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Abstract� In this paper we consider multigrid algorithms for nonconforming and mixed �nite
element methods for symmetric and nonsymmetric second order elliptic problems� We prove optimal
convergence properties of the W�cycle multigrid algorithm and uniform condition number estimates
for the variable V�cycle preconditioner for the symmetric problem� For the nonsymmetric and�or
inde�nite problem� we show that a simple V�cycle multigrid iteration converges at a uniform rate
provided that the coarsest level in the multilevel iteration is su�ciently �ne �but independent on
the number of multigrid levels�� Various types of smoothers for the nonsymmetric and inde�nite
problem are discussed� Extensive numerical results for both symmetric and nonsymmetric problems
are given to illustrate the present theories�
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�� �	N��� �	F
�

�� Introduction� In this paper we study some multigrid algorithms for
second order elliptic problems including nonsymmetric and�or inde�nite problems�
We consider the solution of the discrete systems which arises from the application
of nonconforming and mixed �nite element methods� For the nonsymmetric and
inde�nite problem� we assume that the nonsymmetric�inde�nite terms are a �compact
perturbation�� the convection�dominated problems are not studied here�

In the second section we study multigrid algorithms for solving the symmetric
problem by the standard P� nonconforming �nite elements� The P� nonconforming
multigrid algorithms have been studied in the past few years� There have been two
types of multigrid algorithms for solving the symmetric problem� The �rst one ex�
ploits the nonconforming �nite elements in both smoothing iterations and coarse�grid
corrections in the multilevel iteration� For this type of multigrid algorithm� only the
W�cycle algorithms were proven to be convergent under the assumption that the num�
ber of smoothing iterations on all levels is big enough �	
� ��
� ��

� The arguments in
these earlier papers follow the standard proof of convergence of multigrid algorithms
for conforming �nite element methods �

� and do not apply to the V�cycle algorithm�

The second type of multigrid algorithm uses the nonconforming �nite elements in
the smoothing iterations on the �nest level� but the P� conforming �nite elements in
the coarse�grid corrections in the multilevel iteration� For this approach� uniform it�
erative convergence estimates for the V�cycle multigrid algorithm with one smoothing
step have been obtained for the symmetric problem ��

� ���
�

In this paper we re�examine the �rst type of multigrid algorithm for the symmetric
problem� We present a di�erent convergence analysis for these multigrid algorithms
than those in �	
� ��
� and ��

� This analysis applies to both theW�cycle and the vari�
able V�cycle� The variable V�cycle algorithm is one in which the number of smoothing
steps increase exponentially as the number of grid decreases� there is no requirement
on the number of smoothings on the �nest level for the variable V�cycle� We prove
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optimal convergence properties of the W�cycle multigrid algorithm and uniform con�
dition number estimates for the variable V�cycle preconditioner� Furthermore� explicit
bounds for the convergence rate are determined� which have not been given in the
earlier papers�

In the third section we study multigrid algorithms for solving the nonsymmetric
and�or inde�nite problem by the nonconforming �nite elements� We �rst consider the
problem of existence and uniqueness of the solution of the discrete systems arising from
application of the nonconformingmethod to the nonsymmetric and�or inde�nite prob�
lem� We prove that the discrete systems have a unique solution and produce optimal
order error estimates provided that the size of meshes is su�ciently small� We then
provide a convergence analysis for the multigrid algorithms� There has been intensive
research on the multigrid algorithms for the nonsymmetric and inde�nite problem
using the conforming �nite elements� Paper ��
 has a good survey in its introduction�
and is most closely related to the subject of this paper� For the nonconforming multi�
grid algorithm of the nonsymmetric and inde�nite problem under consideration� we
only analyze the second type of multigrid algorithm mentioned above� We show that
the result for the symmetric problem can carry over to the nonsymmetric and indef�
inite case� Namely� we prove uniform iterative convergence estimates for the V�cycle
multigrid algorithm for the nonsymmetric and inde�nite problem under rather weak
assumptions �e�g�� the domain need not be convex�� We mention that the present
argument does not cover the �rst type of multigrid algorithm for the nonsymmetric
and inde�nite problem since the V�cycle algorithm for the symmetric problem in this
case has not been proven to converge�

A variety of smoothers are considered here� One type of smoothers is de�ned in
terms of the corresponding symmetric problem� and the other type is entirely based
on the original nonsymmetric and inde�nite problem� These two types of smoothers
include point and line Jacobi and Gauss�Seidel iterations�

Not only is the analysis of multigrid algorithms for nonconforming �nite element
methods of interest for their own sake �see� e�g�� ���
� ���
� ��	
� �
�
 and the bibli�
ographies therein�� but it has great application to mixed �nite element methods� It
has been shown ��

� ���
� ���
 that the linear system arising from the mixed methods
of the symmetric problem can be algebraically condensed to a symmetric� positive
de�nite system for Lagrange multipliers� This linear system is identical to the sys�
tem arising from the nonconforming �nite element methods� Hence the analysis of
multigrid algorithms for the nonconforming methods can carry over directly to the
mixed methods� The analyses of multigrid algorithms for the mixed methods of the
symmetric and nonsymmetric and inde�nite problems are given in x
�
 and x���� re�
spectively� According to the knowledge of the authors� the multigrid algorithms for
the nonsymmetric and inde�nite problem by the nonconforming and mixed methods
are analyzed here for the �rst time�

In the �nal section extensive numerical results for both symmetric and nonsym�
metric problems are given to illustrate the present theories and compare the non�
conforming multigrid methods with standard conforming �nite element and �nite
di�erence multigrid methods� Special attention is paid to the latter case� In partic�
ular� for the nonsymmetric and inde�nite problem� both types of multigrid methods
mentioned above are tested for the �rst time� The later analysis is carried out for
the two�dimensional� triangular case� it works for the three�dimensional case without
substantial changes as noticed in ��

� ���
� ���
� Also� rectangular �nite elements can
be similarly considered�
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�� The Symmetric Problem� In this section we develop multigrid algo�
rithms for the symmetric problem� The nonconforming �nite elements are considered
in x
��� and the mixed methods are described in x
�
�

