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Abstract:

Using the theory of correspondences from algebraic geometry, we develop methods
to relate 3-D objects to 2-D images and vice versa. In effect, we provide a very general
framework for the use of geometric invariants in image recognition. At the most concrete
level, our techniques yield a system of polynomial equations in variables which represent
both the 3-D invariants of the features on an object and the 2-D invariants of features in
an image. These equations will be satisfied if and only if the object can produce the image
up to affine transformations of both the object and the image. The case of projective
invariants will be dealt with in a forthcoming paper. The applications considered are to

single view recognition and to indexing image databases for content based retrieval.
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§0. Introduction.

In this paper we develop a general mathematical framework which explains the rela-
tionship between certain collections of features on 3-D objects and the 2-D images they
produce. Specifically, we are concerned with single-view recognition of 3-D arrangements
of features such as points and lines. The general problem of single-view recognition has
been characterized as the “holy grail” of computer vision (Weiss [9]) and was one of the
inspirations for the use of geometric invariants in object recognition. Unfortunately, neg-
ative results of Burns, Weiss, and Riseman [1] show that there are no general-case view
invariants. (For an alternate proof of this result see §6 below.) This makes the use of
invariants for single-view recognition a more complex problem. While it is intuitively clear
that a single 2-D view carries useful information about the original 3-D arrangement, the
question of how to extract that information remains, to a large extent, an open one.

We shall show that much of this information can be characterized by a correspondence
(in the sense of algebraic geometry). One of our goals is to explain this general idea and
to give some explicit examples of the results that can be obtained. Questions of specific
applications, implementation, and robustness are dealt with in a separate paper (Asmuth,
Stiller, and Wan [7]). In addition, we will focus exclusively on the affine case, leaving the
projective case for separate consideration (Asmuth, Stiller, and Wan [8]).

We adopt the point of view that a 3-D arrangement of features should be characterized
by its 3-D affine or projective invariants, and that information from a single 2-D view
should be expressed in the form of constraints on those invariants. Those 3-D objects
whose features have invariants satisfying the constraints are then candidates for the object
being viewed. Moreover, the constraints should be functions of the 2-D invariants of the
features (points and/or lines) in the image. These constraints are shown to be relatively
simple polynomial expressions in the combined set of variables: 3D invariants plus 2D
invariants. A typical result, which the reader can turn to now, is Theorem 4.

The general method also works directly on the level of the 3-D and 2-D features
without passing to invariants. However, the resulting equations are “invariant” in an
appropriate sense and so reduce to those we present here.

In the affine case, our general formalism involves interpreting a fundamental set of
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3-D affine invariants for an ordered set of n points in R® (which are not all coplanar)
as an n — 4 dimensional linear subspace K™~ of some R™~!. This yields a point in the
3n — 12 dimensional Grassmannian Grgr(n — 4,n — 1). Similarly, a fundamental set of
2-D affine invariants for an ordered set of n points in R? (not all collinear) is expressed
as an n — 3 dimensional linear subspace L™~3 of the same R"~!, which yields a point in
the 2n — 6 dimensional Grassmannian Grg(n — 3,n — 1). The constraint which relates
a 3-D feature set consisting of an n-tuple of points to an image consisting of an n-tuple
of points is the incidence relation K»~* c L™ 3 c R™"!. In other words, those objects
(feature sets) whose invariants in the form of the subspace K™% lie in the subspace L"~3
obtained from the image, are candidates for the object being viewed. We remark that
the set of all objects (all K™"~%) capable of producing a given image (an L"~3) defines a
subvariety, denoted ) ;._s, of dimension n — 4 in Grr(n —4,n —1). > ;._s is known
as a Schubert cycle. Similarly, the set of all L"~2 containing a fixed K™~* (i.e., the set
of images produced by a fixed object) is a two-dimensional linear subvariety (a projective
plane) in Grgr(n—3,n—1), which we denote by ) ;.—s (a related result appears in Jacobs
[10]).

Finally this incidence correspondence between objects and images can be written
down as a set of explicit polynomial constraints — either in terms of the 5n coordinates
coming from the n 3-D points and the n 2-D points, or in terms of the 5n — 20 affine
invariants (3n — 12 invariants in 3-D and 2n — 8 invariants in 2-D). For the reader with less
mathematical background who wants to see these ideas in a concrete setting, we recommend
looking at some of the results in §4. Eramples first.

As an application, we have used this scheme to index an image database for content
based retrieval (see Asmuth, Stiller, and Wan [7]). In that application, we used feature sets
consisting mainly of points and lines. Our approach also works well in situations where
more than one view is available. Each view generates a separate constraint space, say
L and I/, and we find that K = L N L’. This means that K, and hence the 3-D affine
invariants of our feature set, can be completely determined from two views, subject only
to measurement error in the images. The methods are also flexible enough to be able to

handle instances when particular points and/or lines are occluded.



61. The Generalized Weak Perspective Projection Model.

1 0 0
Let A denote a matrix in SO(3), i.e. a matrix withdet A=1and ATA= [0 1 0],
0 0 1
&1
so that A effects a rigid rotation of space. Also let £ = | & | denote a vector which we
€3

think of as providing a rigid translation of space.

The standard perspective object-to-image transformation 74 ¢ takes the form:

o , z A 1 00 v
_ - A
<U’> e\ <g$+hy+kz+£3+>\> <0 1 0) z e

z

where A is the focal length and the transformation

x x a b c
yl—Aly|+& where A= |d e f
z z g h k

is a rigid motion of space that reflects various views of the object. This is of course just
the restriction to R3 of a special case of projection from a point P in projective space P3

onto a hyperplane H C P3 not containing P:
. 3 2
ma,p: P°—{P} — P~

(H is isomorphic to the projective plane P2.) For details, see Harris [3] pg. 34.
As an approximation to perspective transformations, one often uses the so-called weak

perspective model (see, e.g., Clemens [2]):

(ZL:):m,g % %ﬁ) ((1) ) 8) {A g +5}

where wq is an “average” depth for the objects being viewed. Weak perspective is just
orthogonal projection followed by scaling, once the view has been established.

In analyzing an image, we will be required to choose coordinates in the image plane
without reference to the actual spatial coordinates. This means that the coordinates (Z)

in the image will be related to (Z:) by a transformation of the form

(o) = () ()
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where s’ is a positive scalar, N is a special orthogonal matrix, i.e. NNT = <0 (1)>,
det N =1, and n = (:’];) is a translation.
Thus with the weak perspective model, we can assume that we are dealing with

transformations of the form
T T
U 1 0 O
z z

where s € R, s > 0 is a scaling factor, specifically s = s’(wO’\Jr)\).

In this paper, we will allow a slightly more general set of transformations which we call

generalized weak perspective transformations. Specifically, we allow 74 ¢ to be followed by a

a b
general affine transformation of the image plane, B’ = | ¢/ d' 1o |, witha'd' —0'¢’ # 0.
0 0 1

In simpler terms, if an object produces an image, then from this point of view it can produce

any affine transformation of that image. Thus we allow transformations
TAL B': R3 — R2

of the form

" T 1o0oo0o\[a e\("

Y Y
v | =TaeB , =B'"[0 1 0 O) | ......... 5
1 1 000 1/ Nooo ¢ 1/ \1

Finally, suppose we apply an arbitrary affine transformation of 3-space prior to pro-

jecting:
Tagp 0B
a b ¢ &
d e [ 0o a b c
where B = g h i 52 with det [ d e f | # 0. We claim that the resulting
3 :
00 0 1 g hoi
transformation from R? to R? is again of the form 7 ; cB for suitable A, ¢, and B’. In other

words, 3-D objects that are affinely equivalent will produce the same set of possible images,
and with no loss of generality, we can take our generalized weak perspective transformations

to be of the form

7TB’,B = B/

oo
o~ o
oo o
=
sy



where B’ is an affine transformation of 2-space and B is an affine transformation of 3-space.

