EXPANDED MIXED FINITE ELEMENT METHODS FOR
QUASILINEAR SECOND ORDER ELLIPTIC PROBLEMS II

7ZHANGXIN CHEN

ABsTrRACT. A new mixed formulation recently proposed for linear problems is extended to
quasilinear second order elliptic problems. This new formulation expands the standard mixed
formulation in the sense that three variables are explicitly treated, i.e., the scalar unknown,
its gradient, and its flux (the coefficients times the gradient). Based on this formulation,
mixed finite element approximations of the quasilinear problems are established. Existence
and uniqueness of the solution of the mixed formulation and its discretization are demon-
strated. Optimal order error estimates in the LP and H ~®-norms are obtained for the mixed
approximations. A postprocessing method for improving the scalar variable is analyzed, and
superconvergent estimates are derived. Implementation techniques for solving the systems of
algebraic equations are discussed. Comparisons between the standard and expanded mixed
formulations are given both theoretically and experimentally. The mixed formulation pro-
posed here is suitable for the case where the coefficient of differential equations is a small
tensor and does not need to be inverted.

1. Introduction

This is the second paper of a series in which we develop and analyze expanded mixed
formulations for numerical solution of second order elliptic problems. This new formula-
tion expands the standard mixed formulation in the sense that three variables are explicitly
treated, i.e., the scalar unknown, its gradient, and its flux (the coefficient times the gra-
dient). It is suitable for the case where the coefficient of differential equations is a small
tensor and does not need to be inverted. It directly applies to the flow equation with low
permeability and to the transport equation with small dispersion in ground water modeling
and petroleum reservoir simulation.

In the first paper of the series [7], we analyzed the expanded mixed formulation for
linear second order elliptic problems. Optimal order and superconvergent error estimates
for mixed approximations were obtained, and various implementation techniques for solving
the system of algebraic equations were discussed.
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In this paper, we consider the expanded mixed formulation for a general quasilinear
second order elliptic problem. The analysis for the nonlinear problem is completely dif-
ferent from that for the linear problem. First, existence and uniqueness of solution to
the nonlinear expanded discretization need to be proven explicitly. This is accomplished
through the Brouwer fixed point theorem. Second, the nonlinear error analysis heavily
depends upon the established existence result, and is much more difficult. Also, the post-
processing scheme proposed here for the first time for the nonlinear mixed method is not
a straightforward extension of its linear counterpart. Finally, there has been little theory
for solving the system of algebraic equations arising from the nonlinear mixed method. In
this paper, we discuss implementation techniques for solving the nonlinear mixed method.
Special attention is here paid to implementation of the mixed method as a finite difference
method.

It was shown [20, 21, 23] that the linear system arising from the usual mixed formulation
can be simplified by use of certain quadrature rules for the lowest-order Raviart-Thomas
[19] spaces over a rectangular grid. That is, the mixed method system can be written
as a cell-centered finite difference method. The same spaces were also considered for the
linear expanded mixed method in [3]. We here consider an analogous simplification of
the expanded mixed method system as a finite difference method for another widely used
space, the lowest order Brezzi-Douglas-Marini space [6] in the planar case or the lowest-
order Brezzi-Douglas-Duran-Fortin space [4] in the three-dimensional case.

This paper also gives a comparison between the standard mixed formulation and the
expanded one. For certain nonlinear problems, we show that the expanded formulation is
superior to the standard one in that the former leads to the derivation of optimal order error
estimates, while the latter gives only sub-optimal error estimates for the mixed method
solution. This result is also justified through numerical results. In the previous papers [8,
9, 16], only the Raviart-Thomas spaces have been considered for nonlinear problems. Here
we are able to consider all the existing mixed finite element spaces [4, 5, 6, 10, 13, 17, 18,
19].

In the next section we develop the expanded mixed formulation for a fairly general
nonlinear second order elliptic problem. It is proven that this formulation has a unique
solution and is equivalent to the original differential problem. Then, in §3 we show that
all the existing mixed finite elements apply to this formulation. In particular, it is demon-
strated that the approximation formulation has a unique solution and gives optimal error
estimates in the LP and H®-norms. In §4, we propose and analyze a postprocessing
method for improving the scalar unknown and derive superconvergent estimates. In §5. we
extend the analysis to a nonlinear problem and discuss the difference between the usual
mixed method and the standard one. Finally, in §6 we discuss implementation techniques
for solving the system of algebraic equations arising from the expanded mixed method and
present numerical examples to illustrate our theoretical results.

2. Expanded mixed formulation

Let © be a bounded domain in IR", n = 2 or 3, with the boundary 9. We consider



EXPANDED MIXED FINITE ELEMENT METHODS II 3

the quasilinear problem

(2.1a) Lu= -V - (a(u)Vu —b(u)) + c(u) = f in Q.
(2.1b) u=—g on 011,
where we assume that the coefficients a: O X R - IR, b: Q@ x IR = R", and ¢c: Q x R —

IR are twice continuously differentiable with bounded derivatives through second order;
moreover, we assume that

(2.1¢c) (a(w)p, 1) > aol|m)?. uelR, pe (L2(Q))n, ag > 0.

(H*(Q2) = W*2(Q) is the Sobolev space of k differentiable functions in L2(€) with the
norm || - ||x; we omit & when it is zero). We also assume that for some ¢ (0 < € < 1)
and each pair of functions (f,g) € H*(Q) x H3/?*(9Q) there exists a unique solution
u € H*TE(Q) to (2.1).

Let

V = H(div; Q) = {«u € (LX(Q)" Vv e LQ(Q)} ,
W = L*(Q).
A= (L))",

and let (-,-)s denote the L?(S) inner product (we omit S if S = Q). Then (2.1) is
formulated in the following expanded mixed form for (o, A\, u) € V x A x W:

(2.2a) (a(u)A, 1) — (o, 1) + (b(w), p) =0, YV pu €A,
(2.2b) (N v) = (u, V-v) = (g,vV)saq, YovelV,
(2.2¢) (V-o,w)+ (c(u),w) = (f,w), VweW,

where v is the outer unit normal to the domain (2.

To analyze (2.2), let U = W x A with the usual product norm ||7]|% = ||w||* +||p]|?. 7 =
(w, pn) € U, and introduce the bilinear forms A(-,-) : U x U — R and B(-,-) : U xV — R
by

A7) = (alw) ), K= (), 7= (.)€l
B(r,v) = (w,V -v) — (pu,v), T=(w,p) €U, veV.

