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Abstract. A new approach of constructing algebraic multilevel preconditioners for mixed finite
element methods for second order elliptic problems with tensor coefficients on general geometry is
proposed. The linear system arising from the mixed methods is first algebraically condensed to a
symmetric, positive definite system for Lagrange multipliers, which corresponds to a linear system
generated by standard nonconforming finite element methods. Algebraic multilevel preconditioners
are then constructed for this system based on a triangulation of parallelepipeds into tetrahedral
substructures. Explicit estimates of condition numbers and simple computational schemes are es-
tablished for the constructed preconditioners. Finally, numerical results for the mixed finite element
methods are presented to illustrate the present theory.
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1. Introduction. Let © be a bounded domain in IRd, d = 2 or 3, with the
polygonal boundary 9€2. We consider the elliptic problem

-V - (aVu)=f in Q,

(1.1) u =10 on 012,

where a(x) is a uniformly positive definite, bounded, symmetric tensor and f(x) €
L2(Q) (H*(Q) = W*2(Q) is the Sobolev space of k differentiable functions in L2(Q)).
Let (-, -)g denote the L2(S) inner product (we omit S if S = Q), and let

V = H(div;Q)= {’U € (LZ(Q))(I :V-ve LZ(Q)}ﬁ
W = L}9Q).

Then (1.1) is formulated in the following mixed form for the pair (o,u) € V. x W:

(1.2) (V-o,w) = (f,w), Yw e W,
) (a Yo, v) — (u,V-v) =0, Yo e V.

It can be easily seen that (1.1) is equivalent to (1.2) through the relation
o= —aVu.

To define a finite element method, we need a partition 7; of € into eclements T,
say, simplexes, rectangular parallelepipeds, and/or prisms. In 7, we also need that
adjacent elements completely share their common edge or face; let 975, denote the set
of all interior edges (d = 2) or faces (d = 3) e of 7p,.

Let Vi, x Wy, C V X W denote some standard mixed finite element space for second
order elliptic problems defined over 7;, (see, e.g., [8], [9], [10], [14], [16], [29]. [30], and
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[31]). This space is finite dimensional and defined locally on cach element T' € Ty,
so let Vi(T) = V| and Wi,(T) = Wy|r. Then the mixed finite element method for
(1.1) is to find (o, up) € Vi, X Wh:

(V-op,w) = (f,w), Yw € Wy,

(1.3) (e op,v) — (up, V-v) =0, Vv € V.

It has been known that, due to its saddle point property, it is difficult to solve
the linear system arising from (1.3). In particular, it is hard to construct efficient
preconditioners for the mixed method system. While some preconditioning algorithims
for solving the saddle point system have been proposed and studied (see, e.g., [3], [6],
[17], [20], [32], [33]). their efficiency strongly depends on the geometry of the domain,
the coefficient matrix a(x), and the type of finite elements exploited. Especially,
the preconditioners in these papers can be very expensive to obtain. An alternate
approach was suggested by means of a nonmixed formulation. Namely, it is shown that
the mixed finite element method is equivalent to a modification of the nonconforming
Galerkin method [1], [2], [11], [28]. The nonconforming method yields a symmetric
and positive definite problem (i.e., a minimization problem). This is explained below
and in the next section in detail.

The constraint Vj, C V says that the normal components of the members of V},
are continuous across the interior boundaries in 875. Following [2], we relax this
constraint on Vj by defining

Vi, = {ve LZ(Q) cv|lr € Vi (T) for each T € Ty, }.

We then need to introduce Lagrange multipliers to enforce the required continuity on
Vi, so define

Ly = {/1, € LQ( U (3) 2 ptle € Vi - v|e for each e € 377,},
cedT;,

where v is the unit normal to e. Also, to establish a relationship between the mixed
method and the nonconforming Galerkin method and to construct efficient precondi-
tioners, following [11] we introduce the projection of the coefficient, i.e., ap = Pra™1,
where Py, is the L2-projection onto Wj,. Then the hybrid form of the mixed method
for (1.1) is to find (op, up, Ap) € Vi, x Wy, x Ly, such that

ZTeTh (V-op,w)r = (f,w), Yw € Wy,
(1.4) (anop,v) — ZTeTh [(u;,_, V-v)r — (Ap,v- VT)OT\OQ] =0, Yo € Vi

>rer, (Tn vr, pamoea = 0, Yu € Ly,

Note that the last equation in (1.4) enforces the continuity requirement mentioned
above, so in fact o5, € V. In [1], [2], [11], and [28], it was shown that the solution
to (1.4) can be obtained from a certain modified nonconforming Galerkin method
by means of augmenting the latter with bubble functions. In this paper, following
[12] and [13], we show that the linear system generated by (1.4) can be algebraically
condensed to a symmetric, positive definite system for the Lagrange multiplier Aj. Tt is
then shown that this linear system can be obtained from the standard nonconforming
Galerkin method without using any bubbles.
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The main objective of this paper is to construct algebraic multilevel precondi-
tioners for the mixed finite element method. We first use the above equivalence to
construct multilevel preconditioners for the linear system for the Lagrange multipliers.
Then the mixed method solutions o, and wup are recovered via these multipliers.

The construction of multilevel preconditioners for the mixed methods is inspired
by the fundamental work [7], [22], where new systematic representations for precon-
ditioners in the Neumann-Dirichlet domain decomposition methods for conforming
finite elements were suggested. The multilevel domain decomposition versions of
these methods were outlined in detail in [23], [24] and their multigrid versions were
described in [25], [26] for model elliptic equations. In addition, the superelement ap-
proach used here to estimate condition numbers for two level methods is based on
that used in [4], [5], [18], [25], and [27].

