the
multigrid operator By : Vi, — Vi in terms of an iterative process as follows.

MULTIGRID ALGORITHM 2.1. Let 1 < £ < K and p be a positive integer. Set
By, = 441_1. Assume that Bp_; has been defined and define By g for g € Vj, as follows:

1. Set 2° =0 and ¢° = 0.
2. Define 2! for 1 = 1,...,m(k) by

2l 2 g B(kl+m(k))(g _ Akml*l).
3. Define y™*) = 2m*) 4 [14P where ¢ for i = 1,...,p is defined by
¢ =q7"+ Br- [PI?_1 (g - Ak:c""(k)) - Ak_lg'f”} )
4. Define y! for 1 = m(k) +1,...,2m(k) by
gl =y 14 Rgcl+m(l.‘)) (g— A;.,yl*l) .

5. Set Bjg = y>™h),
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In Algorithm 2.1, m(k) gives the number of pre- and post-smoothing iterations
and can vary as a function of k. If p = 1, we have a V-cycle multigrid algorithm. If
p = 2, we have a W-cycle algorithm. As mentioned in the introduction, a variable V-
cycle algorithm is one in which the number of smoothings m (k) increase exponentially
as k decreases (i.e., p = 1 and m(k) = 2K ~*). The smoothings are alternated following
[7] and are put together so that the resulting multigrid preconditioner By, is symmetric
in the L?(Q) inner product for each k.

We now apply the theory developed in [7] to analyze Algorithm 2.1. Toward that
end, we require appropriate conditions for the smoother, need to establish the stability
property of the intergrid transfer operator, and show the so-called “regularity and
approximation” inequality. Below we use || - || to indicate the standard L*() norm.

The construction of smoothers for the nonconforming method fits into the general
theory of [7]. We can use point and line Jacobi and Gauss-Seidel smoothing procedures
to define Ry, [12], for example. The smoothing estimates are a consequence of the
general smoothing theory developed in [6]. Hence, it suffices to consider the remaining
two conditions, which are defined as follows:

(2.6) ar(Ipv, Iyv) < Crap_1 (v, v), Vve Vi,
and
- ‘ v ‘4kv||2 " l—o 7
(2.7) | (I — I Pr_1) v,v)| < Cy v ar(v,v) 79, YoveV,
k

for k = 2,..., K, where C, and C, are constants independent of k, A is the largest
eigenvalue of Ay, I : Vi — Vi is the identity operator, and 0 < « < 1. Here
and throughout the paper, C, with or without subscript, denotes a generic positive
constant.

We first prove (2.6). We remark that the constant C, in (2.6) is in general bigger
than two, as shown in the following example. Thus the general theory in [7] does not
apply to the standard V-cycle, rather to the variable V-cycle and the W-cycle.

To construct the example, we rewrite the definition of I as follows. From Fig. 1
it is not difficult to see that for v € Vj_q,

(2.80) (L) (ra) = 3 (0(0) + v()).
and
(2.8b) (Irv)(xp) = v(z) + i{’li(l’g) +v(ag) —v(xs) —v(ws)}

Ezample 1. Let Q be given in Fig. 2 and v be in V;_; with the nodal values
determined in Fig. 2. Then with A =1 and ¢ =0 it is easy to check that

ax—1(v,v) = 16,
and
ar(Irv, Iyv) = 32.5.
Consequently, we see that

ar(Iryv, Lrv) > 2ap_1(v,v).
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Fic. 1. Hlustration of the definition of 1.

F1G. 2. The definition of the function v in Example 1.

We now turn to condition (2.6).

Proposition 2.1. There is a constant C.. independent of k such that (2.6) is satisfied.
ProOF. Note that for every v € Vi_1, ar_1(v,v) is a norm in Vj,_; equivalent to

> 23: ((v(ﬁ:) — (@) + hifﬁg(ﬂ)) ;

Ec&y_y i,j=1

where the T; are the midpoints of the edges of E. A similar result holds for every
v € Vi.. Then the result (2.6) easily follows from the definition of I in (2.8). a

To prove condition (2.7), for simplicity we assume that the solution to (2.1)
satisfies

(2.9) [ullz2(2) < ClIFIL

We point out that the present results can be extended to nonconforming methods
for problems on domains which are non-convex. {2 can be the L-shaped domain, for
example. For such domains, the full regularity result (2.9) does not hold. However,
the analysis below can be modified to show that the regularity and approximation
property is still satisfied but for a smaller value of «; see [7] and the next section for
more details in this direction.

We now turn to assumption (2.7). We need the following three lemmas.

Lemma 2.2. There is a constant C' independent of k such that

(2.10) o= Leol|* < Chy > IVUlliemy, v € Vi
Ec&,_
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ProoF. (2.10) follows from the definition of Ij, since I}, can be regarded as a nodal
point interpolation into V. a

For k=2,...,K, let P,_; be the elliptic projection into the P;-conforming finite
element space Up_1, l.e.,

(2.11) ap—1(Py_1v,w) = a(v,w), VwéeUg_q.
Note that U1 = V-1 N HE(Q) and a_1(-,-) = a(-,+) on Up_1.

