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Abstract� A new approach of constructing algebraic multilevel preconditioners for mixed �nite
element methods for second order elliptic problems with tensor coe�cients on general geometry is
proposed� The linear system arising from the mixed methods is �rst algebraically condensed to a
symmetric� positive de�nite system for Lagrange multipliers� which corresponds to a linear system
generated by standard nonconforming �nite element methods� Algebraic multilevel preconditioners
are then constructed for this system based on a triangulation of parallelepipeds into tetrahedral
substructures� Explicit estimates of condition numbers and simple computational schemes are es�
tablished for the constructed preconditioners� Finally� numerical results for the mixed �nite element
methods are presented to illustrate the present theory�
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�� Introduction� Let � be a bounded domain in IRd� d � � or �� with the
polygonal boundary ��� We consider the elliptic problem

�����
�r � �aru� � f in ��
u � 	 on ���

where a�x� is a uniformly positive de
nite� bounded� symmetric tensor and f�x� �
L���� �Hk��� � W k����� is the Sobolev space of k di�erentiable functions in L������
Let � � � � �S denote the L��S� inner product �we omit S if S � ��� and let

V � H�div� �� �
�
v � �L����

�d
 r � v � L����

�
�

W � L�����

Then ����� is formulated in the following mixed form for the pair ��� u� � V �W 

�����
�r � ��w� � �f� w�� �w � W�
�a���� v�� �u�r � v� � 	� �v � V�

It can be easily seen that ����� is equivalent to ����� through the relation

� � �aru�
To de
ne a 
nite element method� we need a partition Th of � into elements T �

say� simplexes� rectangular parallelepipeds� and�or prisms� In Th� we also need that
adjacent elements completely share their common edge or face� let �Th denote the set
of all interior edges �d � �� or faces �d � �� e of Th�

Let Vh�Wh � V �W denote some standard mixed 
nite element space for second
order elliptic problems de
ned over Th �see� e�g�� ���� ���� ��	�� ����� ����� ����� ��	�� and
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������ This space is 
nite dimensional and de
ned locally on each element T � Th�
so let Vh�T � � VhjT and Wh�T � � WhjT � Then the mixed 
nite element method for
����� is to 
nd ��h� uh� � Vh �Wh

�����
�r � �h� w� � �f� w�� �w �Wh�
�a���h� v�� �uh�r � v� � 	� �v � Vh�

It has been known that� due to its saddle point property� it is di�cult to solve
the linear system arising from ������ In particular� it is hard to construct e�cient
preconditioners for the mixed method system� While some preconditioning algorithms
for solving the saddle point system have been proposed and studied �see� e�g�� ���� ����
����� ��	�� ����� ������ their e�ciency strongly depends on the geometry of the domain�
the coe�cient matrix a�x�� and the type of 
nite elements exploited� Especially�
the preconditioners in these papers can be very expensive to obtain� An alternate
approach was suggested by means of a nonmixed formulation� Namely� it is shown that
the mixed 
nite element method is equivalent to a modi
cation of the nonconforming
Galerkin method ���� ���� ����� ����� The nonconforming method yields a symmetric
and positive de
nite problem �i�e�� a minimization problem�� This is explained below
and in the next section in detail�

The constraint Vh � V says that the normal components of the members of Vh
are continuous across the interior boundaries in �Th� Following ���� we relax this
constraint on Vh by de
ning

�Vh � fv � L����  vjT � Vh�T � for each T � Thg�

We then need to introduce Lagrange multipliers to enforce the required continuity on
�Vh� so de
ne

Lh �

�
� � L�

� �
e��Th

e

�
 �je � Vh � �je for each e � �Th

�
�

where � is the unit normal to e� Also� to establish a relationship between the mixed
method and the nonconforming Galerkin method and to construct e�cient precondi�
tioners� following ���� we introduce the projection of the coe�cient� i�e�� �h � Pha

���
where Ph is the L��projection onto Wh� Then the hybrid form of the mixed method
for ����� is to 
nd ��h� uh� �h� � �Vh �Wh � Lh such that

�����

P
T�Th

�r � �h� w�T � �f� w�� �w �Wh�

��h�h� v��PT�Th

	
�uh�r � v�T � ��h� v � �T ��Tn��



� 	� �v � �Vh�

P
T�Th

��h � �T � ���Tn�� � 	� �� � Lh�

Note that the last equation in ����� enforces the continuity requirement mentioned
above� so in fact �h � Vh� In ���� ���� ����� and ����� it was shown that the solution
to ����� can be obtained from a certain modi
ed nonconforming Galerkin method
by means of augmenting the latter with bubble functions� In this paper� following
���� and ����� we show that the linear system generated by ����� can be algebraically
condensed to a symmetric� positive de
nite system for the Lagrange multiplier �h� It is
then shown that this linear system can be obtained from the standard nonconforming
Galerkin method without using any bubbles�
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The main objective of this paper is to construct algebraic multilevel precondi�
tioners for the mixed 
nite element method� We 
rst use the above equivalence to
construct multilevel preconditioners for the linear system for the Lagrange multipliers�
Then the mixed method solutions �h and uh are recovered via these multipliers�

The construction of multilevel preconditioners for the mixed methods is inspired
by the fundamental work ���� ����� where new systematic representations for precon�
ditioners in the Neumann�Dirichlet domain decomposition methods for conforming

nite elements were suggested� The multilevel domain decomposition versions of
these methods were outlined in detail in ����� ���� and their multigrid versions were
described in ����� ���� for model elliptic equations� In addition� the superelement ap�
proach used here to estimate condition numbers for two level methods is based on
that used in ���� ���� ����� ����� and �����

This paper uni
es and re
nes the results previously announced in ���� and �����
Brie�y� the approach used to construct preconditioners includes two main stages�
First� using the idea of partitioning �decomposing� a parallelepiped grid into tetra�
hedral substructures a two�level preconditioner is constructed for a block ���point�
algebraic system with ��� blocks on the coarse level� and the condition number of the
preconditioned matrix is estimated� A detailed description of procedures to construct
such preconditioners for parallelepiped grids can be found in ����� ����� ����� and �����
The explicit bounds of spectrum of the preconditioned matrix are obtained with help
of the superelement approach ����� �����

On the second stage� introducing a special rotation we reduce the above block
��point algebraic system to a series of plane problems and an exact ��point�scheme
problem with one unknown per parallelepiped� The constructed preconditioners are
spectrally equivalent to the original sti�ness matrix and their arithmetic cost depends
on the method of solving the ��point problem on the coarsest level� In our implemen�
tation we use a method of separation of variables although some variants of multigrid
methods or domain decomposition techniques can be used� Explicit estimates of con�
dition numbers are obtained for these multilevel preconditioners� A computational
scheme for implementing these preconditioners is also considered� and a three�step
preconditioned conjugate gradient method using the present technique is described as
well�

The case where a�x� is a diagonal tensor and � is a regular parallelepiped is 
rst
analyzed in detail for the multilevel preconditioners� Then the analysis is extended to
the case in which a�x� is a full tensor and � is a rather general domain� Throughout
this paper� only the three�dimensional problem is discussed� the two�dimensional case
is treated as a special case of the present technique�

The rest of the paper is organized as follows� In the next section we consider an
elimination procedure for ������ Then� in x� we develop multilevel preconditioners for
the resulting linear system� In x�� we consider arbitrary tetrahedral meshes and full
tensors� Finally� in x� extensive numerical results are presented for both regular and
logical parallelepipeds to illustrate the present theory�

�� The mixed �nite element method� We now consider the most useful
partition Th of � into tetrahedra� The lowest�order Raviart�Thomas�Nedelec space
����� ���� de
ned over T � Th is given by

Vh�T � �
�
P��T �

�� � ��x� y� z�P��T �
�
�

Wh�T � � P��T ��
Lh�e� � P��e��
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where Pi�T � is the restriction of the set of all polynomials of total degree not bigger
than i � 	 to the set T � Th� For each T in Th� let

fT �
�

jT j�f� ��T �

where jT j denotes the volume of T � Also� set �h � ��ij� and �hjT � ��T�� �T�� �T�� �
�q�T � tTx� q

�
T � tT y� q

�
T � tT z�� Then� by the 
rst equation of ������ it follows that

����� tT � fT ���

Now� take v � ��� 	� 	� in T and v � 	 elsewhere� v � �	� �� 	� in T and v � 	
elsewhere� and v � �	� 	� �� in T and v � 	 elsewhere� respectively� in the second
equation of ����� to obtain

����� �
P�

i�� �ji�Ti� ��T �
P�

i�� jeiT j�i�j�T �hjei
T

� 	� j � �� �� ��

where jeiT j is the area of the face eiT � and �iT � ��
i���
T � �

i���
T � �

i���
T �� Let 	T � �	Tij� �

���ij� ��T ���� Then ����� can be solved for qjT 

�����

qjT � �P�
i�� jeiT j�	Tj��i���T � 	Tj��

i���
T � 	Tj��

i���
T ��hjei

T

� fT
� �
P�

i�� 	
T
ji��i�x� �i�y � �i�z�� ��T � j � �� �� ��

Let the basis in Lh be chosen as usual� Namely� take � � � on one face and � � 	
elsewhere in the last equation of ������ Then� apply ����� and ����� to see that the
contributions of the tetrahedron T to the sti�ness matrix and the right�hand side are

mT
ij � �iT	

T�jT � F T
i � � �JfT � �

i
T �T

jT j � �JfT � �
i
T �ei

T
� T � Th�

where �iT � jeiT j�iT and JfT � fT �x� y� z���� Hence we obtain the system for �h

����� M� � F�

After the computation of �h� we can recover �h via ����� and ������ Also� if uh is
required� it follows from the second equation of ����� that

uT �
�

�jT j

�
���h� �x� y� z��T �

�X
i��

�hjei
T

��x� y� z�� �iT �ei
T

�
� T � Th�

The above result is summarized in the following lemma�

Lemma �� Let

Mh�
� �� �
P

T�Th
�
� �T ��T	

T ��� �T ��T � 
� � � Lh�

Fh��� � �PT�Th
�
jT j�J

f � ��T � ��� �T ��T �
P

T�Th
��Jf � �T ��T � � � Lh�

where Jf is such that Jf jT � JfT � Then �h � Lh satis�es

����� Mh��h� �� � Fh���� �� � Lh�
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where

Lh � f� � Lh  �je � 	 for each e � ��g�

Note that there are at most seven nonzero entries per row in the sti�ness matrix
M � Also� it is easy to see that the matrix M is a symmetric and positive de
nite
matrix� moreover� if the angles of every T in Th are not bigger than ���� then it is an
M �matrix� Finally� ����� corresponds to the P� nonconforming 
nite element method
system� as described below� This equivalence is used to construct our multilevel
preconditioners later�

Let

�����
Nh � fv � L����  vjT � P��T �� �T � Th� v is continuous

at the barycenters of interior faces and
vanishes at the barycenters of faces on ��g�

Proposition �� Let fh � Phf � Then ����� corresponds to the linear system produced

by the problem� Find �h � Nh such that

����� ah��h� � � �fh� �� � � Nh�

where ah��h� � �
P

T�Th
����h r�h�r�T �

Proof� From the de
nition of the basis f�hi g of Nh� for each T � Th we have

�hi jT �
�

jT j�
i
T � ��x� y� z�� pl�� i �� l�

for some barycenter pl� Then� we see that

����h r�hi �r�hj �T � �iT	
T �jT �

which is mT
ij� Also� note that for any linear functions � and � on a tetrahedron T � Th