This paper unifies and refines the results previously announced in [18] and [19)].
Briefly, the approach used to construct preconditioners includes two main stages.
First, using the idea of partitioning (decomposing) a parallelepiped grid into tetra-
hedral substructures a two-level preconditioner is constructed for a block “7-point”
algebraic system with 2 X 2 blocks on the coarse level, and the condition number of the
preconditioned matrix is estimated. A detailed description of procedures to construct
such preconditioners for parallelepiped grids can be found in [18], [23], [24], and [26].
The explicit bounds of spectrum of the preconditioned matrix are obtained with help
of the superelement approach [18], [25].

On the second stage, introducing a special rotation we reduce the above block
7-point algebraic system to a series of plane problems and an exact 7-point-scheme
problem with one unknown per parallelepiped. The constructed preconditioners are
spectrally equivalent to the original stiffness matrix and their arithmetic cost depends
on the method of solving the 7-point problem on the coarsest level. In our implemen-
tation we use a method of separation of variables although some variants of multigrid
methods or domain decomposition techniques can be used. Explicit estimates of con-
dition numbers are obtained for these multilevel preconditioners. A computational
scheme for implementing these preconditioners is also considered, and a three-step
preconditioned conjugate gradient method using the present technique is described as
well.

The case where a(x) is a diagonal tensor and € is a regular parallelepiped is first
analyzed in detail for the multilevel preconditioners. Then the analysis is extended to
the case in which a(z) is a full tensor and €2 is a rather general domain. Throughout
this paper, only the three-dimensional problem is discussed; the two-dimensional case
is treated as a special case of the present technique.

The rest of the paper is organized as follows. In the next section we consider an
elimination procedure for (1.4). Then, in §3 we develop multilevel preconditioners for
the resulting linear system. In §4, we counsider arbitrary tetrahedral meshes and full
tensors. Finally, in §5 extensive numerical results are presented for both regular and
logical parallelepipeds to illustrate the present theory.

2. The mixed finite element method. We now consider the most useful
partition 7, of Q into tetrahedra. The lowest-order Raviart-Thomas-Nedelec space
[31], [29] defined over T € T}, is given by

Vi(T) = (Po(T))’ @ ((w,y. 2) Po(T)),
Wi(T) = Py(T),
Lin(e) = Po(e),
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where P;(T) is the restriction of the set of all polynomials of total degree not bigger
than ¢ > 0 to the set T € 7;,. For each T in 7j,, let

where |T'| denotes the volume of T'. Also, set ay, = (o) and op|7 = (071, 012, 073) =
(¢ + tpw, g3 + try, ¢ + t7z). Then, by the first equation of (1.4), it follows that

(2.1) tr = fr/3.
Now, take v = (1,0,0) in T and v = 0 elsewhere, v = (0,1,0) in T and v = 0
elsewhere, and v = (0,0,1) in T and v = 0 elsewhere, respectively, in the second

equation of (1.4) to obtain

(2.2) (S0y oo Dy + Sy el ) =0, j=1,2.3,

o 1ot | e e oh i (1) i2)  i(3) 3T _ (3T —
where |e/| is the area of the face e}, and vp = (vplsvp™vp™). Let p5 = (B;) =
((ij» 1)7)~'. Then (2.2) can be solved for ¢

qgﬁ: _Z, et ( ﬂjll/é“(l +/j12 ’:P(Q ‘|‘1}J3 Ts))/\h|
(2.3)

(58 B8 (i + sy + isz), Dy j=1,2.3.

Let the basis in Lj be chosen as usual. Namely, take ¢ = 1 on one face and p =0
elsewhere in the last equation of (1.4). Then, apply (2.1) and (2.3) to sce that the
contributions of the tetrahedron T to the stiffness matrix and the right-hand side are

i aT—d I 7
7”/3; — l_/&—v/-}Tl_/%—u FT — ( T T)T

_ foiy .
7 |T| + (']Tt VT)C'T? T e 77'/7

where 7% = |(T|1/T and ]f fr(z,y.2)/3. Hence we obtain the system for Ay:
(2.4) MX\=F

After the computation of Aj, we can recover oy via (2.1) and (2.3). Also, if up is
required, it follows from the second equation of (1.4) that

4
1
ur = —— | (aon, (¢, y,2))T + Ap| L.y, %),V , T eTy.
T3|T|< he (2,9, T;h(y)T)>, h
The above result is summarized in the following lemma.

Lemma 1. Let

My (x; 1) = Yorer, X vr)orST (1, vr)or X: 1t € Lp,
Fy, /1) = ZTGT % ]ft l)T : (/1‘7 VT)@T + ZTET,,‘(/“"]]C: VT)OT: we Ly,
where J¥ is such that .]f|T = Jqfw. Then Ay, € Ly, satisfies

(25) M},_(A}“ ,U') = Fh(lj’)7 v,“‘ S 'C}IJ
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where
Ly ={p€Lp:ple=0for cach ¢ C 90}.

Note that there are at most seven nonzero entries per row in the stiffness matrix
M. Also, it is easy to see that the matrix M is a symmetric and positive definite
matrix; moreover, if the angles of every T in 7}, are not bigger than 7/2, then it is an
M-matrix. Finally, (2.4) corresponds to the P; nonconforming finite element method
system, as described below. This equivalence is used to construct our multilevel
preconditioners later.

Let

Ny ={ve L*Q): v|r e P(T), VT € Ty; v is continuous
(2.6) at the barycenters of interior faces and
vanishes at the barycenters of faces on 9Q}.