Then (2.2) can be written in the form for (x,0) € U x V such that

(2.3a) Alx,7)+ B(r,0)+C(x,7) = F(r), V1€,
(23b) B(va) = _(g,’U ’ 7/)897 Ve V7
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where

Clx7) = (bu), ) + (clu)w), 7= (w,p) €T,
F(r)=(f.w). 7= (w,p) €U.

Finally, we define
Z={reU:B(r,v)=0,YVveV}.

The next result can be found in the first paper [7].
Lemma 2.1. Let 7 = (w,p) € U. Then 7 € Z if and only if w € H}(Q) and p = —Vw.
Theorem 2.2. If (x,0) € U x V is the solution of (2.3) with x = (u, \), then u € HY(Q)

is the solution of (2.1) with A = —Vu and ulpg = g. Conversely, if u € HY(Q) is the
solution of (2.1) with ulaq = g, then (2.3) has the solution (x,0) € U X V with x = (u, \)

A= —=Vu, and 0 = —(a(u)Vu — b(u)).

Proof. First, let (x,0) € U x V be the solution of (2.3) with x = (u, A). Without loss of
generality, let g = 0 (otherwise, let uy € H' () such that uglag = g and consider u —
[14]). Then (2.3b) with g = 0 implies that y € Z so that, by Lemma 2.1, u € H}(Q) and
A = —Vu. Hence, for all w € H} () and p = —Vw, it follows from Lemma 2.1 that

s

Alx,7)+C(x,7)=F(1), V7= (w,p)€Z,

i.e..

(a(u)Vu, Vw) + (b(u), Vw) + (c(u),w) = (f,w), Y w e Hy(Q).

Hence u is a weak solution of (2.1), i.e., the solution of (2.1) [11].

Next, we assume that « € HJ(Q) is the solution of (2.1). Set x = (u, A) with A = —Vu
and 0 = —(a(u)Vu — b(w)). Then it follows from Lemma 2.1 that x € Z, so (2.3b) with
g = 0 holds. Thus it remains to prove (2.3a). For each 7 € U with 7 = (w, p1),

A7)+ B(7,0) + C(x, 7) = (a(w)A, p) + (w. V - 0) = (p.0) + (b(u), 1) + (c(u), w)
= (w,—V - (a(u)Vu — b(u)) + c(u))
=(f,w), YweWw,

which implies (2.3a). O

3. Mixed finite elements

To define a finite element method, we need a partition &, of 2 into elements F, say,
simplexes, rectangular parallelepipeds, and/or prisms, where only edges or faces on 9
may be curved. In &, it is also necessary that adjacent elements completely share their
common edge or face; let 9&), denote the set of all interior edges (n = 2) or faces (n = 3)
e of &,.
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Since mixed finite element spaces are finite dimensional and defined locally on each
element, let, for each E € &, V4(E) x Wj(FE) denote one of the mixed finite element
spaces introduced in [4, 5, 6, 10, 13, 17, 18, 19] for second order elliptic problems. Then
we define

A ={pn€AN:p|lg € Vp(E) for each E € &},
Vi, ={v eV :v|lg € Vi(E) for each FE € &},
Wy, ={weW :w|g € W,(F) for each F € &,}.

The expanded mixed finite element method for (2.1) is to find (o4, Ap, up) € Vi X Ap X W,
such that

(3.1a) (a(un)An. ) = (on, 1) +(b( )ot) =0, ¥V p€ Ay,
(3.1b) (Anv) — (up, V-v) = (g,v- v)aq, VovéeV,,
(3.1¢) (V-opw)+ (clup), w) = ( fow), YV w e Wy,
We shall establish existence, uniqueness, and convergence results for (3.1) in this sec-

tion. For simplicity, we concentrate on the planar case; an extension to the space case is
straightforward. We mention that while an extra unknown is introduced in (3.1), the com-
putational cost for solving (3.1) is the same as that for solving the usual mixed method,
as shown in §6.

3.1. Existence. C and C; are generic constants below, where C7 depends on ||u||24¢, at
most quadratically. Each of our mixed finite element spaces [4, 5, 6, 10, 13, 17, 18, 19]
has the property that there are projection operators I, : (H'(Q))" — V} and P, = L*-
projection : L%(Q) — W), such that

(3.2a) |lv — ol < Cllv||+h", 1<r<k+1,

(3.2b) IV - (v —Tpv)|| < C|V -o|-h", 0<r <k",

(3.2¢) |lw — Ppwl||—s < C|lw|h"T*, 0<s, r<k*

and

(3.3a) (V- (v—Tpv),w) =0, YVweW,,

(3.3b) (V-v,w—Pyw)=0, Vwvel,

where k* = k 4+ 1 for the Raviart-Thomas-Nedelec spaces [19, 17, 18] and the Brezzi-

Douglas-Fortin-Marini spaces, k* = k for the Brezzi-Douglas-Marini spaces and Brezzi-
Douglas-Duran-Fortin [6, 4], and the Chen-Douglas spaces include both cases. Also, let
Ry, be the L? projection onto Aj. Then we see that

(3.4) (p— Rpp,7) =0, YueN T1€A,
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(3.5) = Rupll—s < Clp|l-h" 2, 0<s, r<k+1.
For the analysis below, we write

(3.6) a(up) — a(u) = —ag(up)(w — up) = —au(w)(w — up) + e () (v — up)?,

where
1
ay(up) = / Ao (up, + t(u — up))dt,
0
1
gu(up) = / (1 — ) ayu(u + t(up — u))dt,
0

are bounded in ). Similarly, we write

(3.7) b(up) — blu) = —Bu,(uh)(u —up) = —by(u)(u —up) + lv)uu(uh)(u —up)?,
(3.8) c(up) — c(u) = —=Cu(up)(u —up) = —cy(w) (v — up) + Cuulun) (v — ’u,h)Q,

where b,,(uh) (;m,,(uh), ¢ulun), and ¢y, (up) are bounded functions in Q. We now subtract
(3.1) from (2.2) to obtain the error equations

(3.9a)  (a(u)(XN—Ap), 1) — (0 — op, i) + (b(u) — blug), ) = ((a(up) — aluw))A\p, 1) .
V€ Ap,

(3.9b) (A=A, v) — (u—up,V-v)=0, VoveV,,

(3.9c)  (V-(0—=o0p),w)+ (c(u) —c(up),w) =0, VweW,,.