����� ��� ��T � �
� jT j

P�
i�� ��pi���pi��

where the pi�s are the barycenters of the faces of T � so that

F T
i � � �Jf

T
��iT �T
jT j � �JfT � �

i
T �ei

T

� � fT
� ��� �hi �T � jT jfT

�jei
T
j
��hi � ��ei

T

� fT
�
�� �hi

�
T
�

which is �fh� �
h
i �T � �

�� Multilevel preconditioners over a cube� In this section we consider
multilevel preconditioners for ����� based on partitioning regular parallelepipeds into
tetrahedral substructures� following the ideas in ���� and ����� Here we treat the case
where � is a unit cube and a�x� is a diagonal tensor� A general case is considered in
the next section�
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���� Two level preconditioners� Let Ch � fC�i�j�k�g be a partition of
� into uniform cubes with the length h � ��n� where �xi� yj� zk� is the right back
upper corner of the cube C�i�j�k�� Next� each cube C�i�j�k� is divided into two prisms

P� � P
�i�j�k�
� and P� � P

�i�j�k�
� as shown in Figure �� The resulting partition of � is

denoted by Ph� Finally� we divide each prism into three tetrahedra as illustrated in
Figure � and denote this partition of � into tetrahedra by Th�

Let Wc�h be the space of piecewise constants associated with Ch� and Pc�h be the
L��projection onto Wc�h� To de
ne our preconditioners� we introduce �h � Pc�ha

��

in the hybrid form ����� instead of �h � Pha
��� Obviously� Lemma � and Proposi�

tion � are still valid for this modi
cation since Th is a re
nement of Ch� With this
modi
cation� ���h is a constant on each cube� For notational convenience� we drop
the subscript h and simply write ���h �diag�a�� a�� a���

LetNh be the nonconforming 
nite element space associated with Th as de
ned in
������ and let its dimension be N � All the unknowns on the faces of �� are excluded�
For any function vh � Nh� we denote by v � IRN the corresponding vector of its
degrees of freedom� Introduce the inner product

����� �u� v�N � h�
X

pi��Th

uh�pi�vh�pi�� uh� vh � Nh�

where the pi�s are the barycenters of the interior faces� By ����� the norm induced by
����� is equivalent to the L��norm on ��

For each prism P � P �i�j�k� � Ph� denote by NP
h the subspace of the restriction

of the functions in Nh onto P � For each v � NP
h � we indicate by vP its corresponding

vector� The dimension of NP
h is denoted by NP � Obviously� for a prism without faces

on �� its dimension is �	� i�e�� NP � �	�

The local sti�ness matrix MP on prism P � Ph is given by

����� �MPuP � vP �NP �
X
T�P

����h ruh�rvh�T �

Then the global sti�ness matrix is determined by assembling the local sti�ness ma�
trices

����� �Mu� v�N �
X
P�Ph

�MPuP � vP �NP �

Now we consider a prism P of a cube that has no face on the boundary �� and
enumerate the faces sj � j � �� � � � � �	 of the tetrahedra in this prism as shown in
Figure �� Then the local sti�ness matrix of this prism has the following form

MP �
�h

�


�������������

a� � � � � � � � �a� �
� a� � � � � � � � �a�
� � a� � � � �a� � � �
� � � a� � � � �a� � �
� � � � a� � � � �a� �
� � � � � a� � � � �a�
� � �a� � � � a� � a� � �a� �
� � � �a� � � � a� � a� � �a�

�a� � � � �a� � �a� � ��a� � a�� �a�
� �a� � � � �a� � �a� �a� ��a� � a��

�
�������������
�
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Figure �� The partition of a cube into prisms and tetrahedra�

which we write as

����� MP �
�h

�

�
M�� M��

M�� M��

�
�

Along with matrix MP we also introduce the matrix BP de
ned on the same space
NP
h 

����� BP �
�h

�

�
M�� M��

M�� B��

�
�

where

B�� �


���
a� � a� � b �b �a� 	

�b a� � a� � b 	 �a�
�a� 	 �a� � a� 	

	 �a� 	 �a� � a�

�
��� �

with some parameter b to be speci
ed later�

Proposition �� It holds that

kerMP � kerBP �

Proof� It is easy to see from the de
nitions of MP and BP that

kerMP � kerBP � fv � �v�� v�� � � � � v���T � IR��  vi � v�� i � �� � � � � �	g� �



� Z� CHEN ET AL�

���
���

���
���

���

��
��
��

���
���

���
���

���


 	

�

�
�

�

��
��

��

��
��
��




�

�

�

�




���
���

���
���

���

��
��
��

� �

�

�

���
���

���
���

���

���
���

���
���

���

	

�

�

�

�



�
�
�
�
�
�
�
�
�


 	

�
�

	

�

��
��
��

���
���

���
��

�



	

�

���x

y

z

�a� P�

s� � �
� �� �� s� � �
� 	� �� s� � �
� 	� �� s� � �	� �� �� s� � �
� �� ��
s� � �
� �� �� s� � ��� �� �� s� � ��� �� �� s� � ��� �� �� s�	 � ��� �� ��

�
�
�
�
�
�
�
�
�

���
���

���
���

���

��
��

��

��
��

��


	�

�

��

�
�
�
�
�
�
�
�
�

	�

��

�




���
���

���
���

���

��
��

���

�

� �

���
���

���
���

���

���
���

���
���

���




�

�

�



�

��
��

��

��
��

��




	

�

�

	

�

������

��������



	�

�

���x

y

z

�b� P�

s� � �	� �� �� s� � �
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Figure �� A local enumeration of faces in a prism�

Remark� If the prism P � Ph has a face on ��� then the matrix MP does not
have the rows and columns which correspond to the nodes on that face� and the
modi
cation of B�� is obvious�
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We now de
ne the N �N matrix B by the following equality

�Bu� v�N �
X
P�Ph

�BPuP � vP �NP � �u� v � IRN �

Since the matrix B is used for preconditioning the original problem ������ it is
important to estimate the condition number of B��M 