Proposition 2. Let f, = Pnf. Then (2.4) corresponds to the linear system produced

by the problem: Find «;, € Ny, such that
(2.7) an(Vn. ) = (fn. ). Vo € Ny,

where ap,(Yn, ©) = ZTET;, (oz;fVQ/)h_w Vo)r.
PROOF. From the definition of the basis {17} of A}, for each T' € 7}, we have

) 1 —1 -
Prlr = ka (g, 2) —m), i #1,

for some barycenter p;. Then, we see that
I h by =i aT—i
(ap "V NPT ) = T8 T,

which is m?j. Also, note that for any linear functions ¥ and ¢ on a tetrahedron T € 7;,

(28) (. )7 =TI Sy $(pi)dlp0),
where the p;’s are the barycenters of the faces of T', so that
TP i
FT = =Pt + (o).,

- F
_fTT(]-v l/’fz)T + |3||€Z:T (‘l)/h* 1)(:5_

= ?T (1ﬁ1/)£")T7

which is (fp,9")r. O

3. Multilevel preconditioners over a cube. In this section we consider
multilevel preconditioners for (2.4) based on partitioning regular parallelepipeds into
tetrahedral substructures, following the ideas in [18] and [19]. Here we treat the case
where (2 is a unit cube and a(x) is a diagonal tensor. A general case is considered in
the next section.
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3.1. Two level preconditioners. Let C;, = {C"/¥)} be a partition of
Q into uniform cubes with the length & = 1/n, where (z;,y;. 2) is the right back
upper corner of the cube C7:F) Next, each cube C(#7%) is divided into two prisms
P = Pl(m’k) and Py, = Pz(m’k) as shown in Figure 1. The resulting partition of 2 is
denoted by Pj. Finally, we divide each prism into three tetrahedra as illustrated in
Figure 1 and denote this partition of ) into tetrahedra by 7},.

Let W, be the space of piecewise constants associated with Cj, and P, p be the
Lz-projection onto W, 5. To define our preconditioners, we introduce ap = Pcﬂh(fl
in the hybrid form (1.4) instead of oy = P,a~'. Obviously, Lemma 1 and Proposi-
tion 2 are still valid for this modification since 7;, is a refinement of C;,. With this
modification, a;l is a constant on cach cube. For notational convenience, we drop
the subscript h and simply write 04;1 =diag(a1, a2, a3).

Let AV}, be the nonconforming finite element space associated with 77 as defined in
(2.6), and let its dimension be N. All the unknowns on the faces of 9 are excluded.
For any function v, € Nj,. we denote by v € RY the corresponding vector of its
degrees of freedom. Introduce the inner product

(3.1) (u,v)n = h* Z up(pi)on(pi),  wn, v, € N,

p: €Ty

where the p;’s are the barycenters of the interior faces. By (2.8) the norm induced by
(3.1) is equivalent to the L?-norm on 0.

For each prism P = P78 ¢ Py, denote by ./\/.{ the subspace of the restriction
of the functions in A, onto P. For each v € N}f', we indicate by vp its corresponding
vector. The dimension of ./\/’,f) is denoted by N¥. Obviously, for a prism without faces
on Jf) its dimension is 10, i.c., NP =10.

The local stiffness matrix M T on prism P € Py, is given by

(3.2) (Mupvp)yr = 3 (03 Vun, Vou)z.
rcre

Then the global stiffness matrix is determined by assembling the local stiffness ma-
trices:

(3.3) (Mu,v)y = Z (MPup,vp)ye.
PeEPy

Now we consider a prism P of a cube that has no face on the boundary 92 and

enumerate the faces s;, 7 = 1,..., 10 of the tetrahedra in this prism as shown in
Figure 2. Then the local stiffness matrix of this prism has the following form:

as 0 0 0 0 0 0 0 —as 0
0 al 0 0 0 0 0 0 0 —ai
0 0 ay 0 0 0 —a; 0 0 0
0 0 0 as 0 0 0 —as 0 0
MP = & 0 0 0 0 as 0 0 0 —as 0
2 0 0 0 0 0 as 0 0 0 —ag
0 0 —a1 0 0 0| a1 + a2 0 —a2 0
0 0 0 —as 0 0 0 a1 + as 0 —ay
—as 0 0 0 —as 0 —as 0 2(az + as) —as
L —a1 0 0 0 —as 0 —al —as 2((11 =+ a,3) i
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FIGURE 1. The partition of a cube into prisms and tetrahedra.

which we write as

(3.4) M*F

_3h | My My
2 | My My |7

Along with matrix M we also introduce the matrix B” defined on the same space

NP:

3h Mll Mlg
3.5 B == ,
(3:5) 2 { M>1 Bao
where
a1 + ao + b —b — Q2 0
By — —b a1 +as + b 0 —aq
2= —as 0 2a9 + a3 0
0 —aq 0 2a1 + as

with some parameter b to be specified later.

Proposition 3. It holds that
kerM P = kerBF.
PROOF. It is easy to see from the definitions of M and B that

kerM? = kerBT = {v = (v1,vq,- ,fulg)T eRY v, =v,i=2,-, 10}. O
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T
((‘1) Pl
§1 = (154-3) §3 = (1-255) §5 = (1-253) sT = (2-553) s9 = (1-553)
§2 = (154-5) S4 = (3547 6) 56 = (4-556) §8 = (3-556) $10 = (3-455)
4
4
6 5

3 2
3 2
(b) Pg
§1 = (253-5) §3 = (1-254) §5 = (1-253) sT = (1-354) s9 = (2-354)
s2 =(2,4,5) s4=1(3,5,6) s6=1(4.5,6) s3=(3,4,6) s10=1(3.4,5)

FIGURE 2. A local enumeration of faces in a prism.

Remark. If the prism P € Pj, has a face on 99, then the matrix M does not
have the rows and columns which correspond to the nodes on that face, and the
modification of Bas is obvious.
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We now define the N x N matrix B by the following equality:

(Bu,v)y = Z (BPu,pJJP)Nm Yu,v € RN,
repy,

Since the matrix B is used for preconditioning the original problem (2.4), it is
important to estimate the condition number of B~1M:

(3.6) Mu = pBu.