Substituting (3.6)—(3.8) into (3.9), we see that

(31()d) (a(u)(A - Ah)v /L) - (0 — Oh, /L) + (F(u)(u - uh)a M)
— ((a’uu(uh)/\ + biu(uh)) (u - uh)za ,Uf) + (du(uh)(u - uh)(/\ - Ah)? M) )
V/L € A}“
(3.10b) (A= Ap,v) — (u— up, V-v) =0, Yo € Vi,

(3.10¢) (V-(0 —op),w)+ (y(u—up),w) = (éuu(uh)(u — uh)2,'w) , YweWy,,

where T'(u) = a,(u)A+b,(u) and y(u) = ¢, (u). Now let M : H*(Q) — L?(€) be the linear
operator

Mw = -V - (a(u)Vw — T'(v)w) + yw,

and let

D : ‘/h X Ah X Wh - ‘/h X Ah X Wh
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be given by ®((7,7,p)) = (z.y. z), where (z,y, z) is the solution of the system
(311&) (a(u)(/\ - flj); /l) - (0 - 7T, /L) + (F(U’ - Z)v /L)

= ((éuu(p)A + buu(p)) (u—0p)? u) + (au(p)(u = p) (A =n), 1),
Vo€ Ap,
(3.11b) A=y,v) —(u—2,V-v)=0, VoveV,,
(3.11¢) (V- (o —z).w)+ (y(u—2),w) = (Cuulp)(u—p)w), Ywe W,
We assume that the restrictions of M and M* (its adjoint) to H(Q)NH}(£2) have bounded
inverses. This is satisfied if ¢, > 0 [14]. Then existence and uniqueness of solution to (3.11)
is known [7] since (3.11) corresponds to the expanded mixed method for the linear operator
M. Now we see that existence of a solution to (3.1) is equivalent to the problem that the
map ® has a fixed point. Consequently, the solvability of (3.1) follows from the Brouwer
fixed point theorem if we can prove that ® maps a ball of V, x A, x Wy, into itself. Toward

that end, we need the following definition [12].
We say that Q is (s 4 2, 0)-regular with respect to M if the Dirichlet problem

(3.12a) M*p =1 in €,
(3.12b) =0 on 9f)

is uniquely solvable for ¢ € L*(£2) and if

(3.13) lellst2.0 < Clllls.o-

Lemma 3.1. Assume that 2 < 0 < oo and  is (s+2,0")-reqular with respect to M, where
0" = 0/(0 — 1) is the conjugate exponent of 8. Let & € L?(Q), ¢ € V, ¢ € L*(Q), and
r € L*(Q). If 1 € Wy, satisfies the system

(3.14a) (a(u)é. p) = (P, ) + (T, p) = (Cop). Y € Ay,
(3.14b) (& v) = (7, V-v) =0, Vv eV,
(3.14c¢) (V- ¢p,w)+ (ym,w) = (r,w), YV we Wy,

then there is a constant C = C(0,a,T,v,Q) such that

(3.15) Illoe < C{ €l + 1@l B¢ + pmnaF2/20 9 gl 4 i) + 1] }

Moreover, if ¢ € LY(Q), ¢ € WO(div; Q) = {v € LY(Q);V-v € LY (Q)}. ¢ € LY(Q). and
r € LY(Q), then for 0 < s < 2k*
17— < CLEllo0 + [ llo,0) TR 4 c]lg g A1)
(3.16) + IV - 9llo.e + [I7]lo.0)
+ 1<l =s=1.6 + |7l —s—2.0 }-

hmin(s—l—Q k)
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Proof. We only prove (3.16); (3.15) can be shown more easily. Let ¢ € W5=6/(Q) and
@ € W*t29(Q) be the solution of (3.12). Then, by (3.3), (3.14), and integration by parts,
we see that
(m, ) =(m. M™¢p)
=(m, =V (a(u)Ve) = TVe +79p)
=— (&, Uy (a(u)Ve)) — (T, Vo — RyV) — (I'n, RyV ) + (y7, )
= (& a(w) Ve — I (a(u)Ve)) = (a(w)E. Vo = BiVe) + (4, Vo — BV )
+ (V.0 = Prp) + (¢. Voo — RyVo) — (C. Vo) + (r, Bup — @) + (. )
+(I'm, Vo — By Vo) + (77, 0 — Pri).

(3.17)

Applying (3.2a), (3.2b), and (3.5), we observe that

(¢, a(w) Vo =TI (a(u) V)| < Clléllos lpllspaor PHRETIAFL,
(a(w)¢, Vo = BaVe)| < Cliéllog [9llspzo B+,

(6, Vo — BaVe)| < Cligllos lpllsrae hmmETAHD,

(V- 60 = Pup)l < CIV - Bl llesnor hn (3240,
(Vo — BuVe)| < CllClloe lollszer BT,

(. Vo) < I¢ll=s=10 ||90||s+2 6

(r, Prp — @)l < Clirlloell @lls+2.00 1o

(r. o) < Ml =s—2.0 l@lls+2,00-

(T, Vo — RpVo)| < Climllooll @llsyaor BT,
(

17,0 = Pag)| < Clllos Igllspae HRRH2ED,

min(s+2,k%)

Substitute these inequalities into (3.17) and use (3.13) to obtain

[7][—s.0 < C ((Hf”o,e + | ¢llo.e + 1Cllo,e) AmmEFLAHD
(3.18) 11V - Blloo D -
+lrllo.0 AREFEED el oo + |70 hmin(ﬁ_l,kw) .
First, consider s = 0; for h sufficiently small, the h||7||o ¢ term on the right-hand side of
(3.18) can be absorbed into the left-hand side, and the result (3.16) has been established

for s = 0. Then, for s > 0, apply (3.18) again, the established result for s = 0, and the
interpolation result [15]

Y s/(s+2 2/(s+2 —s
720 < Clrlss 225D < € (Bllrllo.s + 57 -s-20) -
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to obtain (3.16) since k* < k+1 and s < 2k*. O

We now turn to existence of a solution to (3.1). For this we rewrite (3.11) by shifting
(u, A\, 0) to (Ppu, Ry, II;0) and using (3.3a), (3.3b), and (3.4) as follows:
(3192)  (a(w)(Bid = ). p) — (o — . 0) + (TP = 2), )

= (@l + bualp)) (= )% 1) + (@ulp) (= p)A = 1), )
+ (a(u)(BrA = A), p) + (0 = 1po, p) + (D(Pru = u), p)
V€ Ap,
(3.19b) (RpA —y,v) — (Ppu— 2,V -v) =0, VoveV,,
(3.19¢) (V- (Ipo —x),w)+ (y(Pru — z),w)
= (éuu(p)(u — p)2, w) + (y(Pru — u),w), YV w e Wy,
Let W), = W), and £;, = Aj with the stronger norms |w||w, = ||w|oe and |[p]lz, =

li¢)l0 .24, respectively, where 6 = (4 4 2¢) /e > 4.