The impact of these observations and choices is that, in a certain sense, the best we
can hope to do is to relate objects (feature sets) up to affine transformation to images up
to affine transformation. In other words, we can at best hope to relate 3-D affine invariants
of sets of say points and lines, to the 2-D affine invariants of the images they produce and

vice versa.



§2. Affine Invariants for Sets of Points

In this section, we introduce a new type of affine invariant for a set of points. Unlike
the familiar numerical invariants commonly used in image recognition, this invariant is
a linear subspace of a particular vector space. It is in many respects the most natural
invariant and is certainly more general and more robust than the standard numerical
invariants; avoiding as it does, the need for any special general position assumptions. We
also show that the numerical invariants can be completely recovered from the subspace.

Let P; = (x4,y;,2;) for i =0,...,n — 1, be an ordered set of n non-coplanar points in

R2, and consider the 4 x n matrix M given by

To T1 Tn—1
M=|Y %N Yn—1
Z0 21 ... Zp—1
1 1 1
We associate to a 3-D object whose features set consists of the points Fp,...,P,_1 an

(n — 4)-dimensional linear subspace K™"~* of R™:
K" * ={p=(po,...,pn_1)T € R™ such that Mp = (0,0,0,0)T}.

The fact that K™% has dimension n — 4 follows from the observation that at least one
4 x 4 minor of M has non-zero determinant because the points are not all coplanar. We
will sometimes refer to K™~ as the key.

Notice that if we apply an affine transformation T to our set of points, we obtain a

new 4 X n matrix

a b c & To T1 Tp—1
d e [ & Yo Y1 Yn—1
M/ — n — TM
g h k 53 20 Z1 vee Zp—1
0 0 0 1 1 1 1

but the subspace K™% does not change. Thus we can regard K"~ as an “affine invari-
ant”. Moreover, since K"~* c H" ! = {p = (po,---,pn_1)T € R™ such that nilpi = O},
we can assign to our n-tuple of points the unique point determined by K™~* irzlztohe Grass-
mannian, Grg (n—4,n—1), of (n—4)-planes in (n —1)-space. The space Grg(n—4,n—1)

is a well understood manifold of dimension 3n — 12 (see Griffiths and Harris [5]).
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We remark that any rational function (in the sense of algebraic geometry) on this
Grassmannian provides a numerical affine invariant and conversely (as we shall see below).

In other words, the field of rational functions on Grg(n — 4,n — 1) can be identified with

p(wo,...,zn_l)

1@ ) where p and ¢ are polynomials in the variables

all affine invariant expressions
TiyYis Ziy 0 =0,...,n — 1.
To explore this further, assume that Py, Pi, P>, P3 are not coplanar. One can then

show that K™% is spanned by the vectors v; = (p(()i), e ,pg)_l)T, 1=4,...n—1, where

r1 T2 T3 T o T1 T2 I3

P = det | V1 W2 U Ui /det Yo Y1 Y2 s
Z1 Z9 z3 Z 20 Z1 z9 zZ3

1 1 1 1 1 1 1 1
To T2 T3 T To T1 T2 I3
L B R
1 1 1 1 1 1 1 1

To T1 T3 T To T1 T2 I3

P = ey | Yo Y1 Y Ui /det Yo Y1 Y2 Y3
20 Z1 z3 Z5 20 Z1 z9 zZ3

1 1 1 1 1 1 1 1
o T1 T2 Iy o I1 T2 I3
p) —det | Yo W U2 i / det | Vo w1 w2 ws
20 Z1 z9 Z5 20 Z1 z9 zZ3
1 1 1 1 1 1 1 1
p) =1

py’):o for j=4,....,i—1,i+1,...,n—1.

We immediately recognize the 3n—12 expressions pg.i), t=4,...,n—1and j =1,2,3 as the
fundamental set of 3-D affine invariants for our n-points obtained by moving Py, Py, Ps, Ps
to (0,0,0), (1,0,0), (0,1,0), and (0,0,1) respectively, via an affine transformation.

We can map Gr(n — 4,n — 1) into projective space Pgi)_l via the usual Pliicker
embedding. This gives us a set of global homogeneous coordinates to use in computations.
Specifically, given a point in Ggr(n — 4,n — 1), we take any n — 4 vectors which span that

(n — 4)-plane in H"~! = R"~! and use them to form an (n — 4) x (n — 1) matrix. (This

of course requires a choice of basis for H"~! so that it can be identified with R"~1.) The

n—1

"~,) minors of size (n — 4) x (n — 4) provide the map into projective

determinants of the (
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n—1 1
space P&”“) . Using the vectors above, we see that all 3n — 12 of the fundamental
invariants appear as determinants of (n — 4) X (n — 4) minors (possibly up to sign). Thus

the usual invariants can be recovered from the embedding

Grr(n —4,n) < Pgi“)_l

by taking ratios of homogeneous coordinates on Pg{‘:“)_l.
Example: Let Py, = (1,1,2), P, = (0,—-2,1),P, = (3,1,1),P; = (—1,0,3) and Py =
(2,—1,2). The first four points are not coplanar and can be moved to (0,0,0), (1,0,0),

(0,1,0) and (0,0,1) respectively by a unique affine transformation. This transformation

carries Py to the point (p,q,7) = (—%, %, ). These three values are the fundamental
affine invariants of this configuration of five points.
Our subspace invariant K' ¢ H* C R® is the line {(15t,t,—10t, —9t,3t), t € R}.

This is easily verified by noting that

1 03 -1 2 1? 0
121 0 1| _|_|0
2 11 3 2 I 0
1 11 1 1 5 0

This gives a point (15 : 1 : —10 : —9 : 3) € P* contained in the hyperplane defined by
the sum of the homogeneous coordinates equaling zero. (This hyperplane is our copy of
Grgr(1,4) which is a projective three-space P3.) This point equals (1—p—q—7r:p:q:r:
—1) in P*, so that the ratios of the homogeneous coordinates are in fact values of certain

invariants. o

Now, if we apply a weak-perspective transformation and select coordinates in the
image plane, we will get points Qo = (ug,v0),-..,Qn—1 = (Up—1,v,—1) which are the
images of Py, ..., P,_1 respectively.

As in the 3-D case, we can define an (n — 3)-dimensional linear subspace L"™3 C

H"=1 c R" by:

. up Uy Un—1 do 0
L2 =0 (g0, qn-1)" st [ w0 w1 ..o vay f =10
1 1 1 Gn—1 0



L™~3 will sometimes be referred to as the lookup. This subspace can be viewed as a point in
the Grassmannian of (n— 3)-planes in (n —1)-space, Grr(n —3,n —1), which is a manifold
of dimension 2n — 6 (see Harris [3]). As in the 3-D case, L™~3 is spanned by vectors whose
components include a fundamental set of affine invariants for our 2-D point set. In fact,
specifying an L™ ~3 is essentially equivalent to specifying a fundamental set of 2n — 6 affine
invariants. Note that L™3 can be defined for any ordered set of n non-collinear points in
the plane.

Theorem 1. K" * c L™ 3 if L™ 2 is obtained from the images Qq,...,Qn_1 of the
points Py, ..., P,_1 used to construct K" *.