����� Mu � �Bu�

Lemma �� Let �P satisfy the equality

����� MPuP � �PB
PuP � P � Ph�

Then we have

����� max
�Bu�u�N ���

�Mu� u�N
�Bu� u�N

	 max
P�Ph

�P and min
�Bu�u�N ���

�Mu� u�N
�Bu� u�N

� min
P�Ph

�P �

Proof� For each P � Ph� it follows from ����� that

�MPuP � uP �NP � �P �BPuP � uP �NP �

It then follows from the fact that all local sti�ness matrices are nonnegative thatX
P�Ph

�MPuP � uP �NP �
X
P�Ph

�P �BPuP � uP �NP

	 max
P�Ph

�P
X
P�Ph

�BPuP � uP �NP �

Hence from the de
nitions of M and B� we see that

�Mu� u�N 	 max
P�Ph

�P �Bu� u�N �

Consequently� the 
rst inequality in ����� is true� The same argument can be used to
show the second inequality� �

From Lemma �� we see that� to estimate the condition number of B��M � it
su�ces to consider the local problem ������ Using a superelement analysis ����� to
estimate max

P�Ph
�P and min

P�Ph
�P � it su�ces to treat the worst case where the prism

P � Ph has no face on the boundary ��� From ����� and ������ a direct calculation
shows that the eigenvalue �P is within the interval ���P � �

	
P �� where

����� ��P �
�

�

�
� �

a�
a�

�
a�
a�

�
a�
b

��
�


s
�� �a��b

�� � a��a� � a��a� � a��b��

�
�

We now consider two useful choices of b� The � below is given by

max
P�Ph

�
a�
a�
�
a�
a�

�
	 ��

Theorem �� The eigenvalues of problem ����� with the parameter b � a� belong to

the interval h
� � ��

p
�� � ��� � � � �

p
�� � ��

i
�
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and the condition number is thus estimated by

cond�B��M� 	 � � �� � ����

If the parameter b is chosen by b�� � a��� �a��� �a��� � then the eigenvalues of problem

����� are within the interval�
�� � ���

�
��

r
��

� � ��

�
� �� � ���

�
� �

r
��

� � ��

��
�

and the condition number is then estimated as follows�

cond�B��M� 	 � � ���

Proof� We only prove the case where b � a�� the other choice can be shown with
the same argument� When b � a�� the ��P can be written as

��P �
�

�

�
�� �

a�
a�

�
a�
a�


s�

� �
a�
a�

�
a�
a�

��

� �

�
A �

Then we consider the functions

f��x� �
�

�

�
x


p
x� � �

�
� x � ��

Note that f	 is a nondecreasing function and f� is a nonincreasing function� Hence
the desired result follows from the de
nition of �� �

We stress that the condition number of the matrix B��M is bounded by a con�
stant independent of the step size of the mesh h� Furthermore� the second choice of b
has a much better estimate of the condition number than the 
rst choice� Hence only
the second choice will be considered in the following sections� Since we introduced a
two level subdivision� the matrix B can be referred to as a two level preconditioner�

���� Three level preconditioners� While the preconditioner B has good
properties� it is not economical to invert it� In this section we propose a modi
cation
of the matrix B and consider its properties and computational scheme� Toward that
end� we divide all unknowns in the system into two groups

�� The 
rst group consists of all unknowns corresponding to faces of the prisms
in the partition Ph� excluding the faces on �� �see Figure ���

�� The second group consists of the unknowns corresponding to the faces of the
tetrahedra that are internal for each prism �these are faces s
 and s�� on
Figure ���

This splitting of the space IRN induces the presentation of the vectors vT �
�v�� v��� where v� � IRN� and v� � IRN� � Obviously� N� � N � �n�� Then the matrix
B can be presented in the following block form

����	� B �

�
B�� B��

B�� B��

�
� dimB�� � N��

Denote now by �B�� � B���B��B
��
�� B�� the Schur complement of B obtained by

elimination of the vector v�� Then B�� � �B�� �B��B
��
�� B��� so the matrix B has the

form

������ B �

�
�B�� � B��B

��
�� B�� B��

B�� B��

�
�
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Note that for each prism P � Ph the unknowns on the faces s
 and s�� �see Figure
�� are connected only with the unknowns associated with this prism and therefore can
be eliminated locally� that is� the matrix B�� is block diagonal with �� � blocks and
can be inverted locally �prism by prism�� Thus matrix �B�� is easily computable� The
proposed modi
cation of the matrix B in ������ is of the form

�B �

�
�B� � B��B

��
�� B�� B��

B�� B��

�
�

where �B� is to be de
ned later�

������ Group partitioning of grid points� For the sake of simplicity of
representation of matrices and computational schemes we introduce the partitioning

of all nodes in �Th into the following three groups� Denote by s
�i�j�k�
r�l�m the face of the

cube C�i�j�k� with vertices r� l�m �see Figure ���

�
�
�
�
�
�
�
�
�

�
�
�
��

�
�
�
��

�
�
�
��


 	

� �

� �

� 

�
��x

y

z

Figure �� A cube C�i�j�k��

�� First� we group the nodes on the faces

s
�i�j�k�
����� and s

�i�j�k�
����� � i� j� k � �� n�

we denote the unknowns at these nodes by V I
�i�j�k�
� � � � �� �� i� j� k � �� n�

�� Second� we take the nodes on the faces perpendicular to the x� y� and z axes

�i� s
�i�j�k�
����� � s

�i�j�k�
����� � i � �� n� j� k � �� n�

we denote the unknowns at these nodes by V x
�i�j�k�
� � � � �� �� i � �� n�

j� k � �� n�

�ii� s
�i�j�k�
����� � s

�i�j�k�
����� � j � �� n� i� k � �� n�

we denote the unknowns at these nodes by V y
�i�j�k�
� � � � �� �� j � �� n�

i� k � �� n�

�iii� s
�i�j�k�
����� � s

�i�j�k�
���� � i� j � �� n� k � �� n�

we denote the unknowns at these nodes by V z
�i�j�k�
� � � � �� �� i� j � �� n�

k � �� n�
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�� Finally� we take the remaining nodes on the faces

s
�i�j�k�
����� � s

�i�j�k�
����� � s

�i�j�k�
���� � s

�i�j�k�
����� � i� j� k � �� n�

we denote the unknowns at these nodes by V A
�i�j�k�
� � � � �� �� i� j� k � �� n�

������ Three level preconditioners� We partition each cube C�i�j�k� into

the left and right prisms P
�i�j�k�
p � p � �� �� see Figure �� Below we skip the indices

 �i� j� k�� and the superscript  P � when no ambiguity occurs�

In the local numeration �Figure �� the matrices B� and B� corresponding to the
left and right prisms have the form ������ We rewrite these matrices in the above
group partitioning

B� �
�h

�


�������������

a� � a� � b �b �a� � � � � � �a� �
�b a� � a� � b � � � �a� � � � �a�
�a� � a� � � � � � � �
� � � a� � � � � � �a�
� � � � a� � � � �a� �
� �a� � � � a� � � � �
� � � � � � a� � �a� �
� � � � � � � a� � �a�
�a� � � � �a� � �a� � �a� � a� �
� �a� � �a� � � � �a� � �a� � a�

�
�������������
�

B� �
�h

�


�������������

a� � a� � b �b � � �a� � � � �a� �
�b a� � a� � b � �a� � � � � � �a�
� � a� � � � � � �a� �
� �a� � a� � � � � � �
�a� � � � a� � � � � �
� � � � � a� � � � �a�
� � � � � � a� � �a� �
� � � � � � � a� � �a�
�a� � �a� � � � �a� � �a� � a� �
� �a� � � � �a� � �a� � �a� � a�

�
�������������
�

The partitioning of nodes into the above three groups induces the following block
forms of the matrices Bp� p � �� �

������ Bp �

�
B���p B���p

B���p B���p

�
� p � �� ��

where the blocks B���p correspond to the unknowns of the last group and the blocks
B���p correspond to the unknowns of the 
rst and second groups�

We eliminate the unknowns of the last group from each matrix Bp� p � �� �� which
is done locally on each prism� Then we get the matrices

�B���p � B���p �B���pB
��
���pB���p� p � �� ��
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where

B����B
��
����B���� �

�h

�


���������������

a�
�

�a�	a�
	 	 	

a�
�

�a�	a�
	 a�a�

�a�	a�
	

	
a�
�

�a�	a�
	

a�
�

�a�	a�
	 	 	 a�a�

�a�	a�
	 	 	 	 	 	 	 	

	
a�
�

�a�	a�
	

a�
�

�a�	a�
	 	 	 a�a�

�a�	a�
a�
�

�a�	a�
	 	 	

a�
�

�a�	a�
	 a�a�

�a�	a�
	

	 	 	 	 	 � 	 	
a�a�

�a�	a�
	 	 	 a�a�

�a�	a�
	

a�
�

�a�	a�
	

	 a�a�
�a�	a�

	 a�a�
�a�	a�

	 	 	
a�
�

�a�	a�

�
���������������

�

and a similar form holds for B����B
��
����B�����

Following ����� we introduce on each prism the following modi
cation of the ma�
trices �B���p

B	 �
�h

�


�����������

a� � a� � b� s� �b �a� � �a� � �s��� �s���
�b a� � a� � b� s� � �a� � �a� �s��� �s���

�a� � a� � � � � �
� �a� � a� � � � �
�a� � � � a� � � �
� �a� � � � a� � �

�s��� �s��� � � � �
s� � s�

�
�

�s��� �s��� � � � � �
s� � s�

�

�
�����������
�

with some parameters s� and s��
Proposition �� The matrices �B���p� p � �� �� and B� have the same kernel� i�e��

ker �B���p � kerB��

Proof� It can be easily checked that

ker �B���p � kerB� � fv � �v�� v�� � � � � v��T � IR�  vi � v�� i � �� � � � � �g� p � �� �� �

We now consider the eigenvalue problem

������ �B���pu � �B�u� u � IR�� p � �� ��

with the following choices of s� and s��
Proposition �� For the case where si � �aia����ai � a��� i � �� �� the eigenvalues

of problem ������ belong to the interval�
� � ��

� � ��
��� �p

�
��

� � ��

� � ��
�� �

�p
�

�

�
�

If we choose si � maxfai� a�g� i � �� �� the eigenvalues of problem ������ are within

the interval �
� � �

� � ��
��� �p

�
��

� � �

� � ��
�� �

�p
�

�

�
�
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Both cases have the same estimate of the condition number

cond�B��
�

�B���p� 	 � �
p

��

Proof� A direct calculation shows that � � ���� �	� where

�� � min

�
ai

�ai � �a�

�
� �

a�
ai

�
�a�
si

��
��

s
�� a����aisi� � �a��si

� � a��ai � �a��si

�
 i � �� �

�
�

and

�	 � max

�
ai

�ai � �a�

�
� �

a�
ai

�
�a�
si

��
� �

s
�� a����aisi� � �a��si

� � a��ai � �a��si

�
 i � �� �

�
�

With si � �aia����ai � a��� i � �� �� and the de
nition of �� it can be seen as in
Theorem � that

�� � � � ��

� � ��

�
��

r
�� � � ���� � ����

� � ��

�
�

and

�	 � � � ��

� � ��

�
� �

r
�� � � ���� � ����

� � ��

�
�

Note that

�� � � ���� � ����

� � ��
	 �

�
�

so that the 
rst case follows� The same argument applies to the second case� �

Now we de
ne a new matrix on each prism

������ �Bp �

�
B� � B���pB

��
���pB���p B���p

B���p B���p

�
� p � �� ��

As remarked before� in the case where a cube C has nonempty intersection with
��� the matrices B�� B���p� and B���p� p � �� �� do not have the rows and columns
corresponding to the nodes on the boundary�

For each prism P � Ph we now consider the eigenvalue problem

������ BPu � � �BPu�

where BP � BP
p is de
ned in ������ and �BP � �BP

p in ������� p � �� �� Below we only
consider the simpler choice si � maxfai� a�g� i � �� ��
Proposition 	� The eigenvalues of problem ������ belong to the interval�

� � �

� � ��
��� �p

�
��

� � �

� � ��
�� �

�p
�

�

�
�

Moreover� on each prism P � Ph the eigenvalues of the problem

������ MPu � � �BPu�
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are within the interval ���� �	�� where

�� � �� � ���

�
�


r
��

� � ��

�
� � �

� � ��

�
�
 �p

�

�
�

Proof� The 
rst statement follows directly from Proposition �� and the second one
then follows from Theorem �� �

Now we de
ne the symmetric positive�de
nite N� �N� matrix �B� by

� �B�u�� v�� �
X
P�Ph

�B�u��P � v��P ��

where v�� u� � IRN� � and u��P and v��P are their respective restrictions on the prism
P � As in ������� we introduce the matrix

������ �B �

�
�B� � B��B

��
�� B�� B��

B�� B��

�
�

Using Proposition � and the same proof as in Theorem �� we have the following
theorem�

Theorem 
� The matrix �B de�ned in ������ is spectrally equivalent to the matrix

M � i�e��

�� �B 	M 	 �� �B�

Moreover�

������ cond� �B��M� 	 � � ����� 	 �� � �k��� �
p

���

Instead of the matrix B in the form ������ we take the matrix �B in ������ as a
preconditioner for the matrix M � Because we have introduced a two�level subdivision
of the matrix �B�� the matrix �B can be considered as a three�level preconditioner�

As we noted earlier� the matrix B�� is block�diagonal and can be inverted locally
on prisms� So we concentrate on the linear system

������ �B�u � G�

In terms of the group partitioning in x������ the matrix �B� has the block form

����	� �B� �

�
C�� C��

C�� C��

�
�

where the block C�� corresponds to the nodes from the second group� which are on
the faces of tetrahedra perpendicular to the coordinate axes� From the de
nition of
B�� it can be seen that the matrix C�� is diagonal� In the above partitioning� we
present u and G in ������ in the form

������ u �

�
u�
u�

�
� G �

�
G�

G�

�
�

Then� after elimination of the second group of unknowns

u� � C��
�� �G� � C��u���
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we get the system of linear equations

������ �C�� � C��C
��
�� C���u� � G� � C��C

��
�� G� � �G��

where the vector u� and the block C�� correspond to the unknowns from the 
rst
group� which have only two unknowns per each cube� The dimension of vectors u�
and G� is equal to

������ dim�u�� � �n��

The above simpli
cation of ������ is carried out in detail in the next section�

������ Computational scheme� We now consider the computational scheme
for ������� In terms of the unknowns introduced in x�����

uI
�i�j�k�
� � GI

�i�j�k�
� � � � �� �� i� j� k � �� n�

ux
�i�j�k�
� � Gx

�i�j�k�
� � � � �� �� i � �� n� j� k � �� n�

uy
�i�j�k�
� � Gy

�i�j�k�
� � � � �� �� j � �� n� i� k � �� n�

uz
�i�j�k�
� � Gz

�i�j�k�
� � � � �� �� k � �� n� i� j � �� n�

the system ������ with a�x� � � can be written as

������

�
�

�
�	 ��
�� �	

�
uI�i�j�k� � ��� �i��ux

�i���j�k� � ��� �in�ux�i�j�k�

���� �j��uy
�i�j���k� � ��� �jn�uy�i�j�k�

���� �k��
�
�

�
� �
� �

�
uz�i�j�k��� � ��� �kn� ��

�
� �
� �

�
uz�i�j�k�

� �
�hGI

�i�j�k�� i� j� k � �� n�

and

������

�ux�i�j�k� � uI�i	��j�k� � uI�i�j�k� � �
�hGx

�i�j�k�� i � �� n� �� j� k � �� n�

�uy�i�j�k� � uI�i�j	��k� � uI�i�j�k� � �
�hGy

�i�j�k�� j � �� n� �� i� k � �� n�

�uz�i�j�k� � �
�

�
� �
� �

�
uI�i�j�k	�� � �

�

�
� �
� �

�
uI�i�j�k� � �

�hGz
�i�j�k��

k � �� n� �� i� j � �� n�

where �ij �the Kronecker symbol� is introduced to take into account the Dirichlet

boundary conditions� Eliminating unknowns ux
�i�j�k�
� � uy

�i�j�k�
� � uz

�i�j�k�
� � � � �� ��

from equations ������� we obtain the block �seven�point� scheme with ����blocks for
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the unknowns uI
�i�j�k�
� � � � �� �� i� j� k � �� n� From ������ we have