Lemma 4. Let pp satisfy the equality

(3.7) MPup = ppBTup, P e Py
Then we have
Mu,u . Mu.u .
(3.8) max M < max pup and min M > min pp.
(Bu,u)n#0 (B’LL, U)N PePy, (Bu,u)n 20 (BU, ’LL)N PePy,

PROOF. For cach P € Py, it follows from (3.7) that
(MPup.up)yr = ,u,p(BPuP,uP)Nv.
It then follows from the fact that all local stiffness matrices are nonnegative that
Z (MPup.up)yr = Z pwp(BPup,up)yr
Pepy, PeP,

max jip E (BPup.up)yr.
4 PePy

IN

Hence from the definitions of M and B, we see that

Mu,u)y < max pp(Bu,u)y.
(Mwu, )N_PephlP( ,U)N

Consequently, the first inequality in (3.8) is true. The same argument can be used to
show the second inequality. O
From Lemma 4, we sce that, to cstimate the condition number of B™1M, it
suffices to consider the local problem (3.7). Using a superelement analysis [23], to
estimate 117%@/3( pp and ;1&17131 pp, it suffices to treat the worst case where the prism
h h

P € P}, has no face on the boundary 9Q. From (3.4) and (3.5), a direct calculation
shows that the cigenvalue pp is within the interval [p,, ,U,}t], where

1 a3 a3 a3 das /b
3.9 F=cll+—+—=+ =) (11— .
( ) tp 2( +01+02+ b) ( \/ (1+03/01+03/02+03/b)2
We now consider two useful choices of b. The x below is given by
max {a—3 (1_3} < K.
PePr a1 a2

Theorem 5. The cigenvalues of problem (3.6) with the parameter b = as belong to
the wmterval

I:l—I—H—\/K,Z—‘rQH,,1—|—H,—|—\/K,2+2H,:|ﬁ
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and the condition number is thus estimated by
(:ond(B*lM) < 34 8k + 4k

If the parameterb is chosen by b~ = (Ll_l ‘|‘(L2_1 +a§1, then the eigenvalues of problem
(3.6) are within the interval

. B L _ 2K
(1+2x) (1 "/1+2H> s (1425) <1+ \/ 1+2“‘)] ’

and the condition number is then estimated as follows:

cond(B1M) < 3 + 8x.

PrROOF. We only prove the case where b = a3; the other choice can be shown with
the same argument. When b = ag, the ,u,]i3 can be written as

2
1 a a a as \ -
"=y 2+—3+—3¢\/<2+—3+—3> —4

a1 a9 a1 a9

Then we counsider the functions
1
fe(z) = 3 <wi Vw2 —4> , x> 2

Note that fi is a nondecreasing function and f_ is a nonincreasing function. Hence
the desired result follows from the definition of k. O

We stress that the condition number of the matrix B~ M is bounded by a con-
stant independent of the step size of the mesh h. Furthermore, the second choice of b
has a much better estimate of the condition number than the first choice. Hence only
the second choice will be considered in the following sections. Since we introduced a
two level subdivision, the matrix B can be referred to as a two level preconditioner.

3.2. Three level preconditioners. While the preconditioner B has good
properties, it is not economical to invert it. In this section we propose a modification
of the matrix B and consider its properties and computational scheme. Toward that
end, we divide all unknowns in the system into two groups:

1. The first group comnsists of all unknowns corresponding to faces of the prisms
in the partition Pp, excluding the faces on 9 (see Figure 2).

2. The second group consists of the unknowns corresponding to the faces of the
tetrahedra that are internal for each prism (these are faces sg and sip on
Figure 2).

This splitting of the space IRY induces the presentation of the vectors: v
(v1,v2), where v1 € R and Vg € R, Obviously, N7 = N — 4n3. Then the matrix
B can be presented in the following block form:

B11 Di»
D=
{ By1  Bao

T:

(3.10) } , dimBy; = Ny.

Denote now by Bll = DBy1 — B12B2_21 DBs1 the Schur complement of B obtained by
climination of the vector v5. Then By; = By1 + Blnglegl, so the matrix B has the
form

(3.11) B = [ Bii + Bi2Byy' Boy - B } .

By B
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Note that for each prism P € P, the unknowns on the faces sg and s1g (see Figure
2) are connected only with the unknowns associated with this prism and therefore can
be eliminated locally; that is, the matrix Bay is block diagonal with 2 X 2 blocks and
can be inverted locally (prism by prism). Thus matrix DBiy is easily computable. The
proposed modification of the matrix B in (3.11) is of the form

B By + B12By,'Ba1 B
DBy DBj2

where By is to be defined later.

3.2.1. Group partitioning of grid points. For the sake of simplicity of
representation of matrices and computational schemes we introduce the partitioning

of all nodes in 97, into the following three groups. Demnote by 55' ,J"]; ! the face of the

cube CU43%) with vertices r, [, m (sce Figure 3).

FIGURE 3. A cube CUH5F),

1. First, we group the nodes on the faces

3(21‘4'7.'5) and sy 557, 1,7,k =1,n;

we denote the unknowns at these nodes by VI,E”' ), L=1,2,4,5,k=1,n.
2. Second, we take the nodes on the faces perpendicular to the z, y, and z axes:

i) S5, S5 i=Zm k=T
we denote the unknowns at these nodes by me’j’k), { = 1.2, 7 = 2.n
7 k=T1n.
(i) 50, S j=2m k=T
we denote the unknowns at these nodes by Vyy’j’k), ¢t =1,2, 5 = 2,n
(iii) 5(1'215]‘) égl5jé) i,j=1,n k=2,n;
we denote the unknowns at these nodes by Vzgi"j’k), ¢ =1,2, 4,75 = 1,n
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3. Finally, we take the remaining nodes on the faces

, 5511578), 1,7, k=1,n;

(ig.k) p

we denote the unknowns at these nodes by VA, =1,4,4,73,k=1,n.
3.2.2. re
the left and right prisms P,E”""’), p = 1,2; see Figure 1. Below we skip the indices

‘(4,7. k)" and the superscript ‘P’ when no ambiguity occurs.