Theorem 3.2. For 6 > 0 sufficiently small (dependent of h), ® maps a ball of radius &
of Vi, X L, X Wy, onto itself.

Proof. Let

(3.20) ||Hh0 — THV < (5, ||Phu — /)”070 < 9, ||Rh>\ — 7]||072+€ < 0.

We now apply (3.15) to (3.19) with
C=(%MMA+EAM)w—pf+@dmw—wﬂk—m+aWM&M—A)

+ o0 —po +T(Pru — u),
r =Cuu(p)(u— p)* +y(Pru —u).

First, note that, by (3.2a), (3.2b). and (3.5),

IS+ N7l < C{llw = pllg 4+ llw = plloe 1N = 7llo 24
+BuA = A+ llo = Tyo|| 4 || Pau — u]| }
< C{llu = Prullg o + llp = Prullg o + 2llulls
+ (lu = Prullo.s + [|[Pru — pllo.g) (1A — Balo.a4e + [BaX = nllo,24¢) }

so that, by (3.2), (3.5), (3.20), and the Sobolev embedding inequalities [1]

lullzre < Cellullare. Nl < Cellullase.
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we see that

(3.21) Il +1lrll < Ca(h +6%),

where C = C(||u]|24c). If we take the last term on the left side of equations (3.19a) and
(3.19¢) over to the right side, the left side in (3.19) beomes exactly the expanded mixed

method for the differential operator —V - (a(u)V). It follows from [7] that

(3.22a) [Mno =zl < C([Phu =z +|[<l + I7[)
(3.22b) [BrA =yl < O (1Phu = z[| + <[+ [7[D) -

Now, apply (3.15) to (3.19) to obtain

|1Pru — 2llo.0 < C{|BuA =y + | o — ) h*/°
+ ||V - (Mo — )| REF2ERD ic)| 4 |||}

Consequently, it follows from (3.21) and (3.22) that
(323) HP;Lu - ZHOﬁ S C](h + 52),
for h sufficiently small. Exploit (3.21) (3.23) again to see that

(3.24a) |Tpo — 2|y < Ci(h+ 62),
(3.24b) RN —y|| < Cy(h+ 6%).

Using the quasi-regularity of T}, we find that
(3.25) IR A = ylloage < Ch™/CF| RN — y|| < CLA™/CF (4 67,

Finally, let h < (2C )_(4+25)/(2_5) and choose § = 2C1h%/(2+€) Observe that in order to
have Cyh2/(2+e) < 6/2 and CiLh—e/(2te)§2 < 6/2, 6 must belong to

(2012169, (201)"11e/C+9) 20,

which is satisfied for i and ¢ as chosen. Now, by (3.23), (3.24a), and (3.25), for such chosen
h and 6, we have

(326) HH}LO' — THV <6, HP}LU - 2”079 <6, HRh/\ - yH012+5 < 6.

That is, ® maps the ball of radius ¢, centered at (IIpo, Ry A, Pru) onto itself. O
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3.2. L’-error estimates. Assume momentarily that (3.1) has a unique solution. That

it does will be established later, at least for small 2. To obtain error estimates. we rewrite
(3.9), by (3.6)—(3.8). as follows:

(a(u)(N—Ap),p) = (0 — o, p) + ((&u(uh)kh + bu(un)) (w = up), u) =0. Vued,

(A= Ap,v) = (uw—up,V-v)=0, YVoveV,,
(V- (0 —o0op)w)+ (¢u(up)(u—up),w) =0, Vwe Wy
Define

(X:A—Ah, ﬂ:RhA—Ah,
d=o0—op, e=I1lo— o,

Y = U — Up, Zz = Ph’u, — Up.

We then have with [, = au(un)Ap + Z;u(uh)

(3.27a) (a(uw)e, p) = (d,p) + (Thz,p) = (f‘h(Phu —u), ;L) , Ve Ay,

(3.27b) (a,v) = (2,V-v) =0, Vv €V,

(3.27¢c) (V-d,w)+ (éu(up)z,w) = (é(up)(Pru — u),w), Y w € W
Or, equivalently, as a result of (3.3b) and (3.4),

(3280)  (a(wougn) — (dp) + (O zop) = (DulPyu— ) p) . ¥ A,
(3.28b) (B,v) — (2. V-v) =0, VoveV,

(3.28¢) (V- dow) + (eu(un)z,w) = (Cu(un)(Pru—u)w), YV weW,
Observe that (3.27) or (3.28) corresponds to the mixed method for the linear operator
N : H*(Q) — L*(Q) given by N, = =V - (a,(u)Vw = f‘hw) + éu(up)w. As shown in [16],

it follows from the results (3.26) in the proof of Theorem 3.2 that there is an hg such that
the restriction of its adjoint N* to H2(Q) N HJ () has a bounded inverse for h < hy. Now
we prove the next result.

Theorem 3.3. Assume that  is (2,2)-reqular with respect to M. Then for h sufficiently
small

(3:292) = unll < Cu (Jully B+ Jully, o, B,
2<r<k+2 1<r <k*

(3:295) 11X = Al + Nl = oull < Co (lullpr B+ [fully, 57+ |V - o], hremina0)
1<r<k+1, 0<r <k*,

(3:29¢) IV - (o= o)l < Cr (ullogs B+ lulle, b7+ [V - 0llr, 57,
1<r<k+1, 0<r <k*.