Lemma 2.3. There is a constant C' independent of k such that

(2.12) 1Peav —vl® <ChL Y IVUllem,  veE W
Eegy,

ProOF. Let fy € Vi be defined by
(2.13) (fo,w) = ag(v,w), Y w e V.
Then it follows from (2.11) that
(2.14) a(Pr_qv,w) = (fo, w), Vw e Up_q,
since U—1 C Vi. Also, let z € H} () satisfy
(2.15) a(z,w) = (fo,w), Y w € Hy (Q).
Note that, by (2.13)—(2.15), we see that v and P;_jv are the nonconforming and con-
forming finite element solutions of z, respectively. From the standard error estimates
[16] we find that
|z —v| < Ch%,”z”Hz(Q) and ||z — P < C”hi”Z”HQ(‘Q)7

so that, by (2.9),
(2.16) o= Peyoll < 1z = oll + |12 = Pusoll < CHfll
Take w = fp in (2.13) to see that

1/2
(2.17) I foll* = ar(v. fo) < Ch, I fall <Z ||W||2Lz<m> :

Eeéy

by an inverse inequality and the Poincaré inequality. Combine (2.16) and (2.17) to
yield (2.12). O

Lemma 2.4. It holds that

(2.18) [Py = Poy)o|| < CRE ST (V0o vE VA
Eeg&y,

where C' is independent of k.
Proor. Note that, by the definitions of P, | and Py,

(2.19) ar—1(Pr_1v,w) = ap(v, [w), VweV_,
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(2.20) ap—1(Pr_qv,w) = ay(v, Iyw), Y weU;,_.
Let fo € Vi_1 satisfy

(2.21) (fo,w) = ap(v, Iw), YwéVi_y.

Then, by an inverse inequality, Proposition 2.1, and the Poincaré inequality, we see
that

||f0||2: ar(v, Ir fo)
1/2
<C (Z}?Eé‘k ||vr;||2L2(L’)) (Zﬁegk ||V(ka0)||2“w)>
_ 1/2
< C,vhk,l (Zpeék ||VU”i2(L)> ||f0||

1/2

That is,

1/2
(2:22) 1foll < Chy?t (Z IIWII?W)) :

Ecg&y,

Let z € Hy(fQ) satisfy (2.15). Then we see that Py_jv and Py_jv are the finite
element approximations to z in Vi _; and Uy _1, respectively. Thus (2.18) follows as
in Lemma 2.3. a

Proposition 2.5. Condition (2.7) is satisfied with o = 1/2.
ProoOF. By the definition of A, we have, for v € Vj,

(2.23) ay (I — ItPe_1)v,v) = (Apv, (I — I Pr_1)v) < Cl|Agv|| (T — I Pr—1)v|| -
Note that, by the triangle inequality,
(2.24) ||(1 = e Pro—r)o|| < ||( = Prr)o|| + 11 = Li) Pr—r]| + || (Pez1 — Pr1)v]|-

Since by definition, Py_y is the adjoint of Ij, condition (2.6) implies that there is
constant C' independent on k such that

(2.25) ap—1(Pr_qv, Pr_qv) < Cag(v,v), YoveV.

Then, by (2.23) (2.25) and Lemmas 2.2 2.4, we see that

(2.26) lar, (I = I Pr—1)v,v)| < Chk”Akv”ak(v,/0)1/2, v € Vi.

By Gerschgorin’s theorem [9], [12],

(2.27) A < Ch, 2

The regularity and approximation condition (2.7) with o = 1/2 follows from (2.26)

and (2.27). O
The convergence rate for the multigrid algorithm 2.1 on the kth level is measured

by a convergence factor 6y satisfying

(2.28) lax (I = BrAp)v,v)| < érap(v,v), YveW.
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Theorem 2.6. (i) Define By by p = 2 for all k in Algorithm 2.1. Then there exists
C > 0 wndependent on k such that for m big enough, but independent on k
C1
C+ym’
(ii) Define By by p = 1 and m(k) = 257k for k = 2,... K in Algorithm 2.1. Then

there are ny, m > 0, independent on k, such that

(2.29) bp < 6=

(2.30) noar(v,v) < ap(BrArv,v) < mag(v,v), Yv e Vy,

with gy > m(k)'/2/(C +m(k)'/?) and g, < (C +m(k)'/?)/m(k)"/2.

The proof of this theorem follows from Propositions 2.1 and 2.5 and Theorems
6 and 7 in [7]. The constant C' in Theorem 2.6 depends only on C, in (2.7) and
the constant appearing in the smoothing estimates [7]. From Theorem 2.6, we have
an optimal convergence property of the W-cycle and a uniform condition number
estimate for the variable V-cycle preconditioner.

2.2. The mixed multigrid algorithm. In this section we consider multigrid
algorithms for a mixed finite element method for (2.1). The Raviart-Thomas spaces
[22] over triangles is given by

Ay = {v € (L* (M) :v|p = ((1,}F +aix, al + a%y) , (Ib elR, Fe 5;,,}.,
Wy = {w € L*(Q) : w|g is constant for all £ € Eh} ,
L, = {,u € L?(d&h) : e is constant, e € &y pule =0, e C QQ} ,

where 0&, denotes the set of all interior edges. Then the hybrid form of the mixed
method for (2.1) is to seek (o, up, An) € Ay, X W, x Ly, such that