Proof: K" % is invariant under an affine transformation of our point set. Thus we can
assume that our generalized weak-perspective transformation takes the form

x

— B |y
1

— N8

for some 2-D affine transformation B’. L™~3 is then just the kernel of the transformation

from R" to R? given by

To T1 Tn—1
(3) By v1 - Yn-1
1 1 1

However, an affine change of coordinates in the image plane in no way affects L™ 3, because

Up Up—1 a b 61 o Tn—1
vo ... Un—1 | =|d e & Yo -+ Yn—1
1 1 0 0 1 1 1
To Tp-1
has the same kernelas | yo ... ¥n_1 |. From this it is obvious that K™~* c L"=3. o
1 1

Example: The points Py, Py, P2, P5, Py in the example above are moved to (0,2,3), (1, —1, 4),

2,3.3), (=3, L1 L) (2 4 14) ypder the rigid motion given by
37373 37373 g g
2 _1 _2
3 3 3
T T 1
y|—135 5 3 ||v]+|0
z z 2
1 _ 2 2
3 3 3



We project into the z, y-plane and scale by 1—12 (The average depth is % and we take a
focal length of A = 1/3.) This gives the points (0, é), (1—12, —1—12), (é, i), (— %, 3—16), (%, %)

In practice of course, coordinates in the image plane will be selected without regard
to any global coordinates in space. So suppose our coordinates in the image plane differ

from the above coordinates by the transformation

w\ (3 1) [ N -1

v) \—-1 3 v’ 1)
In other words, the points as measured in the image plane are Qg = (—%, %), Q= (—%, %),
Q2 = (— iv ?)7 Qs = (— ?—2, %)7 Q4= (— g, %) Our lookup subspace L? is then defined

by:

5 5 1 25 5
6 6 4 18 9 Po
3 2 19 11 11 b1 0
2 3 12 9 9 p2 | = {0
3 0
1 1 1 1 1 P4
Notice that K' c L? as
5 5 1 25 5
“%5 6 "4 ~18 9 15
1 0
3 2 19 11 11 _
2 3 12 9 9 —101 =10 o
-9 0
1 1 1 1 1 3

We point out that an even stronger result is true, namely:

Theorem 2. Given Py, ..., P,_; in R? not all coplanar and Qo,...,Q,—1 in R? not all
collinear, then Qq, ..., Q,_1 is the image of Py, . .., P,,_1 under some generalized weak per-
spective transformation if and only if K™% C L™3 where K"~* and L™ 3 are constructed

from Py, ..., P,_1 and Qo,...,Q,_1 respectively.

Thus the incidence correspondence K™~* C L"™3 C H" ! is the test of whether or
not an object can produce a particular image or vice versa. Moreover, as we shall see, this
correspondence can be described in terms of some explicit polynomial equations.

Since we are treating our 3-D objects as distinguishable only up to affine transforma-
tion, the space of essentially different objects is the set of all possible K*~* ¢ H"~! Cc R”,

namely Grgr(n —4,n — 1), which, as we remarked, is a 3n — 12 dimensional manifold that
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we will denote by X3"~12. We somewhat loosely refer to X3"~'2 as the space of objects.
A subspace K™% is thought of as giving a point, denoted [K"~*], in X3n~12,

We also distinguish images only up to affine transformation. The space of essentially
different images is the set of all possible L"~3 ¢ H"~! ¢ R™ which is the 2n—6 dimensional
Grassmannian Grr(n — 3,n — 1). We denote this space by Y2"~5 and loosely refer to it
as the space of images. A subspace L™~3 is thought of as giving a point, denoted [L"~3],
in Y216,

;From this perspective, a fixed image L™ 3 defines a subset Zz:ég of X37~12 pamely:

Zz_f = {[K"* € X312 such that K" *c L"3%}

which is just the subset of object space, X3"~'2, consisting of those “objects” that could
have produced the image L"3. 327 % is clearly an (n — 4)-dimensional submanifold of
X3n=12 jsomorphic to projective (n—4)-space, P*~%. Tt is an example of something called a
Schubert cycle in Grg (n—4,n—1). Notice that two images L™~ and L3 either intersect
in a unique K™% or contain no K™ *. In the first case, there is only one “object” capable
of producing both images and that object is K"=* = L3 0 L"=3. Also the Schubert
cycles Zz:ég and Z%;i,, intersect in one point in X3?~!2, In the second case, the two
images could not have been produced by any one object and Z’Z;i‘tg N Zgﬁg = 0.

Now let’s fix an object [K"*] € X3"~12 and ask for the set of all images it can
produce. This is a subset 35, + C Y27~6 consisting of all [L"~3] € Y26 such that

K"~* c L™3. This is another Schubert cycle. It is easily seen to be a projective plane,

i.e.
2

Zanél = P2,

because to produce an L™ 3 containing a fixed K™~ we must give a line in the orthogonal
complement of K™ % in H" !, which is a line in an R3. This result is a generalization
of a result due to Jacobs’ (Jacobs [10]). If we embed Y2"~% in projective space via the
standard Plicker embedding, Zi(n_4 will be a linear subvariety of Y2"~6. In appropriate
affine coordinates, we will get a plane in R?"~6. Of course not every plane in R?"~6
occurs. As Jacobs shows, and as we shall show in section four, the planes that arise are

of the form £ x ¢/ C R"™3 x R"~3 = R?"~% where £ and ¢ are parallel lines in R"~3. To
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specify a pair of parallel lines in R"~2 requires 3n — 12 parameters, 2n — 8 for the first line
and n —4 for a second line parallel to it. This of course matches exactly with our count; we
have precisely a 3n — 12 dimensional family of planes S 3n_s C Y276 as [K"~4] ranges

— . o e _ . e 2
over X"~ 12 because, as is easy to show, distinct K™~ *’s produce distinct D gn-4s.
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§3. Correspondences

In this section, we develop the abstract notion of a correspondence to explain the
“many to one” and “one to many” nature of the relationship between objects (feature
sets) and images. This means that the relationship can be captured by a variety in the
sense of algebraic geometry (denoted Z below). Moreover, we can derive polynomial equa-
tions which can be used to test for the object/image relationship. The reader should be
forewarned that this discussion is rather abstract. However, a specific example is com-
pletely worked out in the next section.

Suppose we have two spaces X and Y (which we assume are smooth varieties in the
sense of algebraic geometry). A correspondence is given by a suitable subvariety Z of the

product variety X x Y. The picture is

ZCXXxY

X Ty
X Y

where mx and 7y are the natural projections 7x (z,y) = = and 7wy (x,y) = y.

To each point 2y € X we can associate a subvariety Y, = 7y (7' ({zo}) N Z) of Y.
(Here 7' ({w0}) = {(%0,¥),y € Y}.) Similarly to each point yo € ¥ we can associate a
subvariety X,, = nx (75" ({yo} N Z) of X.

This is precisely the situation we faced above in relating objects to images. The
space X becomes the “space of objects” X3"712 = Grr(n — 4,n — 1) which is a smooth
projective variety. The space Y becomes the space of images Y276 = Grr(n — 3,n — 1).
The correspondence is given by Z37~10 ¢ X3n—12 » Y276 where 73710 is the variety of

related object-image pairs given by the simple incidence relation K»~* c L™~ 3:
7310 — L([K™4,[L"73]) such that K"~*c L"3}.

737=10 g a well-known example of a flag manifold (see Harris [3] pg. 148). It can easily

be shown that Z3"~19 has dimension 3n — 10. The picture becomes:
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Z3n—10 C X3n—12 % Y2n—6

X Ty
X3n—12 YZTL—G

Since X X Y has total dimension 5n — 18, we expect Z to be locally described by 2n — 8
equations. These will (after much translation) be polynomials in the 5n — 18 fundamental
invariants (3n — 12 for the 3-D set of n points and 2n — 6 for the 2-D set of n points).
These polynomial expressions will be zero if and only if the n 2-D points can be an image
of the n 3-D points under a generalized weak perspective transformation.

Notice that 75'({zo}) N Z has dimension 2 — we expect this because varieties of
codimension 3n —12 and 2n — 8 generally intersect in something of codimension 5n—20. In
that case, the intersection will have dimension 2 in X37~12 x Y276 The projection of this
intersection into Y yields Y2 = Ty (1% ({z0}) N Z) which is just the previously discussed
Schubert cycle S 7n_s = P2, where o = [K"~4] € X312 Likewise 75 ({y0}) N Z has
dimension n — 4 (codimension 2n — 6 plus 2n — 8 equals 4n — 14 and (5n — 18) — (4n — 14)
yields dimension n — 4). The projection into X yields X}~* = 7x (m3'({yo}) N Z) which
is just the Schubert cycle SX7. 2%, = P*~* where y, = [L"3] € Y275,

In the next section, we will explicitly calculate the polynomials describing Z in a
simple case. Before doing that however, let’s consider “correspondences” as a way to
relate 3D to 2D information in other settings. We omit many details as these will appear
in future work (Asmuth, Stiller, and Wan [8]).