Y
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Proof. Using (3.26) with § = 2C1h%/(219) | the embedding relation H'*¢(Q) c We/2>(Q),
and the quasi-regularity of T}, we see that

[Anllo.0c <NIBlo,00 + [P All0,00
(3.30) <ChHCT) 1Bl 24e + [|A = Pudlo.oo + M0,
<C1 (Jlulla+e)

so that ||T'4]|0.~ is bounded by C;. Now, apply (3.16) to (3.27) to get

)h

(3.31) IVl + ewun) (Pas = w)]) BG4

wusc{MMHwﬂuﬂﬁuau—m

+ Hfh(Phu - U)H | lleu(un) (Pru — U)||_2}~
Furthermore, by (3.2¢) and (3.30), we see that

(3.32) Hfﬂﬂm—u)

h + Hf’h(Phu = u)H < Chljully, AT, 0<r <E,
—1

(3.33) |éulun)(Pru — w)|| b + || éu(un)(Pru — w)||_y < Cillullr, R0 <y < KR

It remains to estimate «, d, and |V - d||. As in the proof of Theorem 3.2, it follows from

(3.28) [7] that

1811+ llellv < C1([Mao — ol + [A = BaAll + lyl)

so that, by (3.2a) and (3.5),

(3.0 61+ lelly < G (lallss 7+l 1<r <kl

Now, apply (3.2a), (3.2b), (3.5), and (3.34) to obtain

B350 ol < Gl 1+ ) L<r e,

(3.35b) ldll < Cy (Jullrsa 27+ lyll) 1<r<k+1,

(3.35¢) IV -d <CL(||V:alls, ™ + |Jull. "+ y|]), 0<r <EF,
1<r<k+1L

Substitute (3.35a) (3.35¢) into (3.31) and use (3.2¢), (3.32), and (3.33) to obtain

?

2 < Cx (fullogr B4+ full, B4+ - o)y, Arbmine0)
1<r<k+1. 0<r <k

(3.36)
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for h sufficiently small. Now, combine (3.2c), (3.35), and (3.36) to yield the desired result
(3.29). O

We remark that the L?-error estimates in Theorem 3.3 are optimal both in rate (for
any h) and in regularity. Also, as a result of (3.36), we have

(3.37) | Pre — up|| < Co|lull-h* Y, r = max(k* +1,3),

which is a superconvergence result and is needed in the analysis of the later postprocessing
method. Note that in the case where £* = k 4+ 1 we have the superconvergence order
O(h¥*?), and in the case where k* = k we have O(h¥*+1). For the linear case where a does
not depend on the solution v and b = ¢ = 0 in (2.1), we have shown a superconvergence
result, which is of order O(h**2?) for both cases [7]. The reason that we only have a
superconvergence order O(h**1) for the latter case for the present nonlinear problem is
that the coefficient a depends on u and b and ¢ are not zero. The same remark applies to
the postprocessing method proposed in §4 later.

3.3. Uniqueness. We now demonstrate the uniqueness of the solution to (3.1). Let
(ut. \',0') € Wy, x Ay, x V}, be solutions of (3.1), i = 1,2. Note that it follows from
Theorem 3.3 that these two solutions satisfy the error bounds in (3.29) provided that
they satisfy (3.26). Then the quasi-regularity of T, and the error bounds imply that A is
bounded by |lu|lzqe, i = 1,2. Let u = ut —u?, A = A! = A2, and & = 0! — o2. Then, by
(3.1), we see that

(3.382)  (a(ul)A, 1) — (7, 1) + ((du(uQ)/\Q + Bu(uZ)) 'a,u) —0, Ve,
(3.38b) (A v) —(a,V-v)=0, VeV,
(3.38¢c)  (V-G,w)+ (éu(u?)a,w) =0, Vw € Wy,
Then, as in the linear case [7], we have

(3.39) A+ 1150y < Caflal.

Also, we rewrite (3.38) in the form

(a(u)X,/,L) — (o, 1) + ((&1,,('152)/\2 + g“(u2)) '&,,LL) = (d,,,(ul)/_\(u - ul),,u) , Y€y,
(\v) —(@,V-v) =0, VveVy,
(E:,u,(uz)’ll w) =0, Yw € Wy,.
Then, apply (3.15) to this system to see that
lall < C1 (1AL + llellv) A,
which, together with (3.39), implies that
lall < Crhlal.

Namely, u! = u? for h small enough. So, (3.39) yields that A = A\? and ¢! = o2. Hence,
the uniqueness is shown.
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3.4. H*(2)-error estimates. Apply (3.16) to (3.27) with # = 2 to see that
agy e S Ol ) ) 14
. i HV ) dHhmin(s-{-Z,k*) + thu _ uH—s—]}-

Then it follows from (3.2¢) and (3.29) that

||u - uh”—s < ||u - Phu”—s + [[2]]—s
(Nullr b7+ flull, A7F2,
0<s<k*=2, 2<r<k+4+1, 2<r <k*
(3.41) ol ogn A7 4 g A7,
< O 9
s=k"=1, 1<r<k+1, 1<r; <k*
lullepr B7HE 4 Jull, 2 AR
L s=k* 1<r<k+1, 0<r <Fk*
Now, let p € H*(2). By (3.3a) and (3.27), we have
(d.¢) =(d.¢o — Buep) + (d, Brp)
(d ¥ — Rh ) ( )05 Rh(;p) + (Fh7 Rh ) - (f}L(Phu - u)w Rh@)
((] © — Rpp) — (a(u)a, o — Rpp) + (a, ap — T (ap))
V- (a(wp) = (Fuz. o = Bug) + (Tuz )

+ (f‘h(Ph’u, —u), ¢ — Rhgo) — (fh(Ph’u, —u), cp) ,

+ 4+

so that
(@) < Cr{Uldll + lall + 2ll + || Pru = wul]) pint+D
+ 2l s + 1 Pau = ull—s Flolls.
This inequality, together with (3.29b), (3.2¢), and (3.40), implies that

lellrpr 2755+ ([l g1 RTES,

0<s<k*—1, 1<r<k+1, 1<r; <k™
[y i (7] P

s=k* 1<r<k+1, 0<r <k*

(3.42) o — onll—s < C4

The same result holds for A — \;, by means of a similar argument. Finally, using (3.2¢)
and (3.27c¢), we see that, for ¢ € H*(Q),
(V- d, ) =(V-d. o= Prp) + (V- d, Pry)
=(V-d, o — Puryp) — (Culun)z, @) + (eulun)z, » — Prep)
+ (éu(uh)(Phu - u)w QO) + (éu(uh)(Phu - U’)v P}LQD - QD) :
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Consequently, we have

IV - (0 = on)ll—s C{UIV - dll + 2]l + || Prwe — w)) hmintsF7)
(3.43) + ||2]l=s + || Phu — ul| -}
<Cil|uflrgp2h" 5 0 < s, r <K

z

The results in (3.41)—(3.43) can be summarized in the following theorem.