Z (V-op,w)p + (chup,w) = (f,w), VweWy,

Ecégy,
231)  (Ahonv) = Y [@nV-0)p = (Anv-ve)og] = 0. Vue A,
) EeEy,
Z (oh - vE,pt)op = 0, V€ Lp,
EeEy,
where vy denotes the unit outer normal to E, X = Q. A~ (component-wisely),

cp = Qpe, and Qp denotes the LZ(Q) projection operator onto Wj. The solution a,
is introduced to approximate the vector field

o =—-AVu,

which is the variable of primary interest in many applications. Since ¢ lies in the
space

H(diviQ) = {v € (L*(Q)?: V-v € L*(Q)},

and we do not require that Ay, be a subspace of H(div; ), the last equation in (2.31)
is used to enforce that the normal components of g5 are continuous across the interior
edges in 0&, so in fact gy, € H(div; ). Also, the projection of the coefficients AL e
into the space W}, is introduced in (2.31). The projection of coefficients gives us
considerable computational savings, without any loss of accuracy [13]. Furthermore,
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it can bhe used to establish an equivalence between the triangular nonconforming
method and the mixed method (2.31). This equivalence has been obtained in [12],
[14], [15] in the case of ¢ = 0. We now extend it to the present situation.

There is no continuity requirement on the spaces Ay and Wp, so o5 and up can
be locally (element by element) eliminated from (2.31). In fact, applying the ideas in
[12], (2.31) can be algebraically condensed to the symmetric, positive definite system
for the Lagrange multiplier Ap:

(2.32) MM=F,
where the contributions of the triangle F to the stiffness matrix M and the right-hand
side F are

! - 1p . Jf,z/
m,LJ =T/ 3L_F+ ((/3)E(5,;_,-, FF = % + (]fJ/L)

where V':E denotes the outer unit normal to the edge e% (E has three edges), 739 =
let|vi, let| is the length of e, BF = (((A%)ijy L)E) 1, J]é = (f,Dp(x.y)/(2|E]), 6i;
is the Kronecker symbol, and | E| denotes the area of E. After the computation of A,
(2.31) can be used to recover oy, and uj on each element.

As shown in [12] for the case where ¢ = 0, the system (2.32) corresponds to
the system arising from the triangular nonconforming finite element method. This is
proven below.

Theorem 2.7. Let fr, = Qnf. Then (2.32) corresponds to the linear system produced
by the problem: Find oy, € Vi, such that
(2.33) an(Vn, ) = (fas ), Vo € Vi,

where an(Un, p) = ZLEF; (?(’71V1/‘;,, Vo)e + (entn, ¢).
Proor. Let {¢F, ..., pm } be the basis of V}, such that each ¢} equals 1 at exactly
one midpoint and equals 0 at all other midpoints. Then for each FE € &, we have

1 .
/. h 35 .
"/)i|E: myl((Tvy)_pl)v ’#lv
for some midpoint p;. Also, note that for any linear functions ¢/ and ¢ on a triangle
E E gha

3

(0.6)8 = 51EI S é(p.)0(02).
s=1
where the pg’s are the midpoints of the edges of E. Then we see that
(X, 1TLZ Vu' e+ (Chu' LU h)L, =7 J’E_] (C’;)Eéij,
which is mfj, and
B = —7”’2(;%)]5 + (TEvi)er,

(f.1) 1h (@A) Ik
— e (1l e+ R (h ).

1) E /
- (JC\E)IE(IW?)E



ANALSIS OF MULTIGRID ALGORITHMS 11

which is (fn, v p. O

It follows from this theorem that Algorithm 2.1 can be used to solve (2.32), i.e.,
to solve the mixed method (2.31). Moreover, the previous results on the W-cycle and
variable V-cycle algorithms hold.

3. The Nonsymmetric and/or Indefinite Problem. In this section we
develop multigrid algorithms for the nonsymmetric and indefinite problem. In §3.1,
we consider the problem of existence and uniqueness of the solution to the discrete
system. The nonconforming multigrid algorithm is analyzed in §3.2, and the mixed
methods are described in §3.3.

3.1. Preliminaries. In this subsection we consider the nonconforming finite
element method applied to the nonsymmetric and indefinite problem. We consider as
our model problem the following equation:

—V-(AVu)+B-Vu+cu=f inQ,

(3.1) uw=0 on 09,

with the same notation as in (2.1). We assume that the symmetric coefficient A
satisfies (2.2a), B is continuously differentiable on Q and piecewisely C? with the sum
of the second-order derivatives over pieces being bounded, and |c| is bounded (need
not satisfy (2.2b)). Further, we assume that the solution of (3.1) exists.

The bilinear form A(,-) is now given by

A(v,w) = (AVu, Vw) + (B- Vv, w) + (cv, w), v,w e HY(Q).
The solution « € HE () of (3.1) then satisfies
(3.2) Alu,v) = (f,v), Ve Hy(Q).