Consider n > 5 points in suitably general position in R3 and perspective projections
of them to R2. Here our space of objects X3"~ 1% will have dimension 3n — 15. Our space
of images Y28 will have dimension 2n — 8. Our correspondence will be given by Z37—12
of dimension 3n — 12

3n—12 3n—15 2n—8
VA cX XY
X Ty
X3n—15 YZTL—S
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A given object o € X3"15 yields a subspace of possible images Ygf0 C Y2"=8 of dimension
3. Each image yo € Y"~® can come from any object in a subspace X% C X?"~1% of
dimension n — 4.

For example, when n = 6, the diagram above becomes:
78 c X3 xvy*?

X my
X3 Y4

and Z will be locally described by one equation in the 7 projective invariants — 3 for the
six 3-D points and 4 for the six 2-D points.

A word of caution is required here. In order for X375 and Y2"~8 to be reasonable
spaces (say, smooth quasi-projective varieties) some rather complicated general position
assumptions may be required (see the notion of stability in Mumford [6]). Again, we treat
this case in a forthcoming paper (Asmuth, Stiller, and Wan [8]).

As another example, consider the case of n > 3 lines in R? (in suitably general
position) under the action of the affine group. The space of objects X4"~12 has dimension
4n — 12, the space of images Y2776 has dimension 2n — 6, and the correspondence will be

given by Z4"~10 of dimension 4n — 10 in X4"~12 x y?n—6;
Z4’n—10 C X4n—12 % YZTL—G

X Ty
X4n—12 YZTL—G

Each zo € X gives rise to a two-dimensional subspace of possible images szo C y?n=6

and each image yo € Y can come from objects in a (2n — 4)-dimensional subspace
2n—4 4n—12
X mtC X

Notice that when n = 4 we get no information, since the space of images Y? has

dimension 2. The first interesting case is therefore n = 5, when we have the diagram
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70 c x8 xvy*
X Ty
X8 y#4

This case is also discussed in Asmuth, Stiller, and Wan [8]. We turn now to an explicit

example.
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§4. Examples

In this section we will consider several examples which illustrate our general results.
After studying these, the reader should have no trouble manufacturing examples for other

combinations of features.

We begin with the simple case of five points P; = (x;,¥;,2;), ¢ = 0,...4 in Euclidean
three-space R3. The only general position assumption we make is that the points are
not all coplanar. Later, when we give explicit formulas in terms of the more common

expressions for the affine invariants, we will assume that Py, Py, P», P3 are not coplanar.

Our 3-D affine invariant is the one-dimensional subspace K! of H* C R® defined by

Ty T1 X9 T3 T4 ZO 0

1
1 T 5 Yo Y1 Y2 Y3 Y4 10
K" = (p07p17p27p37p4) € R s.t. 20 71 29 23 24 D2 - 0
1 1 1 1 1 P3 0

yZ

4
where H? is the hyperplane in R5 defined by Y p; = 0. Knowledge of K! is precisely
i=0
equivalent to knowledge of a fundamental set of three affine invariants for our set of five

points (3n — 12 equals 3 when n = 5). Specifically, if we assume Py, Py, P2, P3 are not

Do
P1
coplanar, then K! is spanned by the vector | po | where
D3
P4
'y T2 X3 T4 o I1 T2 I3
o= —det | Y1 vz W oW / det | Vo w1 w2 ws
21 22 23 Z4 20 21 22 Z3
1 1 1 1 1 1 1 1
g X2 X3 T4 o I1 T2 I3
Gi—det| Yo Y2 W3 / det | Yo v w2 ws
Z0 z9 zZ3 zZ4 20 Z1 z9 zZ3

1 1 1 1 1 1 1 1
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o 1 I3 T4 ro I1 T2 I3
Py = — det Yo Y1 Ys Y4 /det Yo Y1 Y2 Y3
20 Z1 Z3 zZ4 20 Z1 zZ9 Z3
1 1 1 1 1 1 1 1
o T1 T2 T4 ro T1 T2 I3
Py = det Yo Y1 Y2 Y4 /det Yo Y1 Y2 Y3
20 Z1 Z9 zZ4 20 Z1 zZ9 Z3
11 1 1 1 1 1 1
pa=—1

Notice that the affine transformation that sends Py, Pi, P>, and P3 to (0,0,0), (1,0,0),
(0,1,0), and (0,0,1) respectively is:

ro T T2 I3 ro 1 T I3 ro 1 T2 T

det Yo Y Y2 Y3 det Yo Y1 Y Y3 det Yo Y1 Y2 Y

20 z Z9 Z3 20 Z1 z Z3 20 Z1 zZ9 z

(@, 9, 7) —> 1 1 1 1 1 1 1 1 1 1 1 1
'Y ro T1 T2 I3 ’ ro T1 T2 I3 ’ ro T1 T2 I3
det Yo Y1 Y2 Y3 det Yo Y1 Y2 Y3 det Yo Y1 Y2 Y3

20 %1 k2 Z3 20 Z1 %2 23 20 Z1 %2 23

1 1 1 1 1 1 1 1 1 1 1 1

so that the coordinates of Py under this transformation are (pi, p2,ps3). Also notice that

4

> pi = 0 so that pg = —p1 — p2 — p3 + 1. Moreover py, pa, p3 form a fundamental set of
i=0

affine invariants in the sense that any affine invariant of five points is a rational function

of these three functions of zq, yo, . - ., 24-

Alternatively, assuming only that Py, Pi, Py, P3, P, are not coplanar, we have that K
Po
Py
P
Py
vy

is spanned by where
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1 T2 T3 T4

r_ Y Y2 Ys Y4
Po = det Z1 22 23 24
1 1 1 1

o T2 X3 T4

p/1 — det Yo Y2 Y3 Y4

20 22 23 24
1 1 1 1

ro T1 I3 T4

! — _det Yo Y1 Y3 Ya
20 Z1 Z3 Z4

1 1 1 1

o T1 T2 T4

/ det Yo Y1 Y2 Y4
20 21 k2 24
1 1 1 1

ro T1 T2 I3

r_ Yo Y1 Y2 Y3
Py = det 20 21 <2 23
1 1 1 1

The set of all possible K !’s is parameterized by the set of all one-dimensional subspaces
in H* which is a projective three-space P3. Thus our space of “3-D objects” X3 is the
three-dimensional manifold P2. We can take the homogeneous coordinates on X3 to be
(p} : Py : ph : p)). The field of rational functions on this P? can be identified with the field
of affine invariant rational functions in the variables z;, y;, z; for e =0, ..., 4.

Caution: This choice of coordinates on H* means that we have identified H* with R* via

the maps ¢; and s:

4
H* = {(p(),. . .,p4)T S R’ s.t. Zpi = 0} LRLL
i=0
where QOI((va v 7p4)T) = (p17p27p37p4)T7 and
R H*
where »((a,b,c,d)’) = (—a — b — ¢ — d,a,b,c,d)’. In other words, we have chosen

the vectors (—1,1,0,0,0), (-1,0,1,0,0), (—1,0,0,1,0) and (—1,0,0,0,1) as a basis for

H* C R5. Tt is important to note that these vectors are not orthonormal as vectors in R>.
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In this example, an image will consist of five non-collinear points Q; = (u;,v;), j =
0,...,4 in the plane R2. Our 2-D affine invariant is the two-dimensional subspace L? of

H* c R® defined by

do
Up UL Uz U3 Uy q1 0
L? =% (90,91, 42,93, q1)T € R st [ wo w1 wva w3 vy @2 |=10
1 1 1 1 1 qs 0

qa

As in the three dimensional case, knowledge of L? is equivalent to knowledge of a fun-

damental set of 4 affine invariants for our five points in the plane (2n — 6 equals 4 when

n=>5).