Three level preconditioners. We partition each cube C(%7F) into

In the local numeration (Figure 2) the matrices By and By corresponding to the
left and right prisms have the form (3.5). We rewrite these matrices in the above
group partitioning:

[ a1 +as+b —b —ay 0 0 0 0 0 —as 0 1
—b a1 +as+b 0 0 0 —a 0 0 0 —a;
—ay 0 ai 0 0 0 0 0 0 0
0 0 0 ai 0 0 0 0 0 —ay
By = 3_h 0 0 0 0 as 0 0 0 —as 0
2 0 —as 0 0 0 as 0 0 0 0
0 0 0 0 0 0 as 0 —as 0
0 0 0 0 0 0 0 as 0 —as
—as 0 0 0 —ao 0 —as 0| 2as + as 0
L 0 —al 0 —ai 0 0 0 —as 0 2a; + as |
[ a1 +ax+b —-b 0 0 —ao 0 0 0 —al 0 T
—b a1 +as+b 0 —a 0 0 0 0 0 —as
0 0 ai 0 0 0 0 0 —ai 0
0 —ay 0 ai 0 0 0 0 0 0
By = 3_h —as 0 0 0 as 0 0 0 0 0
2 0 0 0 0 0 as 0 0 0 —as
0 0 0 0 0 0 ag 0 —ag 0
0 0 0 0 0 0 0 as 0 —as
—ai 0 —ai 0 0 0 —as 0| 2a1 +as 0
L 0 —a2 0 0 0 —ao 0 —as 0 2a3 + as |

The partitioning of nodes into the above three groups induces the following block
forms of the matrices B, p =1,2:

D11y

3.12
( ) BZl,'p

B12JJ :| , p= 1.’2.’

B, =

P |: BZQ,'[)
where the blocks Bjj ,, correspond to the unknowns of the last group and the blocks
DBy correspond to the unknowns of the first and second groups.

We eliminate the unknowns of the last group from each matrix B, p = 1,2, which
is done locally on each prism. Then we get the matrices

Bi1p = Bi1p — BiapBss By, p=12,
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where

3h

—1
Bi21Byy 1B211 =

and a similar form holds for B12,2B2_212B21,2.

13

2 2
2a ga -T— as 0 0 0 2a ga —T— as 0 2 ((4122 _(1‘_;51 3 0
- a? . a? . " L aya:
() 2ay ;—u»; () 2ay ;—(Lr; () () () 2a :ﬂ—?m
0 0 0 0 0 0 0 0
. a? . a? " " " aya:
()2 2aq -;-(1,3 0 2aq —;—(4,3 ()2 0 0 2(4,11—1—?4,3
a0 |0 0 gm0 gmes 0
0 0 0 0 0 3 0 0
i . . Qo e " a2 .
—2;ji‘;5 0 0 0 2:;?;; 0 %er% ()2
aqas aq s %
0 2(4,1I+P(£1,3 0 2(4,1I+r(‘4,3 0 0 0 2aq —Pls—a,_r; i

Following [18], we introduce on each prism the following modification of the ma-

trices By p:

M a1 +as+ b+ s —-b —al 0 —a2 0 —52/2 —52/2
—b ar + as + b+ s 0 —ay 0 —ay  —s1/2 —51/2
—ay 0 ay 0 0 0 0 0
3h 0 —ay 0 ay 0 0 0 0
By = 2 —as 0 0 0 a O 0 0
2 0 —as 0 0 0 a 0 0
—55)2 —51/2 o o o o = ;52 0
I —52/2 —51/2 O 0 0 0 0 Sk ;52
with some parameters s; and sg.
Proposition 6. The matrices Bi1,, p = 1,2, and By have the same kernel, v.e.,
kCl’BH’p = kerBy.
PROOF. It can be easily checked that
kelﬁll,p =kerBy = {v = (v1. 02, -+, v3)T € Ré:v,=uv1,i=2,--, 81, p=1,2

We now consider the eigenvalue problem

(3.13)

Bi1 pu = pBou,

with the following choices of s1 and ss.
Proposition 7. For the case where s; = 2a,a3/(2a; + a3), i = 1,2, the eigenvalues
of problem (3.13) belong to the interval

|

34+ 2k
44 2k

1

V3

ue RS,

3+ 2k

"4 42k

p=12,

(1+

)

If we choose s; = max{a;, a3z}, i = 1,2, the eigenvalues of problem (3.13) are within

the interval

|

3+ K
4+ 2k
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Both cases have the same estimate of the condition number

(;ond(BO*lBen,,,) <24+ V3.

PROOF. A direct calculation shows that p € [, ut] where

i 2a 3/(aisi) + 2a3/si \
4T = 1min B 1+(L—3+ @ 1—4/1— a3 /(aisi) + 203 /5 1=1,25,
da; + 2as a; S; 1+ as/a; + 2a3/s;

and
3 2a 2/(a;s;) + 2a3/s; ,
,U,+:III'(1,X v 1+a—3+ “ 1+ 1—03/(0'§’)+ ag/s’, 1 =1.25.
4a; + 2as a; 55 1+ as/a; + 2a3/s;
With s; = 2a;a3/(2a; + a3), i = 1,2, and the definition of &, it can be seen as in

Theorem 5 that

44 2k 34 2k

- - 2
> 3+ 2k (1_’\/1_2%—3}1,/2—%/\, /2)

and

44 2k 342k

342k 24+ 3k/2+ kK2/2
s +h<1+¢l_w>_

Note that

1 2+ 3k/2+ K%/2 < 1”
3+ 2k -3
so that the first case follows. The same argument applies to the second case. O

Now we define a new matrix on each prism:

- By + B2 yBy'  Ba1, Biay
3.14 B, = - P22,p P P ,
( ) ? BZl,'p BZQ,'[) /

p=12.
As remarked before, in the case where a cube C' has nonempty intersection with
011, the matrices By, Bi2p, and Bag 5, p = 1,2, do not have the rows and columns
corresponding to the nodes on the boundary.