������

ux�i�j�k� �
�

�

�
�

�h

�
Gx�i�j�k� �

�

�
uI�i	��j�k� �

�

�
uI�i�j�k��

i � �� n� �� j� k � �� n�

uy�i�j�k� �
�

�

�
�

�h

�
Gy�i�j�k� �

�

�
uI�i�j	��k� �

�

�
uI�i�j�k��

j � �� n� �� i� k � �� n�

uz�i�j�k� �
�

�

�
�

�h

�
Gz�i�j�k� �

�

�

�
� �
� �

�
uI�i�j�k	��

� �
�

�
� �
� �

�
uI�i�j�k�� k � �� n� �� i� j � �� n�

Substituting ������ into ������� we see that

������

�
�

�
�	 ��
�� �	

�
uI�i�j�k� � ��� �i��

�
�

�
uI�i���j�k� � uI�i�j�k�

�

���� �in� ��

�
uI�i	��j�k� � uI�i�j�k�

�

���� �j��
�
�

�
uI�i�j���k� � uI�i�j�k�

�

���� �jn� ��

�
uI�i�j	��k� � uI�i�j�k�

�

���� �k��
�
�

�
� �
� �

��
uI�i�j�k��� � uI�i�j�k�

�

���� �kn� ��

�
� �
� �

��
uI�i�j�k	�� � uI�i�j�k�

�
� g�i�j�k�� i� j� k � �� n�

where

������

g�i�j�k� � �
�h

�
GI�i�j�k� � ��� �i��

�
�Gx

�i���j�k� � ��� �in� ��Gx
�i�j�k�

���� �j��
�
�Gy

�i�j���k� � ��� �jn� ��Gy
�i�j�k�

���� �k��
�
�

�
� �
� �

�
Gz�i�j�k���

���� �kn� ��

�
� �
� �

�
Gz�i�j�k�

�
�

To solve system ������ we introduce the rotation matrix

Q �
�p
�

�
� �

�� �

�
�
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and the new vectors v�i�j�k� � �v
�i�j�k�
� � v

�i�j�k�
� �T � i� j� k � �� n� given by

������ v�i�j�k� � Q � uI�i�j�k�� i� j� k � �� n�

Then multiplying both sides of the matrix equation ������ by the matrix Q and using
the relation

����	� uI�i�j�k� � QT � v�i�j�k�� i� j� k � �� n�

we obtain the following problem for the unknowns v�i�j�k�

������

�
� 	
	 ����

�
v�i�j�k� � ��� �i��

�
�

�
v�i���j�k� � v�i�j�k�

�

���� �in� ��
�
v�i	��j�k� � v�i�j�k�

�
���� �j��

�
�

�
v�i�j���k� � v�i�j�k�

�
���� �jn� ��

�
v�i�j	��k� � v�i�j�k�

�

���� �k��
�
�

�
� 	
	 	

� �
v�i�j�k��� � v�i�j�k�

�

���� �kn� ��

�
� 	
	 	

� �
v�i�j�k	�� � v�i�j�k�

�

� Q � g�i�j�k� � �g�i�j�k�� i� j� k � �� n�

It is easy to see that problem ������ can be decomposed into the following two inde�
pendent problems

������

�v
�i�j�k�
� � ��� �i��

�
�

�
v
�i���j�k�
� � v

�i�j�k�
�

�

���� �in� ��

�
v
�i	��j�k�
� � v

�i�j�k�
�

�
���� �j��

�
�

�
v
�i�j���k�
� � v

�i�j�k�
�

�

���� �jn� ��

�
v
�i�j	��k�
� � v

�i�j�k�
�

�

���� �k��
�
�

�
v
�i�j�k���
� � v

�i�j�k�
�

�

���� �kn� ��

�
v
�i�j�k	��
� � v

�i�j�k�
�

�
� �g

�i�j�k�
� �

i� j� k � �� n�
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and

������

��
� v

�i�j�k�
� � ��� �i��

�
�

�
v
�i���j�k�
� � v

�i�j�k�
�

�

���� �in� ��

�
v
�i	��j�k�
� � v

�i�j�k�
�

�

���� �j��
�
�

�
v
�i�j���k�
� � v

�i�j�k�
�

�

���� �jn� ��

�
v
�i�j	��k�
� � v

�i�j�k�
�

�
� �g

�i�j�k�
� �

i� j � �� n� � k � �� n�

That is� we reduced the linear system ������ of dimension ��n�� to one linear system of
equations ������ of dimension n� and n linear systems of equations ������ of dimension
n�� For all these problems the method of separation of variables can be used� as shown
in ������ and ������ below�

After we 
nd the solution of these problems we easily retrieve vectors uI�i�j�k� by
using the relations ����	��

������ A method of separation of variables� In this section we consider
a method of separation of variables for solving problems ������ and ������� Problem
������ can be represented in the form

������ C���v� � �g�� v�� �g� � IRn� �

where

C��� � C� � I� � I� � I� � C� � I� � I� � I� � C��

I� is the �n� n��identity matrix� � denotes the tensor product of matrices� and C�

takes the form

������ C� �
�

�


������

� ��
�� � ��

� � �
� � �

� � �

�� � ��
�� �

�
������ �

If C� is factorized by

C� � Q�!�Q
T
� �

where !� is an �n � n��diagonal matrix and Q� is an �n � n��orthogonal matrix
�Q��

� � QT
� �� then the matrix C��� can be rewritten as follows

C��� � Q���!���Q����

where

Q��� � Q� �Q� �Q��

!��� � !� � I� � I� � I� � !� � I� � I� � I� � !��
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Note that Q��� is an �n� � n���orthogonal matrix and !��� is an �n� � n���diagonal
matrix� We can now use the following method to solve the system ������

������

��� �f� �
�
Q���

�T
�g��

��� !���w � �f��

��� v� � Q���w�

The same argument can be exploited to solve ������� Problem ������ can be
rewritten as

������ C���v� � �g�� v�� �g� � IRn� �

where

C��� � K� � I� � I� �K��

and the �n� n��matrix K� is given by

K� �
�

�


������

�� ��
�� �� ��

� � �
� � �

� � �

�� �� ��
�� ��

�
������ �

Again� if we write K� as

K� � R�D�R
T
� �

where D� is an �n� n��diagonal matrix and R� is an �n� n��orthogonal matrix� we
can rewrite the matrix C��� as follows

C��� � Q���!���Q���T �

where Q��� � R� �R� and !��� � D� � I� � I� �D�� Then the system ������ can be
solved with the following method

������

��� �f� �
�
Q���

�T
�g��

��� !���w � �f��

��� v� � Q���w�

������ Preconditioned conjugate gradient method� We now solve system
����� by a three�step preconditioned conjugate gradient method in the following form
Given ���� �� � IRN � 
nd �k� k � �� �� � � � � K�� such that

