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ABSTRACT

A new mixed finite element method on totally distorted rectangular meshes is introduced with optimal
error estimates for both pressure and velocity. This new mixed discretization fits the geometric shapes of the
discontinuity of the rough coefficients and domain boundaries well. This new mixed method also enables us to
derive the optimal error estimates and existence and uniqueness of Thomas’s mixed finite elements method on
distorted rectangular grids [19]. The lowest order Raviart-Thomas mixed finite rectangular element method

becomes a special case of both methods, when all the elements are degenerated to parallelograms.

1. Introduction
Let © be a bounded convex polygonal domain in R?, with the boundary 0Q = I'y UT'y, and
'y NTy = (). We consider the homogeneous Dirichlet-Neumann boundary elliptic problem:

p = 0, on I, (1.1)
KVp-n = 0, on I,

where K is a 2 X 2 symmetric positive definite matrix, which is uniformly bounded below and
above in €2; n is the outward unit normal of 9. Extension to inhomogeneous boundary condition
problems is straight forward. If we introduce a dependent vector valued variable u = —KVp, then,
(1.1) is equivalent to the following first order partial differential equation system

K'u = —Vp, in Q (a)

Viu = f in Q. (b)
p = 0 on I'i. (c) (12)

u-n 0 on D[y (d)

In the simulation of fluid flow in porous media, such as groundwater contamination and petroleum
reservoir simulation, (1.2) arises frequently in a system of partial differential equations. Here, p
stands for the hydraulic pressure or pressure and u stands for the fluid velocity or Darcy veloc-
ity. (1.2a) represents Darcy’s law and (1.2b) is the mass conservation law, which is one of the
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fundamental law in porous media flow. f is the source term. In general, the conductivity term
KC is discontinuous for heterogeneous reservoirs and the shapes of the discontinuous lines can be
arbitrary. For example, in the simulation of incompressible miscible displacement, the conductivity
can be written by K = %, where £ is a tensor representing the permeability of the medium which is
discontinuous due to the the heterogeneity of the media and p represents the viscosity of the fluid.
1 18 a continuous function of both time and space variables, but may have a very sharp frontal
change of values. According to the mass conservation law (1.2b), the velocity u must be continuous
along the normal direction of a subdomain boundary, no matter whether K is continuous or not.
Roughly speaking, the discontinuity of the permeability cancels the discontinuity of the normal
directional derivatives of the pressure along the subdomain boundaries.

The mixed finite element discretizations provide reasonable approximations for such kind of
problems but not the standard Galerkin type finite element ones, see Falk and Osborn [10]. In
[7][8][17][18], on orthogonal non-uniform rectangular grids, superconvergence error estimates for
both pressure and velocity are derived under certain local smoothness assumptions. Mixed fi-
nite element methods on orthogonal grids and triangular grids have been studied intensively by
many colleagues. Surveys on the development can be found, e.g., [3][13][15]. According to our
computational experience on orthogonal grids, no approximation property can be achieved if the
discontinuous lines fall inside any elements. Therefore, simulation of heterogeneous reservoirs re-
quire distorted rectangular grids to give an accurate model of the reservoir geology with a moderate
number of grid cells.

The mixed triangular finite element discretizations can approximate these discontinuous coef-
ficient problems well [10]. But computational implementation on unstructured triangular grids is
not ease, especially in three-dimensional case, not mention that so many unknowns associated with
triangular cells. So even though mixed triangular finite element methods was introduced at the
same time as orthogonal rectangular finite element methods [14], the former is not as popular as
the latter.

There have been some considerations for mixed finite element methods on distorted rectangular
grids. Thomas [19] defined non-confirming velocity spaces without showing stability and approxi-
mation properties. Then, either element-wise mass balance may not be guaranteed on any distorted
rectangular elements or the divergence of the discrete velocity spaces are not in the corresponding
discrete pressure spaces. Farmer et. al. [11] and Russell [16] using Thomas’s definition have ob-
tained very encouraging computational results. In [16], using a finite volume approach by means of
Thomas’s finite element velocity space definition on distorted grids, Russell obtained superconver-
gence for both pressure and velocity in computational experiments. In [11][16], the velocity space
is continuous in the normal direction on the element interfaces, thus, mass balance property is
retained element-wise, but the divergence of the velocity space is no longer in the pressure space.
Then, Russell [16] conjectured that the necessary and sufficient condition for mixed methods—B-B
inf-sup condition to be satisfied only in the limit sense: when h tends to zero, all the irregular
elements are almost parallelograms.

In this paper, we develop a mixed finite element method which is a natural and compact gener-
alization of the lowest order Raviart-Thomas mixed finite orthogonal rectangular element method
with stability and optimal error estimates. This method can be extended to three-dimensional case.
Due to the complexity of the shapes of distorted cubes, we shall discuss three-dimensional case in
another paper [5]. By our new mixed finite element discretization, we then enable to prove the
Thomas’s method on distorted grids [19] and Russell’s conjecture about the B-B inf-sup condition
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[16], if A is sufficiently small. Comparing with the lowest order mixed triangular discretization,
we reduce the number of unknowns significantly on relatively well structured grids with the some
order of accuracy. We feel that these two are practical methods for both numerical mathematicians
and engineers from either theoretical or application point of views. To the author’s knowledge,
this is the first time to introduce such a method with solid analysis. According to [20], Professor
Thomas has a way of proof for this numerical method in a totally different approach but he has
never published his result before.