Theorem 3.4. Let Q be (s+2,2)-reqular with respect to M. Then for h sufficiently small
the results in (3.41) (3.43) hold.

3.5. LP-error estimates. The next theorem can be easily shown from (3.2¢), (3.3b), the
triangle inequality, and the quasi-regularity of Tj},.

Theorem 3.5. There exists a constant Cy independent of h such that

o=l < Co (s 74 ol B72 4 19 ], im0
1<r<k+1, 0<r <k 2<p<oo.

4. Postprocessing and superconvergence

In this section we consider a postprocessing scheme, which leads to a new more accurate
approximation to the solution than uy. The present scheme is an extension to the nonlinear
case of the postprocessing procedure considered in [7] for the expanded mixed method for
the linear problem. A similar approach for the usual linear mixed method is given in [22].
Let

Wy ={weW:W|g € R(E) for each E € &},
where R(E) = Py« (E) if E € &, is a triangle and R(F) = Py« (E) @ P« (E) if E € & is

a rectangle. Then the postprocessing scheme is given for u; € W, as the solution of the
system

(41&) (Uffwl)E = (U}“l)E, FE e ((:h,,

(4.1b) (a(uy)Vuy, — b(uy,), Vo) g + (c(up),v) g = (f.0)g — (oh - VE. V) oE,
VveRE), Eec&,

where (up,op) is the solution of (3.1) and vy is the outer unit normal to E.

To see that there exists at least one solution uj to (4.1), let us consider the map

S Wy — W defined by /

(423’) (Sl/ﬂ 1)E = (u’hﬁ 1)E7 E € gh?
(4.2b) (a(y)V(Sy) = b(y). Vv) g + (c(un),v) g = (f.v) g — (0h - VE.V)oE,
VuveR(E), Ee€é&,
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for y € Wy, Note that, by (3.1c),

(c(up),v)g = (f,v)E — (on - vE,V)aE, Vv €& Py(E),
so that the linear equations (4.2) define S uniquely. Now, choose v = Sy in (4.2b) to
see that the range of S is contained in a ball. Since S is clearly continuous, the Brower
fixed point theorem implies that (3.4) has a solution, as illustrated in Theorem 3.2. The

argument in §3.3 can also be used to show uniqueness of the solution for % sufficiently
small.

To carry out an error analysis for (4.1), we also need a family {Uj }o<n<1 of continuous
spaces in 2, which are piecewise polynomials over &, such that

(43)  inf {0 — €+ ANV = Ol + o — g € € Ui} < Cllolls .

if 2 < s < k* + 1. Finally, let Pg denote the L?-projection onto Py(E). Because of the
finite dimensionality of each Uj,, the infimum in (4.3) is achieved. Let @ € V}, be such
that ||u—ap| 4+ k|| V(u = ap)| + h*||u — 4|16 is minimal. Then it follows from (4.3) that

(4.4) Vanllo.s < Cllullis < Clluflzre-

Theorem 4.1. Letu € H**(Q)NH**2(Q) be the solution of (2.1) and uj, be the solution
of (4.1). Then

(4.5) lw —uj)| < Ciljull2F T, r = max(k* +1,3).
Proof. By (2.1) and the relation 0 = — (a(u)Vu — b(u)), we see that
(4.6) (a(uw)Vu —b(u), Vo) g + (c(u),v) g ) — (0 vEg,v)oE, Y v € R(E).
Consequently, subtract (4.1) from (4.6) to yleld the error equation
(a(u)Vu — a(uy)Vuy, Vo) g — (b(u) — bup,),v) 5 + (c(u) — c(up).v) 5
=((0c—o0y) VE. V). YvERE).
This inequality, together with (2.1c), implies that
ao ||V (i, — )|

— ap V(T — )(ah —up)l%
)

< (a(up)V(I = Pg)(in —up), V(I = Pg)(in —up,)) g

= (a(u)V(an — u), V(in = up)) g + ([a(ug,) — a(u)] Vg, V(s — uj)) g

+ (b(u) - b(uh) V(tn —up,)) g = (c(u) = e(un), (I = Pr)(in —up)) g
(4.7) (o —on)-ve. (I - PE)(Uh —up))om

< C IV (n = )l 9 n = 3)
+ [la(uy,) — a(“)”o,g,E | (an — up)ll

+ [16(u) = b(up)ll g IV (@n = wp)ll g + lle(w) = c(un)ll g (I = Pe)(@n = up)ll

. 1/2 1/2
+ (h,E/ (o, — o) - 1/E|2 ds) (hil / |(I — Pg)(ap — u}’;)|2 ds) )
oOF oOFE
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Note that a scaling argument implies that
(4.8) (I = Pg)(an —up)llp < Che VU = Pr)(an — up)llp -
Exploit (4.4), (4.7), and (4.8) to obtain

19 (n — a)l < 01{ IV (i — w)ll g + lla(ul) — afe) o 5 5

(4.9) +o(w) = b(wp)ll g + helle(uw) = c(un)ll
1/2
+ (hE/ |(0h—a)-yE|2ds> }
JOE
Now, using the interpolation result

1/2 1/2
Illos.m < Cllol LIVl

it follows from (4.8), (4.9), and the assumption on the coefficients a, b, and ¢ that
[an — uplle < ClhE{ IV(an —w)ll g+ llu—uplle + hellu—unlz
(4.10) 1/2
# (e [ lon—orevelas) b 1Pt - il
JOE
Since Pg is bounded, it follows by (4.1a) that

| Pe(in —up)llg < lin —ullg + || Pru — unl 2,

which, together with (4.10), yields that

|in — upllm < ClhE{ |V (@n —u)ll g+ l|u —upllz + hellu—unlz

1/2
+ (hE / (o4 — o) - vg|* ds) }
JoE

+|lan = ullg + | Pru = unl|z.