������ ��k	�� � �k � �

qk

h
�B���k � dk��k � �k���

i
�

where

�k � M�k � F�

qk �
kB���k��k�M
k�kk�B��

� dk���

dk � qk
k�kk�B��
k�k��k�B��

�
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Theorem ��� The number of operations for solving system ����� by method ������
with the matrix �B de�ned in ������ and with accuracy � in the sense

����	� k�K�	� � ��kM 	 �k�� � ��kM � 	 � � ��

is estimated by QN��� ln
�
�
�

�
� where �� � M��F � �� � IRN is any initial vector� and

the constant Q � 	 does not depend on N �

Proof� It is known ���� that for a given � � 	� to achieve the accuracy ����	� the
number of iterations K� can be estimated by the inequality

K� 	 ln �����

ln q�
�

where q� � �
p
�� ����

p
� � �� and � is de
ned in ������� Thus it is easy to see

that the arithmetical cost of the procedure ������ for solving ����� is approximately
�ln ������ln q�� times the cost per iteration� The cost per iteration is O�N���� by the
method of separation of variables ������ and ������� so the desired result follows from
Theorem �� �

�� Preconditioners for a general case� In this section we consider the case
where the coe�cient a is a full tensor and the domain � satis
es the assumption that
there is an orientation�preserving smooth mapping L from the unit cube �� onto �
and there are positive constants r and Q such that

����� r��kJ �x�k 	 Q� �x � ���

and

����� rkJ ���x�k 	 Q� �x � ��

where J �x� is the Jacobian matrix of L at x and k � k denotes the matrix ��norm�
Note that the domain � is of size r�

Next� we consider the de
nition of the nonconforming 
nite element space� Let
C�h� P�h� and T�h be the partitions of �� into cubes� prisms� and tetrahedra� respectively�

associated with the mesh size �h� as de
ned in x���� and letN�h be the P� nonconforming

space associated with T�h� as given in ������ Set h � r�h and de
ne

Nh �
�
 � � � L��  � � N�h

�
�

Also� we introduce the mapping I  Nh � N�h de
ned by Iv � v � L�
We now de
ne the sti�ness matrix M on the domain � by

����� �Mu� v�N � ah�uh� vh�� �uh� vh � Nh�

where

�����

ah�uh� vh� �
P

T�Th
����h ruh�rvh�T

�
P

T�T�h
�jdet�J �j���h J ��rIuh�J��rIvh�T �

where jdet�J �j is the Jacobian of the mapping�
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For each cubeC � C�h� we introduce the diagonal matrix ���C �diagfa��C � a��C � a��Cg
with some as yet unspeci
ed constants ai�C � i � �� �� �� Then we de
ne

����� bh�uh� vh� �
X
C�Ch

�C

�X
T�C

����C ruh�rvh�T

�
� �uh� vh � N�h�

where the constants �C are scaling factors� One reasonable choice is to take �C �
����C � ���C���� where ���C and ���C are the largest and smallest eigenvalues of the
eigenvalue problem

����� ����h �x��v � �C�Cv� v � IR��

where ����h � jdet�J �j �J ��
�T

���h J�� and x� � L�C� � � is some point� Note
that the assumptions ����� and ����� imply that there are two constants Q� and Q�

independent of r and h such that

����� Q�ah�uh� uh� 	 rbh�Iuh� Iuh� 	 Q�ah�uh� uh�� �uh � Nh�

We consider two useful choices of the matrix ���C 

�� ���C � I � �C � Ch� i�e�� the matrix ���C is the identity matrix�

�� ���C �diagf����h �x��g� �C � Ch� i�e�� the matrix ���C is the diagonal part of
����h �x�� at some point x� � L�C��

Note that in both cases the constants Q� and Q� in ����� only depend on the local
variation of the coe�cients

��
����h

�
kl

�
� Hence the problem of de
ning a preconditioner

for ah��� �� is reduced to the problem of 
nding a preconditioner for rbh��� ��� which
has a diagonal coe�cient tensor and is de
ned on the unit cube ��� Namely� all the
analyses in x� can be carried out here�

�� Results of the numerical experiments� In this section the method
������ is tested on the model problem

�
�P
i��

�
�xi

�
ai

�u
�xi

�
� f in ��

u � 	 on ���

We present two numerical examples� In the 
rst example� the domain � is the unit
cube � � �	� ���� The domain is divided into n� cubes �n in each direction� and each
cube is partitioned into � tetrahedra� The dimension of the original algebraic system
is N � ��n� � �n�� The right hand side is generated randomly� and the accuracy
parameter is taken as � � �	�� The condition number of the matrix B��M is
calculated by the relation between the conjugate gradient and Lanczos algorithms �����
The coe�cients ai� i � �� �� �� are constants on each cube� The results are summarized
in Table �� where Iter and Cond denote the iteration number and condition number�
respectively�

From Table � we see that the condition number depends on the maximal ratio

� � max
C�Ch

n
a�
a�
� a�
a�

o
� The case of � � � has a better convergence than the case of the

Poisson equation �i�e�� a� � a� � a� � ���
In the second example we treat the Poisson equation on the domain � as shown

in Figure �� The domain is subdivided into �	 � �	 � �	 cubes and the number of
unknowns is then N � �����	� This problem is solved with accuracy � � �	��
Twenty iterations are needed to achieve the desired accuracy� and the computed
condition number of the matrix B��M is equal to ten�
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Table �

N � ��� ��� N � ���� 	��
a� a� a� Iter Cond Iter Cond

� � � �� ��� �� ���
� � 	�� �� ��� �� ���
� � 	�	� �	 ��� �� ��	

�	 � � �� � �� ���
� �	 �

�		 � � �� ��� �� ���
� �		 �

� � �	 �� �� �� ��
� � �		 �� ��� �	 ���

	�� � � �� �	 �� ��
� 	�� �

	�	� � � �� ��� �� �	�
� 	�	� �
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