Associated with A(-,-), we also introduce the symmetric positive definite form I( )
by

;:1\(7,7, w) = (AVv, V) + (v,w), v,we H (Q),

which corresponds to a(-,-) with ¢ = 1 of the second section. The difference form is
indicated by

(3.3) D(v,w) = A(v,w) — j{\(v,u,*).
With the same V), as before, we define a mesh-dependent form Ap(-,-) by

Ap(v,w) = z {(AVv,Vw)g + (B-Vu,w)g} + (cv,w), v,w eV @ H&(Q)
EcEy,

The corresponding symmetric form is denoted by A\h(-, -). The nonconforming finite
element solution uj, € V3, of (3.1) is given by

(34) Ah(uh,v) = (fﬂ ’U), YVove 1/71-

N 1/2
The norm induced by (A;,,(w, 1))) for v € V3, @ H} () is equivalent to the norm

1/2
(ZEEE}L | V11||%2(E) + ||1||2) . Thus, we define

p=An(v, )2 Yo eV, @ Hy(Q).

|l
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Let us note the inequality

(3.5) |[An (v, w)] < Cllol|n]lw]|n, Yo, w € Vi, & Hy ().

It is not hard to show the Garding inequality

(3.6) C1||1:||% — C2||v||2 < |Ap(v,v)], Yv eV, D H&(Q).
Lemma 3.1. Problem (3.4) has a unique solution for h sufficiently small.

Proor. Let Uy be the same as before, i.e., the P; conforming finite element space,
and let z, € Uy, satisfy

(3.7) Ap(zp,v) = (f,v), Vv € Up.

Then it follows from (3.4)—(3.6) that
Cillun = zullf, = Callun — zu]l?

< |An(up — zp,up — zn)|

<|Ap(w = zp,up — z0)| + |An(un — w, up — 21))|

= |Ap(w — zp,up — zp)| + | flup — 2n) — Ap(u, up — z1)|

< Gsllu = znllnllun = znlln + [ f(un = 20) = An(u, up = 21)|,

so that, by dividing through by C4||up — zp||n, we have

lun = znlln — S lun — =]l

3.8

< Sl = znlln + 25 supey, SERL

Note that, since (3.1) and the associated adjoint problem are assumed to be uniquely
solvable, a duality argument [20] can be used to show the estimate

(3.9) [lun — zn|| < Cabllun — zn||n.

Thus, by (3.8) and (3.9), we see that, if h < C1/(C2Cy),

v —A I "Y
(3.10) l|un — zn|ln < C <||u — zp||n + sup [F{v) = An(u ”') .
vEVH [[v]]n

From a known result for the conforming method (3.7) [23], there exists hy > 0 such

that z; = 0 is the only solution corresponding to v = 0 for h < hy. Therefore, for

I < min (hg, C1/(C2CY)), it follows from (3.10) that the homogeneous nonconforming

equation (3.4) has a unique solution uj = 0. Since V}, is finite dimensional, this also

implies existence. a
Define the projection operator P : H} (Q) — Vj, by

Ap(Pru,v) = Ap(u,v), Yv € V.

It follows in the usual way from (3.9), (3.10), and the corresponding result for the
conforming finite elements that, if the solution of (3.1) satisfies regularity estimates
of the form

(3.11) lulh+o < CllFl =140,
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then

(3.12) llu = Puull < ChlJu — Prulln,
and

(3.13) Prulln < Cllulln.

In the case where regularity estimates of the form of (3.11) are not known to
hold, it can be shown as in the conforming case [24] that, given € > 0, there exists an
ho(€) > 0 such that for 0 < h < hy,

(3.14) [|w — Prul| < €||lu — Prul|p,
and (3.13) is satisfied. The above ¢ will appear in our later convergence result.

3.2. The nonconforming multigrid algorithm. The family of partitions
{Ek}é‘;l is constructed in the same manner as before. Let the mesh size of & be dy;
then, by similarity, the mesh size of & is 2' "*d;. From Lemma 3.1, for (3.4) to be
well behaved, the approximation grid must be sufficient fine. As in the conforming
case [5], we shall require that the coarsest grid in the multilevel algorithm be sufficient
fine. Toward that end, let the coarse mesh size be denoted by an integer L. Then the
space V; has a mesh size of by =2'"F7Fd; =2'"*p k=1,... K.

As noted in [5] and demonstrated in our experiments in §4, in practice, the coarse
grid can be taken considerably coarser than the solution grid. The reason for this is
that we can only expect that the discrete errors depend monotonically on the grid
sizes; consequently, if the fine grid approximation is reasonably accurate, we expect
that there exists a sequence of coarser grids whose approximations are well defined.

For k = 2,..., K, we define the projection operators Pj_q : V. & H'(Q) — Uj_;
and P | : L*(Q) — Uj_; by

Ap_1(Proqv,w) = Ap(v,w), Yw € Up_q,
and
(P,?flv,u;) = (v, w), Vw € Up_1.

Also, for each k& = 1,..., K, we introduce the conforming discretization operator
M k- Uk — Uk by

(Myv,w) = Ap(v,w), Vw € Uy.

The nonconforming discretization operator on Vj is still indicated by Ay, for exposi-
tional convenience.

We first describe a simplest V-cycle multigrid algorithm for iteratively computing
the solution of the conforming method (3.7). The next two algorithms are slightly
different from Algorithm 2.1. Specifically, we smooth only as we proceed to coarser
grids. So they are a special case of Algorithm 2.1. Alternatively, we could consider a
multigrid algorithm with just post-smoothing or both pre- and post-smoothing, as in
Algorithm 2.1. These algorithms can be analyzed analogously, and are not considered
here.

The following algorithm iteratively defines a multigrid operator Ny : Uy — Uy.
The operator Ry : U — Uy is a linear smoothing operator. A variety of examples for
R;. has been given in [5]; we do not repeat these examples in the paper.