For each prismm P € Pj, we now cousider the eigenvalue problem:

(3.15) BPu = puBfu,

where BT = BIJ: is defined in (3.12) and B = BIJ: in (3.14), p = 1,2. Below we only
consider the simpler choice: s; = max{a;, a3}, i = 1,2.
Proposition 8. The eigenvalues of problem (3.15) belong to the interval

3+~ 1 3+ kK 1

1 —), 28 1y —
4-|—2I£( \/§)4+2/c( +\/§

Moreover, on each prism P € Py, the eigenvalues of the problem

)

(3.16) MPy= ,LLBPU,
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are within the interval [p—, pi4]. where

2K 3+ r 1
iy =(1+2r) |14/ — )| —— 1+ — | .
p = (14 h)< 1-|—2I£> 4-|—2I£( \/§)

PrOOF. The first statement follows directly from Proposition 7, and the second one
then follows from Theorem 5. O
Now we define the symmetric positive-definite N7 x Ny matrix By by

(Bouy,v1) = Z (Bou1,p,v1.p),
PePy

N . . .. .
where v1,u; € R™, and u; p and vy p are their respective restrictions on the prism
P. Asin (3.11), we introduce the matrix

(3.17) B = [ BO +B12B231B21 B } .

B DBy DBj2

Using Proposition 8 and the same proof as in Theorem 5, we have the following
theorem.

Theorem 9. The matriz B defined in (3.17) s spectrally equivalent to the matriz
M, i.e.,

wsB < M < p*B.
Moreover,
(3.18) cond(BIM) <= p* /e < (3+8k)(2+V3).

Instead of the matrix B in the form (3.11) we take the matrix B in (3.17) as a
preconditioner for the matrix M. Because we have introduced a two-level subdivision
of the matrix Bg, the matrix B can be considered as a three-level preconditioner.

As we noted earlier, the matrix Bsy is block-diagonal and can be inverted locally
on prisms. So we concentrate on the linear system

(3.19) Bou=G.
In terms of the group partitioning in §3.2.1, the matrix By has the block form

- Cn C
520 Bo=|an an

where the block Csy corresponds to the nodes from the second group, which are on
the faces of tetrahedra perpendicular to the coordinate axes. From the definition of
By, it can be seen that the matrix Cag is diagonal. In the above partitioning, we
present «w and G in (3.19) in the form

o U1 o Gl
(3.21) u-{uz]ﬁ G_[Gg]'

Then, after elimination of the second group of unknowns:

us = C' (G2 — Carur),
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we get the system of linear equations
¢ Y Y Y*l Y Y 71 p— ~
(322) (611 - 612622 Czl)ul = Gl - 612022 Gz = Gl,
where the vector u; and the block Ci; correspond to the unknowns from the first
group, which have only two unknowns per each cube. The dimension of vectors wuy
and G7 is equal to
(3.23) dim(uy) = 2n3.
The above simplification of (3.19) is carried out in detail in the next section.

3.2.3. Computational scheme. We now consider the computational scheme
for (3.19). In terms of the unknowns introduced in §3.2.1:

u[tgi’j’k)ﬁ GIe(/"”j’k)ﬁ L=1,2, 4,j,k=1n,

qu(,@/"”j’k), G;L'y’j’k), L=1,2, ©=2mn, i k=1mn,
uyy’j’k), qugi’j’k"), L=1,2, j7=2,n, i, k=1,n,
w2l R GHPR L e=12, k=2m,  ij=Tn,

the system (3.19) with a(z) = 1 can be written as

1 { 20 —2

5| 2 90 ] wl7F) — (1- 51-1)11‘;5(1"71"47‘""’) —(1- 6117L)'L4w(i*'7*k)

3

—(1 = 650)uy IR — (1 = 6 Juy TP

(3.24)
—(1—¢6p1)3 [ i 1 ]uz(m,kl) (1= ) { 1 i :|uz(i,j,k)
= 2GI6 k=T,
and
DGR RO B (e R SRO RN (O N B %Gw(m’“), =TT k=T
2uyiR) — [ CITIE) 000 = 2y G =T =T, 0k = Ton,
(3.25)

2u 00 — 1 { i i }UI(MJ«H) ! [ i 1 ]M(vi,j,k) = 2GRl

k=1n-1, ,j=1mn,

where 6;; (the Kronecker symbol) is introduced to take into account the Dirichlet
boundary conditions. Eliminating unknowns u;L'f,{"’j ’k), 'LLqu’"J’k), uzé/"’] ’k), L =1,2,

from equations (3.24), we obtain the block “seven-point” scheme with 2 x 2-blocks for
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the unknowns '11,16(1'"‘7’16), £=1,2,4,7,k=1,n. From (3.25) we have

. 1/ 2 . 1 o 1 .
ap(Bdk) — Z (2.9.k) =, 7(i+1,5.k) =, 7(i,9.k)
U > <_3h> G + 2uI + 2uI ,

i=1n—-1, jk=1,n,

—_

” 2 P D P,
uy(z,],k) — (ﬁ) Gy(z,a-,k) + iu‘I(erLk) + 5“‘1(1"7”&)*

N}

(3.26)
j=1,n—-1, i k=1n,

- 1/ 2 ik 1 Pt
uzliik) — 2 (E) G lhik) 4 I [ 1 . } ] Ced k1)