Sum this expression over all E € &, to obtain
~ *
[an — ug|

~ \ 1/2
< C’l{h(HV(uh—u)H + =+ (Y hE/ (0 = TTho) - vl ds) "/
Ecg, 2

' ~ 1/2 .
+ (S e [ (@ —on) - vs?ds)?) 4l — ull + | Pru — ug
oOFE
Eegh

~ \ 1/2
< C’l{h(HV(uh—u)H + =+ (Y hE/ (0 = ) - vg|? ds)
Ecg, 2

+llo = ol + 1l = onl) + i — ull + || P — ||}

17
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for h sufficiently small. Finally, apply (3.29), (3.37), (4.3), and the approximation property
of II;, to obtain the desired result (4.5). O

5. Extension to a nonlinear problem

In this section we extend the previous analysis to the nonlinear problem

(5.1a) —V-A(z.Vu) = f(z) in Q,
(5.1b) u=—g on 02,

and point out a difference between the usual mixed method and the expanded mixed
method. We assume that A : O x R” — IR" is twice continuously differentiable with
bounded derivatives through second order and that (5.1) is strictly elliptic at A in the
sense that there is a constant ¢y > 0 such that

(5.2) ETDA(z, \)E > (10||f||%Rﬁ ¢eR”, (z,)) € QxR

where DA(xz,\) = (0A;/0X,) is the n X n Jacobian matrix. The variable x is omitted in
the notation below.

Using the previous notation, the expanded mixed form for (5.1) is formulated as follows:
Find (o, A\,u) € V. X A x W such that

(5.3a) (A(N), ) + (o, ) =0, YV ou €A,
(5.3b) (A0) +(u. V-v) = (g,0-v)on, YvEV,
(V-O’,‘w):(f,?jj), VweW.

As in Theorem 2.2, it can be shown that (5.3) has a unique solution and is equivalent to
(5.1) through the relations

A=Vu and o=—-A(Vu).

The expanded mixed solution of (5.1) is (op, Ap, un) € Vi, X Ap, x W), satistying

(5.4a) (A, ) + (o) =0, ¥ € Ap.
(5.4b) (An,v) + (up, V-v) =0, YoeV,
(5.4¢) (V-op,w)=(f,w), VweWy.

Also, using the arguments in §3, it can be seen that (5.4) has a unique solution for h > 0
sufficiently small and produces optimal error estimates in the L and H ™ *-norms. In
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particular, we state the L?-error estimates as follows:

|||l BT, 2<r<k*k>2,
(5.5a) lu —up|| < C1¢ ull2 b, k =1, in the case of k* = F,
|ulls RFFL, k =0,1, in the case of k* =k 41,
(5.5b) A=Al < Cillullppr B 1T<r<k+1,
(5.5¢) o —onll < Cillullpgr By 1 <r<k+1,
(5.5d) \V-(c—on)|| <Ci||V -0l h", 0<r <k,
ul|pge PFT2, k> 2.
(5.5¢) llun, — Prul| < C1 lulls A2, k=1, in the case of k* = k,
|||z REFT2, k=0,1, in the case of k* =k + 1.

The postprocessing scheme can be easily defined here; using (5.5¢), analogous superconver-
gence results can be obtained. In the present case, we are able to obtain the superconver-
gence result (5.5¢), which is of order O(h**+2) in both cases where k* = k and k* = k + 1.
The reason for this is that the coefficient A depends on A instead of . The vector variable
has the error estimate of higher order, as shown in (5.5b).

We point out that attempts at using the usual mixed method based on the Brezzi-
Douglas-Marini mixed finite elements (n = 2) [6] and the Brezzi-Douglas-Durén-Fortin
mixed finite elements (n = 3) [4] (or some of the Chen-Douglas mixed finite elements [10])
for (5.1) are not entirely successful, as shown in [9]. The reason for this is that error
equations couple the scalar variable v and the flux variable 0. Consequently, the errors of
the scalar influence those of the flux. Hence the error estimates for the flux variable are
not optimal since these mixed spaces use higher order polynomials for this variable than
for the scalar. However, the expanded mixed method decouples the flux error equations
from the scalar equations; as a consequence, optimal error estimates can be obtained for
both the flux and scalar variables, as shown in (5.5).

6. Implementation and numerical results

In this section we present numerical results for the model problem

(6.1a) — V- (a(u)Vu) = f in Q.
(6.1b) u=—yg on 0f).

Before this, we need to consider implementation techniques for solving the corresponding
mixed method solution (op, Ay, up) € Vi, X Ay, X Wy, satisfying

(6.2a) (a(up)Ap, 1) — (Op, ) =0, Ve Ap,
(6.2b) (An,v) = (up, V-v) = (g.v-v)oa, YvEVh,
(6.2¢) (V-op,w)=(f,w), Vwe Wy,
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A linearized version of (6.2) is constructed as follows. Starting from any (o9, A\, u)) €

Vi x Ap X Wp, we construct the sequence (o). A\j*, uj*) € Vi, x Ap x Wy, by solving

(6.3a) (a(up ™A ) = (o) =0, Y p€ Ay,

(6.3b) (A v) = (upt, V-v) = (g,v-v)aa, YveEV,

(6.3c) (V-opt,w)=(f,w), Vw e Wh.

The ideas in [8] can be used to show that the sequence {(o}", A7, u}")} converges to

(oh, A, up). Consequently, since (6.3) is linear for each m, the implementation techniques
discussed in [7] for the linear expanded mixed method (e.g., alternating direction iterative
methods, hybridization methods, and preconditioned iterative methods) can be applied
here.

In this section we concentrate on the implementation of the nonlinear expanded mixed
method (6.2) as a finite difference method. As mentioned in the introduction, it was
shown [20, 21, 23] that the linear system arising from the usual mixed formulation can be
simplified by use of certain quadrature rules for the lowest-order Raviart-Thomas-Nedelec
spaces over a rectangular grid. That is, the mixed method system can be written as a
cell-centered finite difference method. The same simplification is valid for the expanded
Raviart-Thomas-Nedelec method [3]. However, an analogous simplification of the mixed
method system as a finite difference method for another widely used space, the lowest
order Brezzi-Douglas-Marini space [6] if n = 2 or the lowest-order Brezzi-Douglas-Duran-
Fortin [4] space if n = 3, has not been known. We here derive a finite difference method
for this space, without any loss in the rate of convergence. In particular, we show that
for a diagonal tensor coefficient, the lowest order Brezzi-Douglas-Marini mixed method
can be written as a cell-centered finite difference method with a five point stencil, and
the Brezzi-Douglas-Duran-Fortin method can be given with a nine point stencil by using
certain quadrature rules. For a full tensor coefficient, these two methods can be written
with a nine and nineteen point stencil, respectively. We present the derivation only for the
case where n = 2 and «a is a scalar (or a diagonal tensor); the derivation for other cases is
the same.