MULTIGRID ALGORITHM 3.1. Set N7 = Mfl. For 1 < k < K, assume that N, 4
has been defined and define Nyg for g € Uj, by
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1. Set x; = Ryg.
2. Define Ny g =z + q, where ¢ € Uj_1 is given by

g=Np_ P}, (9 — Mypay).

We now define the V-cycle algorithm for the nonconforming method (3.4), which
determines a multigrid operator B : Vg — V. The operator Qi : Vg — Vi below
is a linear smoothing operator. Examples of this operator will be given in §3.2.1.

MULTIGRID ALGORITHM 3.2. If K =1, set By = Al”. If K > 1, define Bgg for
g € Vi by

1. Set 2k = Qkyg.
2. Define Bigg = xx + ¢, where ¢ € Ug_; is given by

(= Ng_ Py (g—Axrk).

We remark that the coarse-grid correction in Algorithm 3.2 is defined on the con-
forming finite element spaces. That is, it is of the second type of multigrid algorithm,
mentioned in the introduction. It will be analyzed in §3.2.2.

3.2.1. Smoothers. The smoothers presented in this subsection are the vari-
ants of those for the conforming finite element method (see, e.g., [5]). We first describe
three smoothers which are based on the symmetric problem, and then three smoothers
which correspond to the original nonsymmetric and indefinite problem.

The simplest smoother is given in the next example.

Ezample 2. We define

Qf\" = )‘ZJ 11

where Ak is the largest eigenvalue of Ag.
The following two smoothers are defined in terms of subspace decompositions. To
this end, let

1K)

Vi = E Vik,
i=1

where Vj g is the one-dimensional subspace spanned by a nodal basis function or the
one spanned by the nodal basis functions along a line, and I(K') is the number of such
spaces. The smoothers in Examples 3 and 4 below are additive and multiplicative,
respectively.

Ezample 3. We define

I(K)
11
Qx =7 A Qjx
i=1

where A; i : V; v — Vj i is the symmetric discretization operator on V;  defined by

(;{j,f\"?”v #9) = ‘/Z[]((U',‘ 3‘9)7 v“to € "/Yj‘k'v

Q. x  Vjk — Vj i is the projection operator on V; x with respect to the L? inner
product (-,-), and the constant v is a scaling factor which is chosen to ensure that the
smoothing property is satisfied [5].

Example 4. Given g € Vi, we define
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1. Set Ty = 0.
2. Determine z;, for i = 1,...,I(K), by

T, =x;i_1+ "Zl\,;}\'(ﬁ«)j-,’\"(g — ;1\;\'."{7,‘_1 )

3. Set Q[{g = wl(l()-
The following example corresponds to the first example, and the later two exam-
ples are closely related to Examples 3 and 4.
Ezample 5. We define

QK = /\]7{2441:1{7

where Ay is as in Example 2 and A%, is the adjoint operator of Ay with respect to
the L? inner product (-,-).
Ezample 6. We define

I(K)

41
Qr =7 Z A-jJ{Qj,Kv

J=1
where A; g 1 Vj k — V; i is the discretization operator on Vj i given by
(Aj.,f\"wv #9) = AK(Uﬁ 3‘9)7 v“to € "/Yj‘]\'v

and Q; g : V; k — Vj k and v are as in Example 3.
Ezample 7. Given g € Vi, we define
1. Set Ty = 0.
2. Determine z;, for i = 1,...,I[(K), by

ri=xiq+ A;}ng,K(g — Agxi_y).

3. Set Qg = ryk)-

3.2.2. Analysis of the multigrid algorithm. We now provide a conver-
gence analysis for Algorithm 3.2 with the smoothers given in Examples 2-7 in the
framework of [5]. All of their analysis is based on perturbation from the uniform
convergence estimate for the multigrid algorithm applied to the symmetric problem.
Essential use in [5] is made of a product representation of the error operator and two
properties of the difference form D(:,-) (see (2.4) in [5]). In this section we shall show
that our error operator has the same structure (see Lemma 3.3 below) and the form
D(-,-) satisfies the same properties (see Lemma 3.4 below). Thus the couvergence
analysis given in [5] carries over to Algorithm 3.2 since the uniform iterative conver-
gence estimate for Algorithm 3.2 applied to the symmetric problem has been shown

in [12] and [19].
Lemma 3.2. It holds that
Br =Qx + N1 Py (I — AxQr),
and
Ni=Rp+ Ne P2 (I - MyRy), k=2,... K

This lemma can be easily seen from Algorithms 3.1 and 3.2.
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Lemma 3.3. Let Py =1, Ty = P, T}, = Ry My P, k=2,..., K — 1, and Tx =
QKrlKPA Then

(3.15) I—BxAx=(I-T)I=T)...(I - Tx).
Proor. From the definitions of P,_; and P,?_l, we see that
P) Ax = Mg 1Pk _1,
P My = My_Poey, k=2 . K—1,
Pe \Pe=Po, k=2 K
Then it follows from Lemma 3.2 that
I—BxAwx = (I = Ngoy Mg Pre—)(I — Qu As),
and
I - Ng 1Mg 1P
=I—-Px 1+ (I - Nk Mg_1)Pr_y
=I-Px_1+ (I —-Ng—oMg_2Pr_o)(I — Rx—1Mg_1)Pr—1
=T —-Nx_oMyg 9Py _2)(I—Px1+(I—Rx_1My_1)Pr_1)
= - Nx—2Mg 2P _2)(I = Tr—1).