“ 1]M(¢,,-,k>_’ k=Tn—1 ij=Ln

[\
—_

_|_

N

1
Substituting (3.26) into (3.24), we sec that

[ 20 -2
3 -2 20

} wl R (1= 6,y)1 (ul(i—l,j,k:) +M(¢,j,k:)>

(3.27) _

—(1=68jn)3 <uI(l JHLE) 4 U3

—(l—ékl)% { 1 1 } <uf(”k 1)—|—uI(”k)>

1| 11 (4.5.k+1) (i.5.F) Ggk) i s

—(1 = bkn) g 11 <'11,I + ul'" ) =g\Wr g 5 k=1,n,
where

(](i,j,l\) _ %{ GI(IJ]-) + (1 _ (Sil)%Gm(i—l,j,k:) + (1 _ (si”")%Gm(i,j,k)

(1= 8;0) 3Gy T (1= 6) 3 Gy TP

(3.28)

. 1 1 i b
+(1 —ém)% { 11 } Gk

N 11 .
+(1 - (5].;-'",)% { 11 } Gz(l,],k)}.

To solve system (3.27) we introduce the rotation matrix

-5 1]
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and the new vectors v(H3:5) = ('Ugi’j’k), 'Ug"j"k))T, i,7,k =1,n, given by

(3.29) VIR = @ Ly IR, 2,5,k =1,n.

Then multiplying both sides of the matrix equation (3.27) by the matrix () and using
the relation

(3.30) wIWR) = QT 3k i =T,

we obtain the following problem for the unknowns v(%3:%):

6 0 ) o .
\(4,7,k) 5L (pi=1,0k) 4 (i.5,k)
[ 0 22/3 } - (1 (51,1)2 ((, + v )

—(1— 5m)% (,(,,(11+17,7Ak) + U(am))
—(1 = 6;1)% (00710 4y (03:8))
(3.31) (1= 8ju)} (TR 4 li30))

1
-(1- 5’\'71)% [ 0

o o

] (fU(/i,,j,k:—l) _~_7/,(7:,j,k-))

o o

(1= )2 [ ! ] (olia4+1) 4 o 5))

= (\2 : g(l7k) = g(,L?k)» Z.yw k= m

It is easy to see that problem (3.31) can be decomposed into the following two inde-
pendent problems:

60! (4,3,k) —(1- (511) < g:—l,j,k;) + 'UY’j’k)>

(i+1.5.k)

ol (4.7,k)

—(1 = i) + v

—(1—0;1)

[N T

(4,9—1,k) +L(’J’\)

Uy

U17+1k (17k

[ eI

)

(3.32) —(1 = 6;n) ( )
—(1—6k1) %(l}'JL D ('”‘)>
( ) =i

IJ]\

N

- k+1) k)
_(1_bkn% U'J + t 'J

i,j, k=1 n,
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and
%”gi’j’k) —(1-64)k <'Ug"'_l’j”"’) + Ué’%i&))
—(1- 5m)% (’Ué”l’j’k) + 'Uéi"j"k)>

(3.33) —(1- (53‘1)% <'U§1 LR S ‘M))
(1= b} (s ) = ot

i j=Tm Yk=Tm

That is, we reduced the linear system (3.31) of dimension (21%) to one linear system of
equations (3.32) of dimension n® and n linear systems of equations (3.33) of dimension
n?. For all these problems the method of separation of variables can be used, as shown
in (3.36) and (3.38) below.

After we find the solution of these problems we casily retrieve vectors ul (
using the relations (3.30).

0:7:k) by

3.2.4. A method of separation of variables. In this section we consider
a method of separation of variables for solving problems (3.32) and (3.33). Problem
(3.32) can be represented in the form

(3.34) C®u =g, o1, i €R™,
where
C®=Coolh@ly+Ih®Co@Iy+ 1 ® I & Co.

Iy is the (n x n)-identity matrix, ® denotes the tensor product of matrices, and Cy
takes the form
3 -1
-1 2 -1

NN

-1 2 -1
-1 3

If Cy is factorized by

Co = QoMo Q7 ,

where Ag is an (n X n)-diagonal matrix and @ is an (n X n)-orthogonal matrix
(Qal = Q7), then the matrix C'®) can be rewritten as follows:

C®) = QBIABIQB),
where
QB = Qo ® Qo ® Q.

AC =A@ LRIy +TIh @A ® Ty + Iy @ Iy @ Ag.
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Note that Q) is an (n® x n?)-orthogonal matrix and A®) s an (n® x n3)-diagonal

matrix. We can now use the following method to solve the system (3.32):
5 T .
(1) fir=(Q9) g
(3.36) (2) A®w = f,

(3) v = QWWw.
The same argument can be exploited to solve (3.33). Problem (3.33) can be
rewritten as
(3.37) C Py = g, vy, Go € R,
where
C® = Ky ® Iy + Ir ® K.
and the (n X n)-matrix Ky is given by
19 -3
. -3 16 -3
KO = E ., -,
-3 16 -3
-3 19
Again, if we write K as
Ky = RyDoRY,
where Dy is an (n x n)-diagonal matrix and Ry is an (n x n)-orthogonal matrix, we
can rewrite the matrix C(?) as follows:
c® = QIA@ Q™"
where Q2) = Ry @ Ry and A = Dy @ Iy + Iy ® Dy. Then the system (3.33) can be

solved with the following method:

(1) fa = (Q®) g,
(3.38) (2) APw = f,

(3) vy = QPw.

3.2.5. Preconditioned conjugate gradient method. We now solve system

(2.4) by a three-step preconditioned conjugate gradient method in the following form:
Given A™1 A0 e RY, find M, k=1.2,---, K., such that

(3.39) AR — 3k [B_lf" — ANk — /\“_1)] ,
qk
where
& = MIN-F
I B~ e I3,
@w = —agm — de-1,
1€-(1% -
4 - ¥ 1%

g ——.
T2,
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Theorem 10. The number of operations for solving system (2.4) by method (3.39)
with the matriz B defined in (3.17) and with accuracy € in the sense

(3.40) IMEHT A Jlar < €A = Ml 0<e< 1,

15 estimated by ON*%/31n (%) where \* = M 1F, A0 ¢ RY is any nitial vector, and
the constant @ > 0 does not depend on N.