If one assumes that Qg, Q1, Q2 are not collinear, then one can show that L? is spanned

by the two independent vectors (g, 4}, ¢5, q5,44)" and (q0,q7,d5,q5,q4)" where

Uy U2 Ug Uy U2 Ug
g =det | vi vy w3 qp =det | vi vy vy
1 1 1 1 1 1
Ug U2 U3 Up U2 Ug
¢y =—det [ vg vy w3 ¢ = —det | vg vy w4
1 1 1 1 1 1
up Up U3 and Uy UL Ug
qgho=det | vo v w3 gy =det | vg v w4
1 1 1 1 1 1
Up UL U2 qé’ =0
gy =—det [ vo v1 vy wo Ui s
L1 1 ql = —det | vo v1 o
g3 =0 1 1 1
or the two independent vectors (607 617 q~27 637 64)T and (507 517 527 537 54)T where
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u1
qN() = det V1
1
Uo
(jl = —det Vo
1
Uo
(jg = det Vo
1
g3 =—1
qa=0

U2
U2
1

Uy
U1
1

U2
U2
1

us
U3
1

us
U3
1

us
U3
1

fa

Uo

et| vo

1
Uo
/det Vo
1

Uo

et Vo

1

fa

Ui
U1
1

Uy
U1
1

Ui
U1
1

U2
U2
1

U2
U2

1

U2
U2
1

&0 — det
53 =0

U1
U1
1

Uo
Yo
1

Uug
Vo
1

U2
U2
1

Ui
U1
1

U2
U2
1

Uy
Ug
1

Uq

Uq
Uyg
1

Uy
1

fa

/ det| vg
1

fa

Uo
et] vg
1

Uo

Uo
et Vo
1

(51
U1
1

U1
U1
1

U1
U1
1

Notice that the affine transformation that takes Qg to (0,0), @1 to (1,0), and Q3 to (0,1)

is:

Ug U U2 Up U1 U
det | vo v g det | vo wv1 v
1 1 1 1 1 1
(u,v) — ,
Uy UL Ug Up U1 U2
det | v9 wv1 w9 det | vo wv1 w9
1 1 1 1 1 1

so that the coordinates of Q3 and @4 under this affine transformation are (i, d2) and
(51, 52) Of course, the values ¢, s, 51 and 52 form a fundamental set of affine invariants
for sets of five points in R? (with the restrictive general position assumption that the first
three be non-collinear), and any affine invariant of five points in the plane is a rational
function of these four.

Our space of images Y is just the space of all two dimensional linear subspaces L? of
the four dimensional space H* =2 R*. Thus Y* is just the Grassmannian Gr(2,4) which
is a well-known four-dimensional manifold. The rational functions ¢, ¢, 51, 52 provide
coordinates on a Zariski open set of Gr(2,4). We can identify the function field of Gr(2,4)
with the field of all affine invariant rational functions in the variables ug, vo, ..., uq4, v4.

In §2 above, we showed that an object, in this case described by a feature set consisting
of five non-coplanar points, can produce a particular image, consisting of five non-collinear

points, up to affine transformations of both the object and the image, if and only if the

invariant one-dimensional subspace K! ¢ H* C R?® associated to the object is contained in
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1
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the invariant two-dimensional subspace L? C H* C R® associated to the image. In other
words K' C L? is a necessary and sufficient condition for a particular ordered set of five
points in 3-D and a particular ordered set of five points in 2-D to be related in the sense
that the 2-D points are the images of the 3-D points under a generalized weak perspective
transformation.

For example, take Py = (1,1,2), P, = (0,-2,1), P, = (3,1,1), P3 = (-1,0,3),
Py =(2,-1,2), Qo = (=5,3), @1 = (= %3), @ = (-5 13), @ = (— 33, 5) and
Qs = (—2,4). Then using the basis (-1,1,0,0,0), (—1,0,1,0,0), (-1,0,0,1,0) and
(—1,0,0,0,1) for H*, we have that K' is spanned by

1 -1/3
Do B 10/3
A€

Da -1

Note that as a five vector this is:

—1 —1 —1 —1 -5
1 0 0 0 -1/3
1 0| + po 1] +ps3 0| + pa 0|=110/3
0 0 1 0 3
0 0 0 1 —1

so that K C RS is spanned by
15

1
—10
-9
3

as indicated in §2 above. The point here is that p; = —1/3, po = 10/3, and p3 = 3 are the
standard affine invariants that one obtains by moving Py, ..., P3 to standard position and

taking the coordinates of the point that P, moves to. Similarly L? is spanned by

Q@ 5/21 q; 8/21
G | _ [ —20/21 od | | = | 1021
i) | e| |9

qa 0 4 -1

The values (41,d) = (5/21,—20/21) and (¢;,d,) = (8/21,10/21) are the standard affine

invariants of Qo, ..., Q4 € R2. They are the coordinates of Q3 and (4 respectively, under
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the unique affine transformation that sends g, Q1,2 to standard position, i.e. Qg to
(an)v Ql to (1,0), and Q2 to (Oal)
Since our set of 2-D points is in fact an image of our set of 3-D points (under a

generalized weak perspective transformation), we should have K! C L2?. This is indeed

the case:
-1/3 5/21 8/21
10/3 | _ —20/21 10/21
3 =3 1o
-1 0 -1

The reader should also note that the expressions

(1) P11+ D3q1 — q3
and
(2) D2 + D3q2 — Q4

are both zero where for simplicity we have changed notation replacing (q1, 62,51,52) with
(q1, G2, q3,q4). These polynomials in the seven invariants (p1, p2, p3) and (q1, ¢2, 3, G4) give,
as we shall see, the fundamental relationship between objects and images in the case of five
points. An ordered set of five 3-D points with the first four not coplanar and an ordered
set of five 2-D points with the first three not collinear are related by a generalized weak
perspective transformation if and only if equations (1) and (2) are zero.

Two things to notice about these equations when they are set equal to zero. The first
is that they are linear in each of the two sets of variables (p1,p2,p3) and (q1, g2, g3, q4)-
Fixing (p1, p2, p3) yields a plane o in R* which is the product of two parallel lines ¢; and
/5 in R2, i.e.

0':€1X€2CR2XR2

where the coordinates on the first R? are (qi,¢3) and the coordinates on the second R?
are (g2,G4). The plane o describes all the images that our fixed 3-D object can produce.
This is just Jacobs’ result in [2]. On the other hand, fixing the image, i.e. q1,q2,q3, G,
yields the equations of a line in R3. This is the set of all objects (five point feature sets

up to 3-D affine transformation) that can produce our fixed image. The equations (1) and
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(2) describe our correspondence Z° in an open subset, which can be identified with R, of
X3 x Y% (See §2 and §3 for an explanation of the notation.)

The second thing to notice is that the variables pi, ps, p3 are rational expressions in
the coordinates of the 3-D points P; = (z;,y;, z;) and that the variables q1, ¢z, 3, g4 are
rational expressions in the coordinates of the 2-D points Q; = (uj,v;). After clearing
denominators expressions (1) and (2) become bihomogeneous polynomials of bidegree 3,2
in the two sets of variables {z;,y;, %,i =0,...,4} and {u;,v;,7 =0,...,4}.

As we have shown, the condition that a particular “object” (feature set consisting of
five points) with invariant subspace K C H* C R® can produce a particular image with
invariant subspace L2 ¢ H* C R® is given by K' C L2. In order to write down the general
equations for this relationship (assuming only that the five points in space are non-coplanar
and the five points in the plane are non-collinear), we will need global coordinates on the
space of objects X3 = P3 and on the space of images Y4 = Gr(2,4).