Therefore, a straightforward mathematical induction argument shows the desired re-
sult (3.15) since Px = I. O

The product representation of the error operator in Lemma 3.3 is a fundamental
ingredient in the convergence analysis. The other important ingredients are the fol-
lowing properties of the difference operator D(-,-). They are trivial in the conforming
case; however, as shown below, the second property is not so straightforward in the
nonconforming case.

Lemma 3.4. Under the above assumption on the coefficient B, there is a constant C'
independent on k such that

(3.16) |D(v,w)| < Cllv||e]|wl]]s Yo, w € Vi,
and
(3.17) |D (v, w)| < Cl|wlle]|vll, Vv, w € V.

Proor. (3.16) directly follows from the definition of D{(v,w):

D(v,w) = Z (B-Vuv,w)g + ((¢c = 1)v,w).

re&y,

To prove (3.17), we apply integration by parts on each finite element to see that

(3.18) D(v,w)= Z {(B-vgv,w)op — (V- -Bw+B-Vw,v)g}+ ((c — v, w).
FEeé&y
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Evidently, it suffices to estimate the terms over edges.

Let By, E5 € &, share an edge e with midpoint m”, and let e have the parametric
representation x = x(t), y = y(t) with ¢t as parameter. They are linear functions of
t. Then, by the midpoint rule and the continuity at midpoints on the elements of Vj,
we find that

[.(B-vp,vw)|g ds+ [ (B-vp,ow)|g,ds
| H(B VFl““)|F1(7n )+(8 l/p2’l’71/)|p2(ﬂ’l )}

2 -1 2 2
L@+ (3)] {6 moln ) + £ mols )

le]?

2 -1 2 2
—5E @)+ ()} {5 0l () + 6 el )]

for some points £F, €5 € e. Note that, since v and w are piecewisely linear, for i = 1,2,

d? d? . dv dw
17‘2(8 Vg vw) = 17‘2(8 VE, )lu'—i—Q—(B Z/E) (l/w)—i— 2(B - Z/E)d7L et

Also, by the chain rule, we have with any function g = g(«(t),y(t)):

dg  Ogdx 8q dy
dt — Ox dt E)y dt’

@zﬁ @2_1_2(9‘5](17(](/_1_0 dy
dt2  Ox? \ dt Oxdy dt dt ~ dy? \ dt ) ’

since e is a line segment. Consequently, we see that

and

|fC(B cvpvw)|pds+ [ (B vp,ow)|p, ds|

Clel® 2 ) ) :
< GEESL (Il + 1221+ 1881) (ol + 1321 +121) ().

This, together with the Cauchy-Schwarz inequality, an inverse inequality, and the fact
that v and w are piecewisely linear, implies that

|Z pee, (B vEv, w)aE|

< OB Bocge, (ol + 1851+ 1221) (lol + 1321 +1521) (68)

< Cha(llel]+ llelle) el + el
< Cllwllellvl.
which, by (3.18), yields the desired result (3.17). Thus the proof is complete. O

With Lemmas 3.3 and 3.4 and the arguments presented in Theorems 5.2-5.6 of
[5], we have the following theorem.

Theorem 3.5. Let Qi be one of the smoothers defined in Examples 2-7. Then,
gwen € > 0, there exists an hg > 0 such that for hy < hg,

A\K(Ew,Ev) < (52//4\;((0,1:), Vv € Vi,
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where F =1 — BrgAg, 6 = 5+ C(h +e€), and 8 is less than one and imdependent on
K.

We remark that & comes from the uniform convergence estimate of Algorithm 3.2
applied to the symmetric problem [12], [19].

3.3. The mixed multigrid algorithm. As in the last section, we now
consider a mixed finite element method for numerically solving (3.1). With the same
spaces Ap, Wy, and Ly, as in §2.2, the hybrid form of the mixed finite element solution
to (3.1) is (op, un, An) € A X Wy, X Ly, satisfying

Z (Veon,w)pg — (Vn-onw)+ (chup,w) = (fyw), Y wée Wy,

regy,
(3.19) (Xnon,v) = Z [(wn, V- v)p — (An,v-vr)or] = 0, Vv e Ay,
Eegy
Z(ffh"/uf»#)aﬂ =0, V € Lp,
Eegy

where YV, = A3(QpB) and the other notation is the same as before. We recall that
Qy, denotes the L?(Q) projection onto Wp,.

Again, after an algebraical condensation, system (3.19) can be reduced to a linear
system for the Lagrange multiplier Ap:

(3.20) M\=F,

where the contributions of the element E to the stiffness matrix M and the right-hand
side I are

mE = ?Z,,BEV{E + %(th)lE WL + %(07 1) pbij.

Ly
F__ ULvhe Foiy .
Fz' - [E] +(J}?7VJIE)c£E-

Furthermore, with the same argument as in Theorem 2.7, we have the next result.

Theorem 3.6. System (3.20) corresponds to the linear system arising from the non-
conforming problem: Find ¢y € V), such that

*Zlh(whap) = (fha@)? VSQ € "/’h:

where

Ap(n.0) = > (X' VUn. Vo) p + (QuB- Vibn @)} + (cnthn. ¢).
FEeg&y,

It thus follows that Algorithm 3.2 can be exploited to solve the system arising
from the mixed method (3.19), and the convergence result in Theorem 3.5 is valid.