���� The nonconforming multigrid algorithm� We consider as our model
problem the following symmetric equation

�
���
�r � �Aru� � cu � f in ��

u � � on ���

where � � IRn� n � 
� � is a simply connected bounded polygonal domain with the
boundary ��� f � L����� and the coe�cients A � �L�����n�n� c � L���� satisfy

�
�
a� �tA�x�� � a��
t�� x � �� � � IRn�

and

�
�
b� � � c� � c�x� � c�� x � ��

with �xed constants a� � �� c�� c��
Problem �
��� is recast in weak form as follows� The bilinear form a��� �� is de�ned

as follows�

a�v�w� � �Arv�rw� � �cv�w�� v� w � H�����

where ��� �� denotes the L���� or �L�����n inner product� as appropriate� Then the
weak form of �
��� for the solution u � H�

� ��� is

�
��� a�u� v� � �f� v�� � v � H�
� ����

For � � h � �� let Eh be a triangulation of � into triangles of size h� and de�ne
the P��nonconforming �nite element space

Vh � fv � L���� � vjE is linear for all E � Eh� v is continuous
at the barycenters of interior edges and
vanishes at the barycenters of edges on ��g�

Associated with Vh� we introduce a bilinear form on Vh �H�
� ��� by

ah�v�w� �
X
E�Eh

�Arv�rw�E � �cv�w�� v� w � Vh �H�
� ����

where ��� ��E is the L��E� inner product� Then the P��nonconforming �nite element
discretization of �
��� is to �nd uh � Vh such that

�
��� ah�uh� v� � �f� v�� � v � Vh�

To develop a multigrid algorithm for �
���� we need to assume a structure to our
family of partitions� Let h� and Eh� � E� be given� For each integer � � k � K� let
hk � 
��kh� and Ehk � Ek be constructed by connecting the midpoints of the edges
of the triangle in Ek��� and let Eh � EK be the �nest grid� In this and the following
sections� we replace subscript hk simply by subscript k�
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Following �	
� ��
� ��

� the coarse�to��ne intergrid transfer operator Ik � Vk�� � Vk
for k � 
� � � � �K is de�ned as follows� For v � Vk��� let q be a midpoint of an edge of
a triangle in Ek� then we de�ne Ikv by

�Ikv� �q� �

���
� if q � ���
v�q� if q 	� �E for any E � Ek���
�
�
fvjE�

�q� � vjE�
�q�g if q � �E� 
 �E� for some E�� E� � Ek���

Let Ak � Vk � Vk be the discretization operator on level k given by

�
��� �Akv�w� � ak�v�w�� � w � Vk�

The operator Ak is clearly symmetric �in both the ak��� �� and ��� �� inner products�
and positive de�nite� Also� we de�ne the operators Pk�� � Vk � Vk�� and P �

k�� �
Vk � Vk�� by

ak���Pk��v�w� � ak�v� Ikw�� � w � Vk���

and �
P �
k��v�w

�
� �v� Ikw�� � w � Vk���

It is easy to see that IkPk�� is a symmetric operator wtih respect to the ak form�
Note that neither P �

k nor Pk is a projection in the nonconforming case� Finally� the
multigrid algorithm which we shall consider also requires linear smoothing operators
Rk � Vk � Vk for k � �� � � � �K� Let Rt

k denote the adjoint of Rk with respect to the
��� �� inner product and de�ne

R
�l�
k �

�
Rk if l is odd�
Rt
k if l is even�

Multigrid algorithms can be represented in variational and non�variational forms�
Both approaches are equivalent and connected in the sense that the multigrid processes
result in a linear iterative scheme with a reduction operator equal to I�BKAK � where
BK � VK � VK is the multigrid operator� In this paper� following ��
� we de�ne the
multigrid operator Bk � Vk � Vk in terms of an iterative process as follows�

Multigrid Algorithm ���� Let � � k � K and p be a positive integer� Set
B� � A��� � Assume that Bk�� has been de�ned and de�ne Bkg for g � Vk as follows�

�� Set x� � � and q� � ��

� De�ne xl for l � �� � � � �m�k� by

xl � xl�� �R
�l�m�k��
k �g �Akx

l����

�� De�ne ym�k� � xm�k� � Ikqp� where qi for i � �� � � � � p is de�ned by

qi � qi�� � Bk��

h
P �
k��

�
g � Akx

m�k�
�
� Ak��q

i��
i
�

�� De�ne yl for l � m�k� � �� � � � � 
m�k� by

yl � yl�� �R�l�m�k��
k

�
g �Aky

l��
�
�

�� Set Bkg � y�m�k��
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In Algorithm 
��� m�k� gives the number of pre� and post�smoothing iterations
and can vary as a function of k� If p � �� we have a V�cycle multigrid algorithm� If
p � 
� we have a W�cycle algorithm� As mentioned in the introduction� a variable V�
cycle algorithm is one in which the number of smoothingsm�k� increase exponentially
as k decreases �i�e�� p � � andm�k� � 
K�k�� The smoothings are alternated following
��
 and are put together so that the resulting multigrid preconditionerBk is symmetric
in the L���� inner product for each k�

We now apply the theory developed in ��
 to analyze Algorithm 
��� Toward that
end� we require appropriate conditions for the smoother� need to establish the stability
property of the intergrid transfer operator� and show the so�called �regularity and
approximation� inequality� Below we use k � k to indicate the standard L���� norm�

The construction of smoothers for the nonconformingmethod �ts into the general
theory of ��
� We can use point and line Jacobi and Gauss�Seidel smoothing procedures
to de�ne Rk ��

� for example� The smoothing estimates are a consequence of the
general smoothing theory developed in ��
� Hence� it su�ces to consider the remaining
two conditions� which are de�ned as follows�

�
��� ak�Ikv� Ikv� � C�ak���v� v�� � v � Vk���

and

�
��� jak ��I � IkPk��� v� v�j � C�

�kAkvk�
�k

	�
ak�v� v�

���� � v � Vk�

for k � 
� � � � �K� where C� and C� are constants independent of k� �k is the largest
eigenvalue of Ak� I � Vk � Vk is the identity operator� and � � � � �� Here
and throughout the paper� C� with or without subscript� denotes a generic positive
constant�

We �rst prove �
���� We remark that the constant C� in �
��� is in general bigger
than two� as shown in the following example� Thus the general theory in ��
 does not
apply to the standard V�cycle� rather to the variable V�cycle and the W�cycle�

To construct the example� we rewrite the de�nition of Ik as follows� From Fig� �
it is not di�cult to see that for v � Vk���

�
�	a� �Ikv��xA� �
�



�v�x�� � v�x����

and

�
�	b� �Ikv��xB� � v�x�� �
�

�
fv�x�� � v�x��� v�x��� v�x��g�

Example �� Let � be given in Fig� 
 and v be in Vk�� with the nodal values
determined in Fig� 
� Then with A � I and c � � it is easy to check that

ak���v� v� � ���

and

ak�Ikv� Ikv� � �
���

Consequently� we see that

ak�Ikv� Ikv� � 
ak���v� v��
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Fig� �� Illustration of the de�nition of Ik�
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Fig� �� The de�nition of the function v in Example ��

We now turn to condition �
����

Proposition ���� There is a constant C� independent of k such that �
��� is satis�ed�
Proof� Note that for every v � Vk��� ak���v� v� is a norm in Vk�� equivalent to

X
E�Ek��

�X
i�j	�

�
�v�xi�� v�xj��

� � h�k��v
��xi�

�
�

where the xi are the midpoints of the edges of E� A similar result holds for every
v � Vk� Then the result �
��� easily follows from the de�nition of Ik in �
�	�� �

To prove condition �
���� for simplicity we assume that the solution to �
���
satis�es

�
��� kukH��
� � Ckfk�

We point out that the present results can be extended to nonconforming methods
for problems on domains which are non�convex� � can be the L�shaped domain� for
example� For such domains� the full regularity result �
��� does not hold� However�
the analysis below can be modi�ed to show that the regularity and approximation
property is still satis�ed but for a smaller value of �� see ��
 and the next section for
more details in this direction�

We now turn to assumption �
���� We need the following three lemmas�

Lemma ���� There is a constant C independent of k such that

�
���� kv � Ikvk� � Ch�k
X

E�Ek��

krvk�L��E�� v � Vk���
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Proof� �
���� follows from the de�nition of Ik since Ik can be regarded as a nodal
point interpolation into Vk� �

For k � 
� � � � �K� let �Pk�� be the elliptic projection into the P��conforming �nite
element space Uk��� i�e��

�
���� ak��� �Pk��v�w� � ak�v�w�� � w � Uk���

Note that Uk�� � Vk�� 
H�
� ��� and ak����� �� � a��� �� on Uk���

Lemma ���� There is a constant C independent of k such that

�
��
� k �Pk��v � vk� � Ch�k
X
E�Ek

krvk�L��E�� v � Vk�

Proof� Let f� � Vk be de�ned by

�
���� �f�� w� � ak�v�w�� � w � Vk�

Then it follows from �
���� that

�
���� a� �Pk��v�w� � �f�� w�� � w � Uk���

since Uk�� � Vk� Also� let z � H�
� ��� satisfy

�
���� a�z�w� � �f�� w�� � w � H�
� ����

Note that� by �
������
����� we see that v and �Pk��v are the nonconforming and con�
forming �nite element solutions of z� respectively� From the standard error estimates
���
 we �nd that

kz � vk � Ch�kkzkH��
� and kz � �Pk��vk � Ch�kkzkH��
��

so that� by �
����

�
���� kv � �Pk��vk � kz � vk� kz � �Pk��vk � Ch�kkf�k�

Take w � f� in �
���� to see that

�
���� kf�k� � ak�v� f�� � Ch��k kf�k

X
E�Ek

krvk�L��E�
����

�

by an inverse inequality and the Poincar�e inequality� Combine �
���� and �
���� to
yield �
��
�� �

Lemma ���� It holds that

�
��	�
���Pk�� � �Pk���v

��� � Ch�k
X
E�Ek

krvk�L��E�� v � Vk�

where C is independent of k�
Proof� Note that� by the de�nitions of Pk�� and �Pk���

�
���� ak���Pk��v�w� � ak�v� Ikw�� � w � Vk���
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�
�
�� ak��� �Pk��v�w� � ak�v� Ikw�� � w � Uk���

Let f� � Vk�� satisfy

�
�
�� �f�� w� � ak�v� Ikw�� � w � Vk���

Then� by an inverse inequality� Proposition 
��� and the Poincar�e inequality� we see
that

kf�k�� ak�v� Ikf��

� C
�P

E�Ek
krvk�L��E�

���� �P
E�Ek

kr�Ikf��k�L��E�
����

� Ch��k

�P
E�Ek

krvk�L��E�
����

kf�k�

That is�

�
�

� kf�k � Ch��k


X
E�Ek

krvk�L��E�
����

�

Let z � H�
� ��� satisfy �
����� Then we see that Pk��v and �Pk��v are the �nite

element approximations to z in Vk�� and Uk��� respectively� Thus �
��	� follows as
in Lemma 
��� �

Proposition ���� Condition �
��� is satis�ed with � � ��
�
Proof� By the de�nition of Ak� we have� for v � Vk�

�
�
�� ak ��I � IkPk���v� v� � �Akv� �I � IkPk���v� � CkAkvk k�I � IkPk���vk �

Note that� by the triangle inequality�

�
�
�� k�I � IkPk���vk �
���I � �Pk���v

��� k�I � Ik�Pk��vk�
���Pk�� � �Pk���v

�� �
Since by de�nition� Pk�� is the adjoint of Ik� condition �
��� implies that there is
constant C independent on k such that

�
�
�� ak���Pk��v� Pk��v� � Cak�v� v�� � v � Vk�

Then� by �
�
����
�
�� and Lemmas 
�
�
��� we see that

�
�
�� jak ��I � IkPk���v� v�j � ChkkAkvkak�v� v����� v � Vk�

By Gerschgorin�s theorem ��
� ��

�

�
�
�� �k � Ch��k �

The regularity and approximation condition �
��� with � � ��
 follows from �
�
��
and �
�
��� �

The convergence rate for the multigrid algorithm 
�� on the kth level is measured
by a convergence factor 	k satisfying

�
�
	� jak ��I �BkAk�v� v�j � 	kak�v� v�� � v � Vk�
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Theorem ���� �i� De�ne Bk by p � 
 for all k in Algorithm 
��� Then there exists

C � � independent on k such that for m big enough� but independent on k

�
�
�� 	k � 	 � C

C �
p
m
�

�ii� De�ne Bk by p � � and m�k� � 
K�k for k � 
� � � � �K in Algorithm 
��� Then

there are 
�� 
� � �� independent on k� such that

�
���� 
�ak�v� v� � ak�BkAkv� v� � 
�ak�v� v�� �v � Vk�

with 
� � m�k������C �m�k����� and 
� � �C �m�k������m�k�����
The proof of this theorem follows from Propositions 
�� and 
�� and Theorems

� and � in ��
� The constant C in Theorem 
�� depends only on C� in �
��� and
the constant appearing in the smoothing estimates ��
� From Theorem 
��� we have
an optimal convergence property of the W�cycle and a uniform condition number
estimate for the variable V�cycle preconditioner�

���� The mixed multigrid algorithm� In this section we consider multigrid
algorithms for a mixed �nite element method for �
���� The Raviart�Thomas spaces
�


 over triangles is given by

 h �


v � �L������ � vjE �

�
a�E � a�Ex� a

�
E � a�Ey

�
� aiE � IR� E � Eh

�
�

Wh �


w � L���� � wjE is constant for all E � Eh

�
�

Lh �


� � L���Eh� � �je is constant� e � �Eh� �je � �� e � ��

�
�

where �Eh denotes the set of all interior edges� Then the hybrid form of the mixed
method for �
��� is to seek ��h� uh� �h� �  h �Wh � Lh such that

�
����

X
E�Eh

�r � �h� w�E � �chuh� w� � �f�w�� � w �Wh�

�Xh�h� v��
X
E�Eh

��uh�r � v�E � ��h� v � 
E��E 
 � �� � v �  h�X
E�Eh

��h � 
E � ���E � �� � � � Lh�

where 
E denotes the unit outer normal to E� Xh � QhA�� �component�wisely��
ch � Qhc� and Qh denotes the L

���� projection operator onto Wh� The solution �h
is introduced to approximate the vector �eld

� � �Aru�

which is the variable of primary interest in many applications� Since � lies in the
space

H�div� �� �


v � �L������ � r � v � L����

�
�

and we do not require that  h be a subspace of H�div� ��� the last equation in �
����
is used to enforce that the normal components of �h are continuous across the interior
edges in �Eh� so in fact �h � H�div� ��� Also� the projection of the coe�cients A��� c
into the space Wh is introduced in �
����� The projection of coe�cients gives us
considerable computational savings� without any loss of accuracy ���
� Furthermore�



�� CHEN� KWAK AND YON

it can be used to establish an equivalence between the triangular nonconforming
method and the mixed method �
����� This equivalence has been obtained in ��

�
���
� ���
 in the case of c � �� We now extend it to the present situation�

There is no continuity requirement on the spaces  h and Wh� so �h and uh can
be locally �element by element� eliminated from �
����� In fact� applying the ideas in
��

� �
���� can be algebraically condensed to the symmetric� positive de�nite system
for the Lagrange multiplier �h�

�
��
� M� � F�

where the contributions of the triangle E to the sti�ness matrixM and the right�hand
side F are

mE
ij � 
iE�

E
jE �
�c� ��E
�

	ij � FE
i � � �J

f
E� 


i
E�E

jEj � �JfE � 

i
E�ei

E
�

where 
iE denotes the outer unit normal to the edge eiE �E has three edges�� 
iE �

jeiE j
iE � jeiE j is the length of eiE � �E � ���Xh�ij� ��E���� JfE � �f� ��E�x� y���
jEj�� 	ij
is the Kronecker symbol� and jEj denotes the area of E� After the computation of �h�
�
���� can be used to recover �h and uh on each element�

As shown in ��

 for the case where c � �� the system �
��
� corresponds to
the system arising from the triangular nonconforming �nite element method� This is
proven below�

Theorem ���� Let fh � Qhf � Then �
��
� corresponds to the linear system produced

by the problem� Find �h � Vh such that

�
���� !ah��h� �� � �fh� ��� �� � Vh�

where !ah��h� �� �
P

E�Eh
�X��

h r�h�r��E � �ch�h� ���
Proof� Let f�h� � � � � � �hmh

g be the basis of Vh such that each �hi equals � at exactly
one midpoint and equals � at all other midpoints� Then for each E � Eh we have

�hi jE �
�

jEj

i
E � ��x� y�� pl�� i 	� l�

for some midpoint pl� Also� note that for any linear functions � and � on a triangle
E � Eh�

��� ��E �
�

�
jEj

�X
s	�

��ps���ps��

where the ps�s are the midpoints of the edges of E� Then we see that

�X��
h r�hi �r�hj �E � �ch�hi � �hj �E � 
iE�

E
jE �
�c� ��E
�

	ij�

which is mE
ij � and

FE
i � � �Jf

E
��iE�E
jEj � �JfE � 


i
E�ei

E

� � �f���E
�jEj ��� �

h
i �E �

�f���E
�jei

E
j
��ki � ��ei

E

� �f���E
jEj ��� �

h
i �E �
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which is �fh� �hi �E � �

It follows from this theorem that Algorithm 
�� can be used to solve �
��
�� i�e��
to solve the mixed method �
����� Moreover� the previous results on theW�cycle and
variable V�cycle algorithms hold�

�� The Nonsymmetric and�or Inde	nite Problem� In this section we
develop multigrid algorithms for the nonsymmetric and inde�nite problem� In x����
we consider the problem of existence and uniqueness of the solution to the discrete
system� The nonconforming multigrid algorithm is analyzed in x��
� and the mixed
methods are described in x����

���� Preliminaries� In this subsection we consider the nonconforming �nite
element method applied to the nonsymmetric and inde�nite problem� We consider as
our model problem the following equation�

�����
�r � �Aru� � B � ru� cu � f in ��

u � � on ���

with the same notation as in �
���� We assume that the symmetric coe�cient A
satis�es �
�
a�� B is continuously di�erentiable on � and piecewisely C� with the sum
of the second�order derivatives over pieces being bounded� and jcj is bounded �need
not satisfy �
�
b��� Further� we assume that the solution of ����� exists�

The bilinear form A��� �� is now given by

A�v�w� � �Arv�rw� � �B � rv�w� � �cv�w�� v� w � H�����

The solution u � H�
� ��� of ����� then satis�es

���
� A�u� v� � �f� v�� � v � H�
� ����

Associated with A��� ��� we also introduce the symmetric positive de�nite form bA��� ��
by bA�v�w� � �Arv�rw� � �v�w�� v� w � H�����

which corresponds to a��� �� with c � � of the second section� The di�erence form is
indicated by

����� D�v�w� � A�v�w�� bA�v�w��
With the same Vh as before� we de�ne a mesh�dependent form Ah��� �� by

Ah�v�w� �
X
E�Eh

f�Arv�rw�E � �B � rv�w�Eg� �cv�w�� v� w � Vh �H�
� ����

The corresponding symmetric form is denoted by bAh��� ��� The nonconforming �nite
element solution uh � Vh of ����� is given by

����� Ah�uh� v� � �f� v�� � v � Vh�

The norm induced by
� bAh�v� v�

����
for v � Vh�H�

� ��� is equivalent to the norm�P
E�Eh

jjrvjj�L��E� � jjvjj�
����

� Thus� we de�ne

jjvjjh � bAh�v� v�
���� �v � Vh �H�

� ����
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Let us note the inequality

����� jAh�v�w�j � Cjjvjjhjjwjjh � �v�w � Vh �H�
� ����

It is not hard to show the Garding inequality

����� C�jjvjj�h �C�jjvjj� � jAh�v� v�j� �v � Vh �H�
� ����

Lemma ���� Problem ����� has a unique solution for h su�ciently small�

Proof� Let Uh be the same as before� i�e�� the P� conforming �nite element space�
and let zh � Uh satisfy

����� Ah�zh� v� � �f� v�� �v � Uh�

Then it follows from ����������� that

C�jjuh � zhjj�h �C�jjuh � zhjj�

� jAh�uh � zh� uh � zh�j
� jAh�u� zh� uh � zh�j� jAh�uh � u� uh � zh�j
� jAh�u� zh� uh � zh�j� jf�uh � zh��Ah�u� uh � zh�j
� C�jju� zhjjhjjuh � zhjjh � jf�uh � zh��Ah�u� uh � zh�j�

so that� by dividing through by C�jjuh � zhjjh� we have

���	�
jjuh � zhjjh � C�

C�

jjuh � zhjj

� C�

C�

jju � zhjjh � �
C�

supv�Vh
jf�v��Ah�u�v�j

jjvjjh
�

Note that� since ����� and the associated adjoint problem are assumed to be uniquely
solvable� a duality argument �
�
 can be used to show the estimate

����� jjuh � zhjj � C�hjjuh � zhjjh�
Thus� by ���	� and ������ we see that� if h � C���C�C���

������ jjuh � zhjjh � C

�
jju � zhjjh � sup

v�Vh

jf�v��Ah�u� v�j
jjvjjh

	
�

From a known result for the conforming method ����� �
�
� there exists h� � � such
that zh � � is the only solution corresponding to u � � for h � h�� Therefore� for
h � min �h�� C���C�C���� it follows from ������ that the homogeneous nonconforming
equation ����� has a unique solution uh � �� Since Vh is �nite dimensional� this also
implies existence� �

De�ne the projection operator Ph � H�
� ���� Vh by

Ah�Phu� v� � Ah�u� v�� �v � Vh�

It follows in the usual way from ������ ������� and the corresponding result for the
conforming �nite elements that� if the solution of ����� satis�es regularity estimates
of the form

������ jjujj��� � Cjjf jj�����
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then

����
� jju �Phujj � Ch�jju �Phujjh�
and

������ jjPhujjh � Cjjujjh�
In the case where regularity estimates of the form of ������ are not known to

hold� it can be shown as in the conforming case �
�
 that� given � � �� there exists an
h���� � � such that for � � h � h��

������ jju �Phujj � �jju �Phujjh�
and ������ is satis�ed� The above � will appear in our later convergence result�

���� The nonconforming multigrid algorithm� The family of partitions
fEkgKk	� is constructed in the same manner as before� Let the mesh size of E� be d��
then� by similarity� the mesh size of Ek is 
��kd�� From Lemma ���� for ����� to be
well behaved� the approximation grid must be su�cient �ne� As in the conforming
case ��
� we shall require that the coarsest grid in the multilevel algorithm be su�cient
�ne� Toward that end� let the coarse mesh size be denoted by an integer L� Then the
space Vk has a mesh size of hk � 
��L�kd� � 
��kh�� k � �� � � � �K�

As noted in ��
 and demonstrated in our experiments in x�� in practice� the coarse
grid can be taken considerably coarser than the solution grid� The reason for this is
that we can only expect that the discrete errors depend monotonically on the grid
sizes� consequently� if the �ne grid approximation is reasonably accurate� we expect
that there exists a sequence of coarser grids whose approximations are well de�ned�

For k � 
� � � � �K� we de�ne the projection operators Pk�� � Vk �H����� Uk��
and P �

k�� � L
����� Uk�� by

Ak���Pk��v�w� � Ak�v�w�� �w � Uk���

and

�P �
k��v�w� � �v�w�� �w � Uk���

Also� for each k � �� � � � �K� we introduce the conforming discretization operator
Mk � Uk � Uk by

�Mkv�w� � Ak�v�w�� �w � Uk�

The nonconforming discretization operator on Vk is still indicated by Ak� for exposi�
tional convenience�

We �rst describe a simplest V�cycle multigrid algorithm for iteratively computing
the solution of the conforming method ������ The next two algorithms are slightly
di�erent from Algorithm 
��� Speci�cally� we smooth only as we proceed to coarser
grids� So they are a special case of Algorithm 
��� Alternatively� we could consider a
multigrid algorithm with just post�smoothing or both pre� and post�smoothing� as in
Algorithm 
��� These algorithms can be analyzed analogously� and are not considered
here�

The following algorithm iteratively de�nes a multigrid operator Nk � Uk � Uk�
The operator Rk � Uk � Uk is a linear smoothing operator� A variety of examples for
Rk has been given in ��
� we do not repeat these examples in the paper�

Multigrid Algorithm ���� Set N� �M��
� � For � � k � K� assume that Nk��

has been de�ned and de�ne Nkg for g � Uk by
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�� Set xk � Rkg�

� De�ne Nkg � xk � q� where q � Uk�� is given by

q � Nk��P
�
k�� �g �Mkxk� �

We now de�ne the V�cycle algorithm for the nonconforming method ������ which
determines a multigrid operator BK � VK � VK � The operator QK � VK � VK below
is a linear smoothing operator� Examples of this operator will be given in x��
���

Multigrid Algorithm ���� If K � �� set B� � A��� � If K � �� de�ne BKg for
g � VK by

�� Set xK � QKg�

� De�ne BKg � xK � q� where q � UK�� is given by

q � NK��P
�
K�� �g � AKxK� �

We remark that the coarse�grid correction in Algorithm ��
 is de�ned on the con�
forming �nite element spaces� That is� it is of the second type of multigrid algorithm�
mentioned in the introduction� It will be analyzed in x��
�
�

������ Smoothers� The smoothers presented in this subsection are the vari�
ants of those for the conforming �nite element method �see� e�g�� ��
�� We �rst describe
three smoothers which are based on the symmetric problem� and then three smoothers
which correspond to the original nonsymmetric and inde�nite problem�

The simplest smoother is given in the next example�
Example 
� We de�ne

QK � ���K I�

where �K is the largest eigenvalue of bAK �
The following two smoothers are de�ned in terms of subspace decompositions� To

this end� let

VK �

l�K�X
j	�

Vj�K �

where Vj�K is the one�dimensional subspace spanned by a nodal basis function or the
one spanned by the nodal basis functions along a line� and l�K� is the number of such
spaces� The smoothers in Examples � and � below are additive and multiplicative�
respectively�

Example �� We de�ne

QK � �

l�K�X
j	�

bA��j�KQj�K �

where bAj�K � Vj�K � Vj�K is the symmetric discretization operator on Vj�K de�ned by

� bAj�Kv� �� � bAK�v� ��� �� � Vj�K �

Qj�K � Vj�K � Vj�K is the projection operator on Vj�K with respect to the L� inner
product ��� ��� and the constant � is a scaling factor which is chosen to ensure that the
smoothing property is satis�ed ��
�

Example �� Given g � VK � we de�ne
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�� Set x� � ��

� Determine xi� for i � �� � � � � l�K�� by

xi � xi�� � bA��j�KQj�K�g � bAKxi����

�� Set QKg � xl�K��
The following example corresponds to the �rst example� and the later two exam�

ples are closely related to Examples � and ��
Example �� We de�ne

QK � ���K At
K �

where �K is as in Example 
 and At
K is the adjoint operator of AK with respect to

the L� inner product ��� ���
Example �� We de�ne

QK � �

l�K�X
j	�

A��j�KQj�K �

where Aj�K � Vj�K � Vj�K is the discretization operator on Vj�K given by

�Aj�Kv� �� � AK�v� ��� �� � Vj�K �

and Qj�K � Vj�K � Vj�K and � are as in Example ��
Example �� Given g � VK � we de�ne
�� Set x� � ��

� Determine xi� for i � �� � � � � l�K�� by

xi � xi�� � A��j�KQj�K�g � AKxi����

�� Set QKg � xl�K��

������ Analysis of the multigrid algorithm� We now provide a conver�
gence analysis for Algorithm ��
 with the smoothers given in Examples 
�� in the
framework of ��
� All of their analysis is based on perturbation from the uniform
convergence estimate for the multigrid algorithm applied to the symmetric problem�
Essential use in ��
 is made of a product representation of the error operator and two
properties of the di�erence form D��� �� �see �
��� in ��
�� In this section we shall show
that our error operator has the same structure �see Lemma ��� below� and the form
D��� �� satis�es the same properties �see Lemma ��� below�� Thus the convergence
analysis given in ��
 carries over to Algorithm ��
 since the uniform iterative conver�
gence estimate for Algorithm ��
 applied to the symmetric problem has been shown
in ��

 and ���
�

Lemma ���� It holds that

BK � QK �NK��P
�
K���I � AKQK��

and

Nk � Rk �Nk��P
�
k���I �MkRk�� k � 
� � � � �K�

This lemma can be easily seen from Algorithms ��� and ��
�
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Lemma ���� Let PK � I� T� � P�� Tk � RkMkPk� k � 
� � � � �K � �� and TK �
QKAKPK� Then

������ I �BKAK � �I � T���I � T�� � � � �I � TK ��

Proof� From the de�nitions of Pk�� and P �
k��� we see that

P �
K��AK �MK��PK���

P �
k��Mk �Mk��Pk��� k � 
� � � � �K � ��

Pk��Pk � Pk��� k � 
� � � � �K�

Then it follows from Lemma ��
 that

I � BKAK � �I �NK��MK��PK����I �QKAK��

and

I �NK��MK��PK��

� I � PK�� � �I �NK��MK���PK��

� I � PK�� � �I �NK��MK��PK����I � RK��MK���PK��

� �I �NK��MK��PK����I � PK�� � �I �RK��MK���PK���

� �I �NK��MK��PK����I � TK����

Therefore� a straightforward mathematical induction argument shows the desired re�
sult ������ since PK � I� �

The product representation of the error operator in Lemma ��� is a fundamental
ingredient in the convergence analysis� The other important ingredients are the fol�
lowing properties of the di�erence operatorD��� ��� They are trivial in the conforming
case� however� as shown below� the second property is not so straightforward in the
nonconforming case�

Lemma ���� Under the above assumption on the coe�cient B� there is a constant C
independent on k such that