For X3 = P? we use the homogeneous coordinates (p1,p2, p3, ps) where

o T2 T3 T4
Yo Y2 Y3 Y4

p1 = det 20 22 23 24
1 1 1 1
To T1 T3 T4
e FR
1 1 1 1
ro T1 T2 T4
o |0 0
1 1 1 1
ro T1 T2 I3
py = —det Yo Y1 Y2 Y3

20 21 <2 23
1 1 1 1

are cubic polynomials in the coordinates of the five-tuple of 3-D points P; = (z;, yi, 2i)-
Keep in mind that pg = —p; — p2 — p3 — p4 and that this choice of coordinates amounts to
identifying H* with R* via the specific choice of basis described earlier.

For Y* = Gr(2,4) we get global coordinates by embedding the Grassmannian into
P5 via the well-known Pliicker embedding (see Appendix 1 below). Specifically, if (M, :
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M3 : My : Mays : Moy : M3y) are homogeneous coordinates on P® and L? is a plane in

H* = R* spanned by (a1,as,as,a4)? and (by, ba, b3, by)? then

M;; = det <‘; Zj) :
The image of Y* = Gr(2,4) in P® is the quadric hypersurface cut out by
(3) MioM3q — My3Mag + M14Maz = 0.
Our object image correspondence Z5, where
75 C X3 xY*=P3xGr(2,4) c P3 x P5,

will be described by a system of bihomogeneous polynomials in the two sets of variables
{p1,p2,p3,p4} and {My2, My3, M14, Moz, Moy, M34}. One equation will of course be (3),
which is automatically satisfied by any image. Note that these coordinates are either 3-D
or 2-D affine invariants up to scale, i.e. their ratio’s are invariant. This is obvious in the
case of the p;, but less clear for the M;;. To see this, we must compute the M;; for a given
image L2?. The problems here are that, first, we make no general position assumption
except that our five image points are not all collinear, and that second, L? is described as
the kernel of a linear map from R® to R3.

Specifically, if Q; = (uj,v;), 7 = 0,...,4 are the five points in our image, then

(e,a,b,c,d)T € L? if and only if

e

Uy U1 Uy U Uy a 0

vp V1 Uz U3 U4 bl=120

1 1 1 1 1 c 0
d

This is equivalent to

U —Uo U2 — U0 UI— U Ug— Uo
U1 — Yo V2 — Vg V3 — Vg Vg4 — Y

QL O o
Il
N
o O
~—

ande=—-a—-b—c—d.
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The rows of this 2 x 4 matrix can be thought of as spanning a plane ¢ in R*. The

invariant subspace L2 associated with the image is o+. Notice that the Pliicker coordinates
Ug U; Uy

of o are (le,N13,N14,N23,N24,N34) where Nij = det Vo U vVj
1 1 1

Using the result in Appendix 1, we find that the Pliicker coordinates of L? = o+

are:
(M127 M137 M147 M237 M247 M34) = (N347 _N247 N237 N147 _N137 NIZ)-

Theorem 3. A given object-image pair are related, i.e. K' C L2, if and only if the
following equations are satisfied:

p1Mas — pa Mz + psMiz =0
1Moy — po My + paMiz =0
pP1Mzy — psMiy + paMiz =0

paMss — psMayg + paMasz = 0.
These equations, which are bihomogeneous of bidegree (1,1) in the object-image coordi-

nates, together with the Pliicker relation
MiaM3zq — My3Mag + M14Maz =0
cut out the subvariety Z°5 C X3 x Y* C P3 x P® which gives our correspondence.

Proof: This is just a computation in multilinear algebra. Consider the vector
V=p1 e1 +p2 €2 +p3 €3 +ps es€ H
which spans K! and the bi-vector
w=DMpeiAes+MzerAes+Muy €1 A es+Mas ea A es
+ Moy ea A g +Msy €3 A ese A2H?
which “spans” L2. We will have K! C L? if and only if ve€ L2. This is equivalent to
WA T=0€ ASH*. We have

w A v=(p1Mag — poMi3 + p3Mi2

L

€1 /\22 /\23 +
p1 Moy — poMis + paMiz) e1 N ea N eq +

LA es A eq+

L

62/\ 63/\ €4

)
( ) e
(p1Mag — psMia + paMiz) e
(p2M3z4 — p3May + paMa3)
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N

and the result follows. (Note: E\l, €9, 23, ?4 is the previously discussed basis of H?.) o

To summarize in another form:

Theorem 4. Let P; = (z;,yi, %), ¢ = 0,...,4 be an ordered five-tuple of points in space
thought of as a feature set of a 3-D object and let Q; = (uj,v;) be an ordered five-tuple
of points in the plane thought of as the features in an image. Assume only that the P; are

not all coplanar and that the Q; are not all collinear. Define

o T2 I3 T4
Yo Y2 Y3 Ya

p1 = det 20 R2 23 %4
1 1 1 1
o T1 X3 T4
|80
1 1 1 1
o T1 T2 T4
SR
1 1 1 1
o T1 X2 I3
py = — det Yo Y1 Y2 Y3

20 21 22 23
1 1 1 1

and

Upg U3 U4
Mis=det | v9 v3 w4

1 1 1
ug Uz Ug
M13 = —det Vo V2 V4
1 1 1

Uog U U3
M14 = det Vo V2 V3
1 1 1
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uog U1 Ug
Moz =det | v9 v1 w4

1 1 1
uog U1 Ug
M24 = —det Vo U1 Vs
1 1 1

Up U U2
M34 = det Vo V1 V2
1 1 1

Then the Q;, j = 0,...,4 are the images of the P;, 1 = 0,...,4 under a generalized weak

perspective transformation if and only if
p1Maz — poMiz + p3Miz =0
p1Mas — paMiy + paMiz =0
p1Msy — psMyy + paMi3 =0
paMss — psMayg + paMasz = 0.

These polynomials are bihomogeneous of bidegree (3,2) in the variables x;,y;, z; and u;, v;

respectively. o

For a fixed object, the set Zil of all images it produces is a projective plane P? C
Gr(2,4) C P° described by the above equations and the equation MisMsy — MisMoy +
M14Ms33 = 0. On the other hand, for a fixed image, the set 222 of all objects which can
produce that image is a projective line P! C P3. To see these facts, we need to work in
an open subset of P3 x P?.

We choose the open set R? x R® given by py # 0 and M34 # 0. (This is equivalent to
assuming Py, Py, P», P3 are not coplanar and that Qg, @1, Q2 are not collinear.) On this
open set we can normalize our projective coordinates on P2 and P?® so that p, = —1 and
Ms4 = 1. This yields coordinates

(Pr:p2:p3s:—1) and (qiqs —q1G2:G1: —G1:qe: —q2: 1)

where p;, g; and Ek have been previously defined.

In terms of these variables our equations become:
A) P1d2 — P2q1 + P3(q1G2 — ¢1G2) = 0
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B) P12 + D201 (G105 — 41G2) = 0

C) Pi+Dadi — 4, =0

D) D + D3do — G = 0.

However the first two equations are consequences of the last two. For example, equation
A)is 52 times equation C) minus 51 times equation D). Equations C) and D) are just (1)
and (2) above.

These equations can be generalized to more points (we have removed the superscripts

and reindexed the ¢’s):
P1t+qps —q3 =0

P2+ q2p3 —qs =0
Pa+ q1pe —qs =0

Ps + q2p3 — qs = 0

Here (p1,p2,p3), (P4, P5,P6), etc. are the affine invariants of our 3D point set. These in-
variants are obtained by moving the first four points to (0,0,0), (1,0,0), (0,1,0), and (0,0,1)
respectively, so that (p1,pe,p3) are the coordinates of the fifth point, (p4,ps,pe) are the
coordinates of the sixth point, etc. Also (q1,¢92), (¢3,p4), (g5, gs), etc. are the affine invari-
ants of our 2D points set. These are similarly obtained by moving the first three points to
(0,0), (1,0) and (0,1) respectively, so that (q1,¢2), (¢3,4q4), (g5, qs), etc. are the coordinates
of the fourth, fifth, sixth, etc., points.