4. Numerical Examples. We report the results of a couple of numerical
examples to illustrate the theory developed in the earlier sections and to show a com-
parison between the results obtained here and those generated by the well established
conforming finite element and finite difference multigrid algorithms [4], [7]. We first
compute a symmetric problem, and then a nonsymmetric and indefinite problem.
Special efforts are made in the second example.
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hK (hvnéu) (vaéw) (/‘Evvvévv)

1/8 | (1.48, 43) | (1.46, .40)
1/16 | (1.64, .46) | (1.47, 42)
1/32 | (1.81, .50) | (1.48, 43)
1/64 | (1.86, .51) | (1.48, 43)
1/128 | (1.96, 54) | (1.48, 43)

Table 1. Convergence results for Example 8.

Ezample 8. In the first example we consider the following equation on the unit
square:

(4.1) -V (AVu) = f in Q= (0,1)2,
’ w=0 on 9.
We approximate the solution to (4.1) using the triangular nonconforming method
(2.4). In this example, conditions (2.6) and (2.7) are satisfied. The analysis of the
second section guarantees that the condition number of By A i for the variable V-cycle
algorithm can be bounded independently on the number of levels and the W-cycle
algorithm has an optimal convergence property. Table 1 gives the condition number &
for the system B Ax and the reduction factor for the system I — Bg A as a function
of the mesh size on the finest grid, where the V-cycle, W-cycle, and variable V-cycle
algorithms are indicated by (£4,8,), (Kuw,8uw), and (Kyp, 60 ), respectively. The V-
cycle and W-cycle schemes use one smoothing step. (To see how the convergence
rate depends upon the number of the smoothing steps, refer to [12].) For all of the
runs, the coarse grid is of size h;y = 1/2. Point Jacobi smoothing is applied. As
noticed in the conforming case [7], the variable V-cycle and the W-cycle algorithms
have essentially identical computational results. This is due to the fact that hoth
algorithms have exactly the same number of total smoothings on each grid in the
multi-level iteration. While there is no complete theory for the V-cycle algorithm,
it is of practical interest that the condition numbers for this cycle remain relatively
small, but the convergence rate deteriorates with the mesh size. Finally, compared
with the numerical results obtained in [4], [7], we see that the nonconforming multigrid
algorithms in fact compare favorably with these standard multigrid algorithms.
Ezample 9. In the second example we consider the nonsymmetric and indefinite
problem

V- (AVu)+B-Vu+cu=f inQ=(0,1)%

(4.2) u=0 ondQN.

In (4.2), the symmetric and positive definite part is taken as in (4.1), but three
different choices for the constants 5 and ¢ are made in our experiments:

B=(c,c),

where ¢ = —5, 10, and 15.
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¢ (hrc,hy) by || E]]
75 [ (1/16, 1/4) | 0.639436 | 0.74
10 | (1/16, 1/4) | 0.634469 | 0.7
15 | (1/16,1/8) | NC :

5 [ (1/32. 1/4) | 0.737174 | 0.7
10 | (1/32, 1/4) | 0.735298 | 0.77
15 | (1/32.1/8) | 0.732282 | 0.76
75 [ (1/64. 1/4) | 0.658200 | 0.75
10 | (1/64, 1/4) | 0.657875 | 0.75
15 | (1/64,1/8) | 0.657205 | 0.75

Table 2. Convergence results with one Jacobi
pre-smoothing and with conforming corrections

c (hi,hy) du [1E]|
-5 | (1/16,1/4) | 0.464180 | 0.56
10 | (1/16,1/4) | 0.428082 | 0.53
15 | (1/16,1/3) | NC -

-5 | (1/32,1/4) | 0.551210 | 0.57
10 (1/32q 1/4) 0.533360 | 0.55
15 | (1/32.1/8) | 0.523353 | 0.54
5 | (1/64, 1/4) | 0.490357 | 0.56
10 | (1/64, 1/4) | 0.484002 | 0.55
15 | (1/64,1/8) | 0.481043 | 0.55

Table 3. Convergence results with one Gauss-Seidel
pre-smoothing and with conforming corrections

c (hi,hy) du [1E]|

1/16, 1/4
1/16, 1/4

( ) [ 0486392 | 0.56

( ) [ 0613320 | 0.88

(1/16, 1/8) | 0.476986 | 0.56

(1/32,1/4) | 0.651377 | 0.77
10 | (1/32,1/4) | 0.902975 | 1.25

( )

( )

( )

( )

1/32,1/8) | 0.721914 | 1.00
1/64, 1/4) | 0.726687 | 0.93
1/64, 1/4) | 0.978622 | 1.37
1/64, 1/8) | 0.967870 | 1.24

Table 4. Convergence results with one Jacobi pre-
smoothing and with nonconforming corrections

We first report the results obtained by using Algorithm 3.2 with one (point) Jacobi
and Gauss-Seidel pre-smoothing. They are shown in Tables 2 and 3, respectively,
where (hi,h1) denotes the mesh sizes of the finest and coarsest grids, respectively,