Throughout this section, we consider a partition of the rectangular domain €2 into
rectangles: &, = {71172 1120 X {Yj+1/2 };‘20: and define

T = §($¢+1/2 + Ti—1/2). =1 g,
1 .
Yi = §(yj+1/2 T Yj-1/2); J=1 iy,

Az; = Tit1/2 — Ti-1/2s

Ay =yiy12 — Yj—1/2,

1
Axi—l—l/Z = §(A(E7 + A(Eiﬂ.])q

1
A?Jj+1/2 = §(ij + Ayjy1).
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For any function v(xz.y), let v; ; denote v(wz;,y,), let Vit1/2,; denote ’U(.%H_]/Q, y;). and let
v; j+1/2 denote v(x;. Yjt1/2)- Also, (-,-)7 represents the midpoint rule in each coordinate
direction, and (-, )3 denotes the two-point Gaussian quadrature rule for the z-component
on the vertical edges and for the y-component on the horizontal edges of each cell. This
choice of quadrature rules is compatible with the nodal basis functions for V},, as seen in
[2]. Also, we take Aj to be V},. Then we introduce the modified method for (o, Ap, up) €
Vi, X Vi, X W, satistying

(6.4a) (a(up)An, 1) 3y — (On, 1) e = 0, Y pu € Vi,
(6.4b) (A 0)pr — (up, Vo0) = (g.v-v)aar, Y u€EVy,
(6.4c¢) (V-op,w)=(f,w)r, YV w € Wy,

Lemma 6.1. The system (6.4) has a unique solution.

Proof. Since (6.4) is a finite dimensional, square, linear system, existence follows from
uniqueness. To show uniqueness, let f =g =0, p = A, v = 03, and w = uy. Then the
three equations in (6.4) imply that

(a(uwp)An, An)ay = 0.

By (2.1c¢), this equation means that \;, vanishes at the two Gaussian points of the edges
of each element. Hence, \;, = 0 everywhere. Then (6.4a) implies that

(0h.on)m =0,

so that o5, = 0. Since Vj, = V- W}, (6.4b) with g = 0 yields that up, = 0. O

From (6.4b) we see that the normal component A; at any nodal point can be expressed
as a difference of the pressure at the midpoints of the two adjacent elements. Namely (%
is omitted below and let A = (A", \Y)),

Uid1,j — Usg

(6:5) i+1/25 =

Aziyqo

a similar relation holds for \Y This corresponds to a finite difference approximation

1,5+1/2"
of the equation A = —Vu.
Next, from (6.4a) it follows that the normal component of o, can be expressed at any

nodal by the normal components of A; at the nodes of the adjacent elements. That is,

x 1 x
(6.6) 0lr1j25 = 5 (0n)izrja g+ alun)ipaye ) Nz

where (i 4+1/2.j%) and (i +1/2.j7) denote the nodal points (412, y; + ij/(Q\/g)) and
(Tig1/2, Y5 — Ay;/(2V/3)), respectively; an analogous equation is valid for OZjH/Z' Thus
we have a finite difference approximation of the relation o = a(u)\.
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Finally, from (6.4c) we have
(6.7) (Ti1/2.5 = T2 ) AU+ (0 110 = 011 o) Ai = fijAzily;.

Substitute (6.5) and (6.6) into (6.7) to obtain a finite difference stencil for the scalar u.
an approximation of the elliptic equation —V - (a(u)Vu) = f. Efficient iteration methods
such as the Newton iteration method can be now used to solve the final nonlinear finite
difference system:.

Since the cell-centered finite difference methods arising from the Brezzi-Douglas-Marini
(or Brezzi-Douglas-Duran-Fortin) and Raviart-Thomas-Nedelec mixed methods have the
same form, the convergence results obtained for the latter [3. 21, 23] are also valid for the
former. Namely, we have error estimates of order O(h?) in the L?-norm for both the scalar
and vector variables. For more details, refer to [2].

We now present two two-dimensional problems on the unit square with the Dirichlet
boundary condition (5.1b) or (6.1b). In the first example, the coefficient a(u) in (6.1a) is
taken to be of the form a(u) = u. The true solution is

u(,y) = 2* + y* + sin(x) cos(y),

with f and ¢ defined accordingly by (6.1). The expanded mixed formulation is discretized
by means of the lowest-order Brezzi-Douglas-Marini space [6] on rectangles as in (6.4).
Namely, we solve a cell-centered finite difference system for the scalar « over a uniform
rectangular decomposition of €. In Table 1 we show the errors and convergence rates.
Note that the orders of convergence in L? and L are two in all cases. So, in fact, we have
a superconvergent result for the scalar u.

1/h | L*>-error (x10%2) | L*>—order | L%—error (x10%) | LZ—order
5 1.550 - 1.470 -

10 0.470 1.73 0.380 1.95

20 0.120 1.97 0.091 2.06

40 0.029 2.05 0.022 2.05

Table 1. Convergence rates for the scalar in example one.

In the second example, the coefficient A(Vu) in (5.1a) is defined by

A(v) = (v1,3v2/2 —sin(2vy) /4), v = (v1,v2),
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g =01in (5.1b), and f in (5.1a) is given by

fx,y) =2(y = v*) + (¢ — 2°) (3 — cos (2(x — 2?)(1 - 2y))).

Problem (5.1) has a unique solution [14] for such chosen functions. The Brezzi-Douglas-
Marini space [6] of lowest order on a uniform triangular decomposition of € is exploited
this time. Tables 2 and 3 show the errors and convergence rates for the scalar and the flux
variable, respectively. The convergence rate for the scalar is O(h), while it is O(h?) for the
flux. The numerical results in Tables 1. 2, and 3 confirm the theoretical results from the
previous sections.

1/h | L®-error (x10%) | L>®—order | LZ%—error (x102) | LZ—order
) 3.57 - 2.50 -

10 1.89 0.91 1.20 0.99

20 0.99 0.93 0.63 1.02

40 0.52 0.98 0.30 1.09

Table 2. Convergence rates for the scalar in example two.

1/h | L%-error (x102) | L>®—order | LZ%—error (x102) | LZ—order
5 1.870 - 1.540 -

10 0.540 1.79 0.430 1.84

20 0.140 1.94 0.110 1.97

40 0.032 2.12 0.027 2.03

Table 3. Convergence rates for the flux in example two.
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