Example: In our example where Py = (1,1,2), etc. and Qo = (—5/6,3/2), etc. We have
pr=1,py = =10, p3 = —9, ps = 3, My = 25/108, Myz = 5/27, My, = —25/216,
Ms3 = 25/108, Myy = 25/54, M34 = 35/72, and one easily verifies that these satisfy our
equations. Note that

s _.;

= =-1/3
b y& /
Pr= -2 —10/3
y&

pP3 = —p3/pa =3
g1 = —Myy/Msq =5/21
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- 20
Go = —May /M3y = — —

21
7y = My3/Msy = 8
q, = M13 34 = 21
~ 10
= Moz /Moy = —.
qs 23/ 24 21

(Watch out for the signs in the definition of M4 and Mi3.) Also

~ = _’Z,~ . 10_M12
q1do — 4192 = o1 M34'
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§5. Lines

We now wish to consider m lines /4, ..., /¢, in addition to our n-points Py, ..., P,_1.
As before, we assume n > 4. For the moment, we also assume that Py, P, P>, P3 are not
coplanar. Each line £; can be represented by two linear equations, ajz +b;y+cjz+d; =0

and e;jx + fjy + g;z + h; = 0, which we put into a 2 x 4 array:

<ay‘ bj ¢ dj)_
ej fi 95 Ny

These equations are not unique. Any other set of two equations defining /; can be obtained
from the above set by taking linear combinations. This means that the 2 x 4 array above

is determined only up to left multiplication by an invertible 2 x 2 matrix:

<W %) (% bj ¢ %)
tj  u; ej fi g9 i)’

where 7ju; — s;t; # 0. To avoid this ambiguity, one usually takes the so-called “line

coordinates” of £; which are the homogeneous coordinates of a point in P®:

(m12:m13:m14:m23:m24:m34):<det(aj ?):det(aj Cj):det(?ﬂ: dj)
J

€j € 9j 9j

: det <bj cj) : det (bj dj) : det <cj dj)) .

ej hj fi h g9; Ty
This point always lies in the quadric hypersurface defined by miomss—mizmog+migmoz =
0. This hypersurface is the Grassmannian Grg(2,4) embedded via the Pliicker embedding
in P5. Recall that a dense open subset of the four dimensional manifold Grg(2,4) param-
eterizes the set of all lines in R3. Specifically, lines in R? are parameterized by Grg (2, 4)

minus the plane cut out by mq3 = 0, mi3 = 0, and me3 = 0.

The group of affine transformations of R?, AFF(3,R), acts on lines. In particular, if

&1
§2

€3

c
f
k
0 1

o0 -

a
d
g
0
is an affine transformation, then M acts on the equations of the line £; by:

a; bj Cj dj)M_l
<6j fi g5 hy '
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We obtain affine invariants for the geometric configuration consisting of Fy, ..., P,_1,
l1,...,4y by moving Py, Py, P», P35 to (0,0,0), (1,0,0), (0,1,0), (0,0,1) respectively. If we
call the matrix that does this M, then

rr —ryg T2 —Tg I3 —Tog I

M-l | Y=Y Y2=Y Ys—Y Yo
Z1 — 20 Z9 — 20 zZ3 — 20 20
0 0 0 1

and the line coordinates (actually the five ratios obtained by dividing by one particular

a; bj Cj dj)M_l
<6j fi g5 hy

are the fundamental invariants. Essentially each line yields 4 invariants because there are

line coordinate) of

five ratios, but one relation which expresses one ratio in terms of the other four. Thus
we have a total of 3n 4+ 4m — 12 fundamental invariants. One can easily show that any
affine invariant of n points and m lines will be a rational function of the 3n + 4m — 12
fundamental invariants described above.

Thus, after moving Py, Py, P>, P3 to standard position, we have the ratios of the line
coordinates providing four independent invariants for each line. Our keys K JQ C R* for the
lines 44,...,¢,, will be the planes spanned by the rows of the products

rr —xyg I —Tog I3 —Tg I

(%‘ bj ¢ dj) Yi—Y Y2—Y Y3—Yo Yo
e; fi g9; hj 21— 20 Z2—2Z20 Z3—Z20 %o
0 0 0 1

jg=1....n.

As we have previously described, each K JQ carries the invariants of the particular line Z;
involved, i.e. knowledge of K ]2 is equivalent to knowing the invariants contributed by the
line.

Now suppose that Qo = (uo,v0), Q1 = (u1,v1), Q2 = (u2,v2), and Q3 = (us3,v3) are
the images of Py, Pi, P, P3 and that rju + m;v 4+ n; = 0 is the image of the line £;. We
consider the matrix product

Uy —Up U2 —Up U3 — Up Uo

(5) ri m; 0 n; V1 —Vp Vz—Vo U3—Vo Vo | _ (@ Bi v; 9 _
* * % % * * * * * * * *

0 0 0 1

The lines L} C R* spanned by («j, 3j,7;,9;) will be our lookups.
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Theorem 5. The spaces le- and K JZ are invariant under affine transformation in 2-D and

3-D respectively and for each j, le- C KJ2 c R*.

Proof: Invariance is clear. Also, it is easy to see that the entire process of taking a weak-
perspective transformation and following it by an affine change of coordinates in the image
plane is equivalent to applying an affine transformation followed by orthogonal projection.
Thus, with no loss of generality, we may assume that P; orthogonally projects to (); for
i =0,1,2,3,i.e. that ; = u; and y; = v; for : = 0,1, 2, 3, and that £; projects orthogonally

to the line rju + mjv + n; = 0. This means that the rows of

aj B v 9
x % k%
in (5) span the plane K2 and that L' ¢ K2. o

In fact, if L} ¢ K7 for some j, then the image could not have been produced by the
given 3-D arrangement of points P, ..., P,_1 and lines £q,...,4;,... £,,. For the recog-
nition or indexing problem, we will need to find all objects with keys K JQ that contain the
lookups le- respectively. Again, we can interpret each key K JZ as a point in the Grass-
mannian of two planes in four space, Grr(2,4). Each lookup L} defines a Schubert cycle
e GTRr(2,4) consisting of all [K?] € Grr(2,4) such that L} C K?. Tt is well-known
that Wy, is a linear P2, i.e. a plane in Grg(2,4) C P® (see Harris [3] pg. 67).

Notice that when line ¢; is occluded, we can take LJI- = {0} so that no constraint is
imposed. In effect, we just ignore the missing line.

Example: We continue with the example above where Py, = (1,1,2), P, = (0,-2,1),
P, = (3,1,1), P; = (-1,0,3), and P, = (2,—1,2). Let’s add the line ¢; defined by

r+y+2z—1=0and y = 0. To calculate the invariants and our key, we look at

-1 2 -2 1

111 -1\[-3 0 -1 1} (-5 1 -2 3

(010 0) -1 -1 1 2‘(—30—1 1)'
0 0 o0 1

Our key K?2 is the plane spanned by the vectors (—5,1,—2,3) and (—3,0,—1,1).

If we apply the rigid motion from the example above to establish our view, our line
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becomes

2 2 1 _4

3 3 2 3
1 2 _ 2 5 _1 5 1 _ 4
(1 1 1 _1> 3 3 3 3 3 3 3 3
0 1.0 0 2 1 2 _2 1 2 _2 5
3 3 3 3 3 3 3 3

0 0 O 1

It then projects orthogonally to the line —x 4+ 4y — 1 = 0 which, under scaling by 1—12,
becomes

—12u' + 48y — 1 = 0.