������ jD�v�w�j � Cjjvjjkjjwjj� �v�w � Vk�

and

������ jD�v�w�j � Cjjwjjk jjvjj� �v�w � Vk�

Proof� ������ directly follows from the de�nition of D�v�w��

D�v�w� �
X
E�Ek

�B � rv�w�E � ��c� ��v�w��

To prove ������� we apply integration by parts on each �nite element to see that

����	� D�v�w� �
X
E�Ek

f�B � 
Ev�w��E � �r � Bw � B � rw� v�Eg� ��c� ��v�w��
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Evidently� it su�ces to estimate the terms over edges�
Let E�� E� � Ek share an edge e with midpointmk� and let e have the parametric

representation x � x�t�� y � y�t� with t as parameter� They are linear functions of
t� Then� by the midpoint rule and the continuity at midpoints on the elements of Vk�
we �nd thatR

e�B � 
E�
vw�jE�

ds�
R
e�B � 
E�

vw�jE�
ds

� jejf�B � 
E�
vw�jE�

�mk� � �B � 
E�
vw�jE�

�mk�g

� jej�

��

��
dx
dt

��
�
�
dy
dt

����� n
d�

dt� �B � 
E�
vw�jE�

��k� � �
d�

dt� �B � 
E�
vw�jE�

��k� �
o

� jej�

��

��
dx
dt

��
�
�
dy
dt

����� n
d�

dt�
�B � 
E�

vw�jE�
��k� � �

d�

dt�
�B � 
E�

vw�jE�
��k� �

o
�

for some points �k� � �
k
� � e� Note that� since v and w are piecewisely linear� for i � �� 
�

d�

dt�
�B � 
Eivw� �

d�

dt�
�B � 
Ei�vw� 


d

dt
�B � 
Ei�

d

dt
�vw� � 
�B � 
Ei�

dv

dt

dw

dt
�

Also� by the chain rule� we have with any function g � g�x�t�� y�t���

dg

dt
�

�g

�x

dx

dt
�
�g

�y

dy

dt
�

and

d�g

dt�
�

��g

�x�

�
dx

dt

	�

� 

��g

�x�y

dx

dt

dy

dt
�
��g

�y�

�
dy

dt

	�

�

since e is a line segment� Consequently� we see that��R
e
�B � 
E�

vw�jE�
ds�

R
e
�B � 
E�

vw�jE�
ds
��

� Cjej�

��

P�
i	�

�
jvj � j�v�x j � j�v�y j

� �
jwj � j�w�x j � j�w�y j

�
��ki ��

This� together with the Cauchy�Schwarz inequality� an inverse inequality� and the fact
that v and w are piecewisely linear� implies that��P

E�Ek
�B � 
Ev�w��E

��
� Ch�k

P
e��Ek

�
jvj � j�v�x j � j�v�y j

� �
jwj � j�w�x j � j�w�y j

�
��ke �

� Chk�jjvjj � jjvjjk��jjwjj � jjwjjk�
� Cjjwjjk jjvjj�

which� by ����	�� yields the desired result ������� Thus the proof is complete� �

With Lemmas ��� and ��� and the arguments presented in Theorems ��
���� of
��
� we have the following theorem�

Theorem ���� Let QK be one of the smoothers de�ned in Examples 
��� Then�

given � � �� there exists an h� � � such that for h� � h��bAK�Ev�Ev� � 	� bAK�v� v�� �v � VK �
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where E � I �BKAK� 	 � b	 �C�h� � ��� and b	 is less than one and independent on

K�

We remark that b	 comes from the uniform convergence estimate of Algorithm ��

applied to the symmetric problem ��

� ���
�

���� The mixed multigrid algorithm� As in the last section� we now
consider a mixed �nite element method for numerically solving ������ With the same
spaces  h� Wh� and Lh as in x
�
� the hybrid form of the mixed �nite element solution
to ����� is ��h� uh� �h� �  h �Wh � Lh satisfying

������

X
E�Eh

�r � �h� w�E � �Yh � �h� w� � �chuh� w� � �f�w�� � w �Wh�

�Xh�h� v��
X
E�Eh

��uh�r � v�E � ��h� v � 
E��E 
 � �� � v �  h�X
E�Eh

��h � 
E � ���E � �� � � � Lh�

where Yh � Xh�QhB� and the other notation is the same as before� We recall that
Qh denotes the L���� projection onto Wh�

Again� after an algebraical condensation� system ������ can be reduced to a linear
system for the Lagrange multiplier �h�

���
�� M� � F�

where the contributions of the element E to the sti�ness matrixM and the right�hand
side F are

mE
ij � 
iE�

E
jE �
�
� �QhB�jE � 
iE � �

� �c� ��E	ij �

FE
i � � �Jf

E
��iE�E
jEj � �JfE� 


i
E �eiE �

Furthermore� with the same argument as in Theorem 
��� we have the next result�

Theorem ���� System ���
�� corresponds to the linear system arising from the non�

conforming problem� Find �h � Vh such that

!Ah��h� �� � �fh� ��� �� � Vh�

where

!Ah��h� �� �
X
E�Eh



�X��

h r�h�r��E � �QhB � r�h� ��E
�
� �ch�h� ���

It thus follows that Algorithm ��
 can be exploited to solve the system arising
from the mixed method ������� and the convergence result in Theorem ��� is valid�

�� Numerical Examples� We report the results of a couple of numerical
examples to illustrate the theory developed in the earlier sections and to show a com�
parison between the results obtained here and those generated by the well established
conforming �nite element and �nite di�erence multigrid algorithms ��
� ��
� We �rst
compute a symmetric problem� and then a nonsymmetric and inde�nite problem�
Special e�orts are made in the second example�
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hK ��v� 	v� ��w� 	w� ��vv� 	vv�

��	 ����	� ���� ������ ���� ������ ����
���� ������ ���� ������ ��
� ������ ����
���
 ���	�� ���� ����	� ���� ����	� ����
���� ���	�� ���� ����	� ���� ����	� ����
���
	 ������ ���� ����	� ���� ����	� ����

Table �� Convergence results for Example 	�

Example 	� In the �rst example we consider the following equation on the unit
square�

�����
�r � �Aru� � f in � � ��� ����

u � � on ���

We approximate the solution to ����� using the triangular nonconforming method
�
���� In this example� conditions �
��� and �
��� are satis�ed� The analysis of the
second section guarantees that the condition number ofBKAK for the variable V�cycle
algorithm can be bounded independently on the number of levels and the W�cycle
algorithm has an optimal convergence property� Table � gives the condition number �
for the system BKAK and the reduction factor for the system I�BKAK as a function
of the mesh size on the �nest grid� where the V�cycle� W�cycle� and variable V�cycle
algorithms are indicated by ��v� 	v�� ��w� 	w�� and ��vv � 	vv�� respectively� The V�
cycle and W�cycle schemes use one smoothing step� �To see how the convergence
rate depends upon the number of the smoothing steps� refer to ��

�� For all of the
runs� the coarse grid is of size h� � ��
� Point Jacobi smoothing is applied� As
noticed in the conforming case ��
� the variable V�cycle and the W�cycle algorithms
have essentially identical computational results� This is due to the fact that both
algorithms have exactly the same number of total smoothings on each grid in the
multi�level iteration� While there is no complete theory for the V�cycle algorithm�
it is of practical interest that the condition numbers for this cycle remain relatively
small� but the convergence rate deteriorates with the mesh size� Finally� compared
with the numerical results obtained in ��
� ��
� we see that the nonconformingmultigrid
algorithms in fact compare favorably with these standard multigrid algorithms�

Example �� In the second example we consider the nonsymmetric and inde�nite
problem

���
�
�r � �Aru� � B � ru � cu � f in � � ��� ����

u � � on ���

In ���
�� the symmetric and positive de�nite part is taken as in ������ but three
di�erent choices for the constants B and c are made in our experiments�

B � �c� c��

where c � ��� ��� and ���
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c �hK � h�� 	v jjEjj

�� ������ ���� �������� ����
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�� ������ ��	� NC �
�� ����
� ���� �������� ����
�� ����
� ���� �����
�	 ����
�� ����
� ��	� ����
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Table 
� Convergence results with one Jacobi
pre�smoothing and with conforming corrections

c �hK � h�� 	v jjEjj
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�� ������ ���� ���
	�	
 ����
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�� ����
� ���� �����
�� ����
�� ����
� ���� �������� ����
�� ����
� ��	� ���
���� ����
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Table �� Convergence results with one Gauss�Seidel
pre�smoothing and with conforming corrections

c �hK � h�� 	v jjEjj
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�

Table �� Convergence results with one Jacobi pre�
smoothing and with nonconforming corrections

We �rst report the results obtained by using Algorithm ��
 with one �point� Jacobi
and Gauss�Seidel pre�smoothing� They are shown in Tables 
 and �� respectively�
where �hK � h�� denotes the mesh sizes of the �nest and coarsest grids� respectively�
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	v indicates the average error reduction factor in �fty iterations� and

jjEjj � sup
v�VK

bAK�Ev�Ev�� bAK�v� v�

is the operator norm in the �nal iteration� In the cases where there is no convergence
�denoted by NC in the tables�� the coarsest levels in the multigrid iteration are not
�ne enough� This agrees with our earlier theory on the nonsymmetric and inde�nite
problem where the coarsest levels need to be su�ciently �ne� Overally� in the case
where there is convergence� the Gauss�Seidel smoothing performs better than the
Jacobi smoothing� and 	v and jjEjj are quite small for both smoothers� When c � ���
the coarsest level needs to be �ner� This is the case where the convection term becomes
"bigger��

c �hK � h�� 	v jjEjj

�� ������ ���� �������	 ����
�� ������ ���� ��
���	� ����
�� ������ ��	� ��
����� ��
�
�� ����
� ���� �������� ��		
�� ����
� ���� ��
����� ����
�� ����
� ��	� ��
	���	 ����
�� ������ ���� �������� ����
�� ������ ���� ����
�
	 ����
�� ������ ��	� �������� ���


Table �� Convergence results with one Gauss�Seidel
pre�smoothing and with nonconforming corrections

c �hK � h�� 	v jjEjj
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�	
 ���


Table �� Convergence results with one Jacobi pre� and
post�smoothing and with nonconforming corrections

For comparison� we also demonstrate the results produced by using the �rst type
of multigrid algorithm� i�e�� all the coarse�grid corrections are de�ned on the noncon�
forming spaces instead of the conforming spaces� The results with one Jacobi and
Gauss�Seidel pre�smoothing are presented in Tables � and �� respectively� Evidently�
the results with the Gauss�Seidel smoothing are much better than those with the Ja�
cobi smoothing� As the �nest level gets higher �e�g� hK � ���
	� not reported here��
we observed that the average error reduction factor approches ���	 with the Jacobi
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Table �� Convergence results with Gauss�Seidel pre� and
post�smoothing and with nonconforming corrections

c �hK � h�� 	w jjEjj

�� ������ ���� �������� ����
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���� ���	

Table 	� Convergence results of the W�cycle with Jacobi
pre� and post�smoothing and with nonconforming corrections

c �hK � h�� 	w jjEjj

�� ������ ���� �������	 ����
�� ������ ���� �������	 ���	
�� ������ ��	� �������	 ����
�� ����
� ���� �������� ����
�� ����
� ���� ����
��� ����
�� ����
� ��	� ���
���� ���	
�� ������ ���� �������� ����
�� ������ ���� �������� ����
�� ������ ��	� ���
�		� ����

Table �� Convergence results of the W�cycle with Gauss�
Seidel pre� and post�smoothing and with nonconforming corrections

smoothing� For this reason� we experimentedwith the �rst type of multigrid algorithm
with one Jacobi and Gauss�Seidel both pre� and post�smoothing� The results are
displayed in Tables � and �� respectively� It appears that this type of algorithm needs
at least two smoothing steps to have good results with the Jacobi smoothing� Finally�
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while there is no theoretical analysis for theW�cycle algorithm for the nonsymmetric
problem� we point out that the results generated by theW�cycle algorithm are slightly
better than those yielded by the V�cycle algorithm� as shown in Tables 	 and ��
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