ANALSIS OF MULTIGRID ALGORITHMS 21

6, indicates the average error reduction factor in fifty iterations, and

[|E|| = sup A\;"(Ev,Ew)/;l\;\'(w,v)
vEVEK

is the operator norm in the final iteration. In the cases where there is no convergence
(denoted by NC in the tables), the coarsest levels in the multigrid iteration are not
fine enough. This agrees with our earlier theory on the nonsymmetric and indefinite
problem where the coarsest levels need to be sufficiently fine. Overally, in the case
where there is convergence, the Gauss-Seidel smoothing performs better than the
Jacobi smoothing, and &, and ||E|| are quite small for both smoothers. When ¢ = 15,
the coarsest level needs to be finer. This is the case where the convection term becomes
‘bigger’.

c (hi,hy) du [1E]|
-5 | (1/16,1/4) | 0.653408 | 0.76
10 | (1/16,1/4) | 0.247183 | 0.30
15 | (1/16,1/8) | 0.236150 | 0.27
-5 | (1/32,1/4) | 0.750099 | 0.88
10 (1/32q 1/4) 0.299764 | 0.34
15 (1/32, 1/8) 0.289018 | 0.41
5 | (1/64, 1/4) | 0.795464 | 0.95
10 | (1/64,1/4) | 0.312528 | 0.39
15 | (1/64,1/8) | 0.350614 | 0.52

Table 5. Convergence results with one Gauss-Seidel
pre-smoothing and with nonconforming corrections

c (hi,hy) du [1E]|
5 | (1/16, 1/4) | 0.340037 | 0.41
10 | (1/16,1/4) | 0.337256 | 0.39
15 | (1/16,1/8) | 0.332164 | 0.38
-5 | (1/32,1/4) | 0.366170 | 0.47
10 (1/32q 1/4) 0.354337 | 0.41
15 (1/32q 1/8) 0.353695 | 0.41
5 | (1/64, 1/4) | 0.374882 | 057
10 | (1/64,1/4) | 0.388482 | 0.55

15 | (1/64,1/8) | 0.342782 | 0.42

Table 6. Convergence results with one Jacobi pre- and
post-smoothing and with nonconforming corrections

For comparison, we also demonstrate the results produced by using the first type
of multigrid algorithmn; i.e., all the coarse-grid corrections are defined on the noncon-
forming spaces instead of the conforming spaces. The results with one Jacobi and
Gauss-Seidel pre-smoothing are presented in Tables 4 and 5, respectively. Evidently,
the results with the Gauss-Seidel smoothing are much better than those with the Ja-
cobi smoothing. As the finest level gets higher (e.g. hyx = 1/128, not reported here),
we observed that the average error reduction factor approches 0.98 with the Jacobi
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¢ (hrc,hy) by || E]]
75 [ (1/16, 1/4) | 0.165300 | 0.18
10 | (1/16, 1/4) | 0.130279 | 0.16
15 | (1/16,1/8) | 0.122040 | 0.15
-5 | (1/32,1/4) | 0.181391 | 0.23
10 | (1/32, 1/4) | 0.186105 | 0.23
15 | (1/32,1/8) | 0.184373 | 0.24
75 [ (1/64. 1/4) | 0.208130 | 0.26
10 | (1/64,1/4) | 0.219439 | 0.28
15 | (1/64,1/8) | 0.215479 | 0.28

Table 7. Convergence results with Gauss-Seidel pre- and
post-smoothing and with nonconforming corrections

¢ (hi,hy) Sw [1E]|
75 [ (1/16, 1/4) | 0330665 | 0.39
10 (1/16q 1/4) 0.330144 | 0.39
15 | (1/16.1/3) | 0.326079 | 0.38
5 [ (1/32.1/4) | 0.345017 | 0.39
10 (1/32, 1/4) 0.344432 | 0.39
15 [ (1/32, 1/3) | 0.343179 | 0.39
5 [ (1/64, 1/4) | 0.325344 | 0.38
10 (1/64q 1/4) 0.325438 | 0.38

15 | (1/64,1/8) | 0.325509 | 0.38

Table 8. Convergence results of the W-cycle with Jacobi
pre- and post-smoothing and with nonconforming corrections

¢ (hic,h) bw I1E]]
-5 1/16q 1/4 0.133058 | 0.16
10

0.146508 | 0.14

)

1/16, 1/4) | 0.137478 | 0.18
)
)

(

(

(

( 0.113530 | 0.15
10 | (1/32,1/4) | 0.112054 | 0.15

(

(

(

1/32,1/8) | 0.124663 | 0.18
1/64, 1/4) | 0.116710 | 0.15
1/64, 1/4) | 0.117474 | 0.15
15 | (1/64, 1/3) | 0.123881 | 0.15

Table 9. Convergence results of the W-cycle with Gauss-
Seidel pre- and post-smoothing and with nonconforming corrections

smoothing. For this reason, we experimented with the first type of multigrid algorithm
with one Jacobi and Gauss-Seidel both pre- and post-smoothing. The results are
displayed in Tables 6 and 7, respectively. It appears that this type of algorithm needs
at least two smoothing steps to have good results with the Jacobi smoothing. Finally,
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while there is no theoretical analysis for the W-cycle algorithm for the nonsymmetric
problem, we point out that the results generated by the W-cycle algorithm are slightly
better than those yielded by the V-cycle algorithm, as shown in Tables 8 and 9.

120]
21]
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