The choice of coordinates in the image plane gives:

-1

3 1 -1
(—12,48,-1) [ =1 3 1 =
0 0 1
3 _1 4
(—12,48,-1) | L 3" 2 ) —(12,15.6,—15.4)
48, oG 2,15.6, —15.4).

Thus in the image plane our line is 1.2u 4+ 15.6v — 15.4 = 0.

To construct our lookup, we form the matrix product

7 5 5
0 15 -5 —%

12 156 0 154\ | 5 1 5 3 |_(-13 2 -5 7
* * * * 6 12 18 2 - * * k%
* * * *

0 0 0 1

and take the line L} spanned by (—13,2,—5,7) in R*.

Notice that L} C K? because the vector (—13,2,—5,7) is a linear combination of
(=5,1,—-2,3) and (3,0, —1,1).

We note that the general position assumption, namely that Py, P;, P», P35 not be copla-
nar, can be relaxed to the assumption that P,,..., P,_1 are not all coplanar. In that case,

our keys KJ2 can be taken to be the span of the two rows of

r1 — Zo Tn—-1—To Lo

(aj bj ¢ dj) Y1=Y0 --- Yn—1—Y0 Yo
ej fi g9i hy Z1 — 20 Zn—1— %0 20
0 0 1
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and our lookups le- can be taken to be the span of the first row of the matrix product

Uy — Uo Up—1 — Up Uo
ryo my 0 n; V1 — Vo vee Up—1 — Vo Vo
* * * * * * *

0 0 1

We mention that when the points are not available, for example if we are dealing with
only lines, then other methods can be used. These are discussed in Asmuth, Stiller and

Wan [8].
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§6. Conclusions

Using the theory of correspondences from algebraic geometry, we developed methods
to relate 3-D objects to 2-D images and vice versa. In effect, we have provided a very
general framework for the use of geometric invariants in image recognition. Our techniques
yield systems of polynomial equations in both the 3-D invariants of various features on an
object and the 2-D invariants of features in an image which will be satisfied if and only if
the object can produce the image up to affine transformations of both the object and the
image. The case of projective invariants and perspective projection have been worked out
for point and line features and will be explained in a forthcoming paper [8].

The subspace incidence relation K™% c L™2 ¢ H*~! C R™ can be framed in terms
of some very natural metrics that measure when K% is “close” to being included in
L™=3. These metrics arise in the context of Grassmannians and would seem to be the
most natural and robust measures of the “distances” between two objects, between two
images, and between an object and an image. Moreover, the explicit equations we derive
make possible an effective error analysis.

In addition, many well-known results are easily derived from within our framework.
For example, the non-existence of general view invariants (see [1]) follows from the fact

that given two ordered sets of n-points in R?, i.e. K™% and K n—4 we can find a sequence
KP4 = K=t Kt Kot Kt = Kt

of subspaces with the span of Kf_‘l and K f+_14 being a linear space L?_S of dimension
n —3. Since K i”_4 and K f+_14 have a common image, L3, a general view invariant would
take the same value on images of these objects. It then follows that any general view
invariant is a constant.

Finally, the applications we have considered are to single view recognition and to
indexing image databases for content based retrieval (see [7]). The actual implementation
of these ideas has been carried out in the case of indexing an image database for content
based retrieval. Details on the indexing method and on the performance and error analysis

can be found in [7].
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Appendix 1. Gr(2,4) and orthogonal planes.

Given ¢ C R* spanned by a= (a1,as,a3,a4)” and b= (by,bs, b3, by)T with rank
ay a2 asz aq o . . 2 L a; CLj
<b1 by by by > = 2, we get Pliicker coordinates for L*, namely IV;; = det (bi b, >,

1<i<j <4, with
(N12 : N13 : Nig : N23 : Noy N34) € P5

N12N34 — N13Noy + Ni4Na3z = 0.

a; a2 a3 Qa4
by by b3 by

Let o+ be the plane which is the kernel of (
from R* and R and suppose o has Pliicker coordinates (Ms, ..., Ms,) € P°.

> as a linear transformation

Proposition.
Mz = N34
M3 = —Nay
M4 = Nog
Msz = N1
My = —Ni3
Ms4 = Nio

up to scalar.

Proof. Suppose Ny # 0 then o? is spanned by
1 0 r s\ _ [a1 a2 -t a1 as as a4
0 1 t u N b1 b2 b1 b2 b3 b4 '
ros\_ 1 by —as az a4
t u o N12 —bl a1 bg b4

L agbz — a263 a462 — azb4
—biag +aibs —bias+ aiby

_ 1 <—N23 —N24>
N12 N13 N14 )

“Nyy/Niz —Noy/N ros
Nay 23 12 24 12 _
Also Nia det ( N13/N12 N14/N12> det <t U) ru st

The kernel o+ contains vectors such that

1 0 r» s
0 1 t wu
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This yields
r=—-rz—sw

Yy =—tz —uw

so that ot is spanned by the rows of

-r —t 1 0
—-s —u 0 1
JFrom this we get the Pliicker coordinates
(Mo, ..., M34) = (ru — st, s, —r,u, —t, 1)
_ <N34 _ Nag Npg Ny Nig 1)
N1z’ Nig' Nig’ Ni2' Nig' )

The results follows. o
An alternative proof can be given using standard multilinear algebra. We ask for the

conditions under which a vector
V=T e1 +Y €9 +z €3 tWw €4

lies in the plane defined by
B = M3y E\l A\ E\Q — Moy E\l N E\g +Mos E\l A\ ?4
+ My es Aes—Ms es A ey +Miy €3 A ey

N N U

where e, €9, €3, €4 is a basis of our four dimensional vector space. The condition is
clearly
wAv=0
or N
0= xM14+yM24+zM34 E\l /\22 /\23
—x Mz — yMoaz + wM3zy €1 N e ey
.I'Mlz — ZM23 — wM24 E\l N E\g A\ ?4

yMqo + zMy3 + wMqy 22/\23/\24.

These conditions are equivalent to
ay a2 a3 a4
by by bz ba
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For example

0 =xMyg + yMay + 2zM3z4 = (bs(a1, az,as,as) — as(by, ba, bs, bs))

ISERSERSIE )

Ones sees that the result follows. o

Notice that when E\l, E\Q, E\g, 24 is an orthonormal basis for H* then o1 will be the
orthogonal complement of ¢ C H*. In the application, we do not use an orthonormal basis
for H* = R*, so o1 is not the orthogonal complement in H* C RS, but is the kernel of

the appropriate transformation.

40



[9]

[10]

Bibliography

Burns, J., Richard S. Weiss and Edward M. Riseman, “The Non-Existence of General-

" in Geometric Invartance in Computer Vision, J.L.. Mundy and

Case View-Invariants,
Andrew Zisserman, eds., MIT Press, 1992.

Clemens, David T., and David W. Jacobs, “Space and Time Bounds on Indexing 3-D
Models from 2-D Images,” IEEE Transactions PAMI, v. 13, n. 10 October 1991.
Harris, “Algebraic Geometry,” Graduate Text in Mathematics 133, Springer-Verlag,
1992.

Hartshorne, “Algebraic Geometry,” Graduate Text in Mathematics 52, Springer-
Verlag, 1977.

Griffiths and Harris, “Principles of Algebraic Geometry,” John Wiley and Sons, Inc.,
1978.

Mumford, “Geometric Invariant Theory,” Springer-Verlag, 1965.

Asmuth, C.A., P.F. Stiller and C.S. Wan, “Progress Report for Project: Indexing Im-
age Databases for Content-Based Retrieval,” Internal Report, David Sarnoff Research
Center, 1994.

Asmuth, C.A., P.F. Stiller, and C.S. Wan, “A General Theory of Single View Recog-
nition — the Projective Case,” in preparation.

Weiss, Issac, “Geometric Invariants and Object Recognition,” International Journal
of Computer Vision, 10.3, 207-231, 1993.

Jacobs, “Matching 3-D Models to 2-D Images,” preprint.

41