PROOF. It is known [21] that for a given € > 0, to achieve the accuracy (3.40) the
number of iterations K. can be estimated by the inequality

K. < In (6/2),
"7 Ing,

where ¢, = (VE—1)/(VE+1) and 7 is defined in (3.18). Thus it is easy to see
that the arithmetical cost of the procedure (3.39) for solving (2.4) is approximately
(In(€/2)/In g, ) times the cost per iteration. The cost per iteration is O(N*/3) by the
method of separation of variables (3.36) and (3.38), so the desired result follows from
Theorem 9. O

4. Preconditioners for a general case. In this section we consider the case
where the coefficient @ is a full tensor and the domain {2 satisfies the assumption that
there is an orientation-preserving smooth mapping £ from the unit cube Q) outo Q
and there are positive constants » and Q such that

(4.1) YT (@) £Q  Vee,

and

(42) T @l <e vreo.

where J(x) is the Jacobian matrix of £ at x and | - || denotes the matrix 2-norm.

Note that the domain € is of size r.
Next, we consider the definition of the nonconforming finite element space. Let
Cj,» P;,, and 7, be the partitions of © into cubes, prisms, and tetrahedra, respectively,

associated with the mesh size iL, as defined in §3.1, and let N} be the P; nonconforming

space associated with 7, as given in (2.6). Set h = rh and define
Nh: {(p:’t[)oﬁ_l :’t/JE./\[}AL}.

Also, we introduce the mapping 7 : Nj, — N defined by Zv = v o L.
We now define the stiffness matrix M on the domain 2 by

(43) (M'U'w 71)]\7 = a’h.(“h: (Uh,)w vﬂ/h.: Up € '/\/’h.w
where
an(Un,vn) = drer, (e 'V un, Vou)r
(4.4)
= ZTGT,; (|det(j)|o¢,71j71VIuh, T INVTup) 7.

where |det(.7)| is the Jacobian of the mapping.
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For cach cube C' € Cj,, we introduce the diagonal matrix ozal =diag{a1,c, a2,c,a3,c}
with some as yet unspecified constants a; ¢, 2 = 1,2,3. Then we define

(4.5) br(up, vp) = Z Sc Z (0451Vuh, Vur)r | Yy, vn, € N,
cecy, TeC

where the constants ¢ are scaling factors. One reasonable choice is to take 6¢ =
(M, + Xo,c)/2, where A ¢ and X ¢ are the largest and smallest eigenvalues of the
eigenvalue problem

(4.6) (};1(.770)71 = Acacv, veIR?,

where &, ' = |det(J)| (jfl)Ta,jlj*l and xy € L£(C) C Q is some point. Note
that the assumptions (4.1) and (4.2) imply that there are two constants Qy and Q;
independent of r and h such that

(4.7) Qoap (up, up) < rop(Tup, Tup) < Qrap(up, up), Yup, € Ny.
We consider two useful choices of the matrix 0451:
1. 0451 =1, VC € Cp, i.e., the matrix aal is the identity matrix.

2. ozal :diag{&;l(mo)}, YC € Cp, i.c., the matrix 0151 is the diagonal part of
dy, H(wo) at some point zg € L(C).
Note that in both cases the constants Qp and Qp in (4.7) ouly depend on the local
variation of the coefficients { (dzgl) 0l } Hence the problem of defining a preconditioner
for apn(-.-) is reduced to the problem of finding a preconditioner for rby(-,-), which
has a diagonal coeflicient tensor and is defined on the unit cube Q. Namely, all the
analyses in §3 can be carried out here.

5. Results of the numerical experiments. In this section the method
(3.39) is tested on the model problem

3

-2 3(3, (U, 5’}‘) =f in €,
=1 '

uw=0 on 0.

We present two numerical examples. In the first example, the domain 2 is the unit
cube: Q = (0,1)3. The domain is divided into n® cubes (n in each direction) and each
cube is partitioned into 6 tetrahedra. The dimension of the original algebraic system
is N = 12n® — 6n2. The right hand side is generated randomly, and the accuracy
parameter is taken as ¢ = 1076, The condition number of the matrix B~1M is
calculated by the relation between the conjugate gradient and Lanczos algorithms [21].
The coefficients a;, ¢+ = 1,2, 3, are constants on each cube. The results are summarized
in Table 1, where Iter and Cond denote the iteration number and condition number,
respectively.

From Table 1 we see that the condition number depends on the maximal ratio

Kk = max {3—1‘ Z—;} The case of k < 1 has a better convergence than the case of the
e TR :

Poisson equation (i.e., a; = as = ag = 1).

In the second example we treat the Poisson equation on the domain  as shown
in Figure 4. The domain is subdivided into 90 x 90 x 10 cubes and the number of
unknowns is then N = 955440. This problem is solved with accuracy ¢ = 107°.
Twenty iterations are needed to achieve the desired accuracy, and the computed
condition number of the matrix B~1M is equal to ten.
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Table 1
N =47, 616 N = 387, 072
a1 s as Tter Cond Tter Cond
1 1 1 18 7.5 17 7.6
1 1 0.1 13 3.7 13 3.8
1 1 0.01 10 2.8 11 3.0
10 1 1 16 6 16 6.2
1 10 1
100 1 1 14 4.7 14 5.2
1 100 1
1 1 10 34 41 34 42
1 1 100 75 315 80 328
0.1 1 1 32 30 31 29
1 0.1 1
0.01 1 1 68 198 72 203
1 0.01 1
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