The remainder of this paper is organized as follows: We define the weak form of (1.2) in §2 with
some notations for Sobolev spaces, the partition of the domain and some assumptions. In §3, we
list some of the properties of bilinear and the contravariant Piola transformations. The mixed finite
element spaces are defined in §4. In §5, projections and approximation properties of projections are
discussed. The error estimates are presented in §6. The theoretical support for Thomas’s definition
[19] and Russell’s conjecture about the B-B inf-sup condition [16] is §7. Finally, in §8, we give some
conclusion remarks for implementations.

2. The Weak Formulations and Assumptions
Denote by (-,-) the usual L?(Q) or (L*(Q))? inner product. The spaces H*(Q), for k a positive
integer, will be the usual Hilbert spaces equipped with the norms

IgllE = D N0°¢llg = > (0%¢.0%9). (2.1)

|| <k o<k
The H(div; ) is defined by
H(div;Q) = {v € (L*(Q))*: V- v € L}(Q)} ,
equipped with the graph norm
VIl @iy = V11 + 1V - v 115 (2.2)

The Sobolev spaces W, o (€2), for k a positive integer, are equipped with the norms

- et
1D l.00 max 10%P||oo-
[Pllc = ees Sl(lzplqﬁl-

Denote
V={ve H(div;Q) : v-n=0,only},

W= L?(Q), if Ty # 0. (2.3)
T LEQ\R, if Iy =0.

For solution of (1.2) and v € V, applying the Green’s formula and the homogeneous boundary
condition, we obtain that

_(Vp,V):(p,V'V)—/ pv-nds:(p,V-v).
N
The mixed weak form of (1.2) is to seek a pair (u,p) € V x W such that

(’Cilu'/ V) = (p \ V)a \AS V:

(V-ww) = (fiw), weW. (2:4)
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To define a finite element method, we need a partition 7; of  into element K. For K € 7;,, K
is distorted rectangular but all its four edges are straight lines (see Figure 1.). If any edges of K,
say, ¢, is on the boundary 02, either Dirichlet or Neumann condition is imposed but not the both.
Denote by | K| the area of K. We require the quasi-regularity of the mesh, i.e., there are 1 > 7 > 0
and C* > C, > 0 independent of h such that

C.h? < |K| < C*h, VK €T, (2.5)

Note that we require that K € 7, be convex to insure that the Jacobians (defined in §3) are
no-singular. Through out the rest of this paper, C' will be used to stand for a positive constant
independent of A.

We assume that the boundaries of different rock types or regions of different permeability, i.e.,
the discontinuous lines are combination of finite many straight lines so that we can make grid lines
coincide with the discontinuous lines. Denote by I' the set of points where the coefficient K is
discontinuous, adopted from [7][8][17][18] we make the following assumptions for solutions of (2.4).

ASSUMPTION 2.1.

1. T consists of only line segments such that a distorted mesh can be formed on Q to locate I' on
grid lines.

2. All the entries of K are smooth in Q\I', say, in W1 o(Q\I').

3. the pressure solution p € H*(Q) " H*((Q\T'). The one side normal and tangential derivatives
of p on I are well defined and belong to L*(T'), such that the velocity, u is continuous in the
normal direction of . In addition, we require that u € (H'(Q))? and V -u € H'(Q).

Y
X4

X3

0 X9 X1
0 x
FIGURE 1. The bilinear mapping.

3. Properties Related to a Change of Variables and the Bilinear Transformation
Denote
x=(x,y), x=(&9)"
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Define -
_ (TNt v i

).
. . Of . .. . )
We may also use f, =0, f = Iz to stand for the partial derivative of f to the variable x.
)

Let x; = (w3, 9:)", i = 1,2,3,4 be the four vertices of element K counted anti-clockwise, and X;,
i =1,2.3,4 be the four vertices of the unit square K (see Figure 1.),

x1 = (0,0), %o =(1,0)", %x3=(1,1)", %4 =(0,1)". (3.1)
Let x;; = x; — x;, the bilinear transformation, F : K — K, is
x = F(X) = x1 + x1% + X419 + (X32 — X41) 27, (3.2)

satisfying
x; = F(x;), i =1,2.3,4. (3.3)

Denote by J the correspondent Jacobi matrix, and .J = | det 7|, the absolute value of the Jacobian,

T = Ty Ty \ J = |det j| =TiYg — TyYz > 0, (34)
Yz 1/;9 ' '

J = Ty By — l Yg  —Ty (3.5)
U ’!)y J —Yi Tz ) )

Note that, under the bilinear transformation (3.2), .J is a linear function of & and 7,

and

J = (zays —ray2) + (x21¥32 — T32y21 + Ta1Y21 — T21Ya1)E
+ (232y41 — £41Y32)7
2[A124 + (A123 — Aj24)& + (Aozs — Aq23)7]

o+ fi + 7.
In (3.6), Ayji; is the area of the triangle of x;x;x;. The area of element K is
' SR B
|K|:/dK:/AJdK:/ / Jdidj=a+2 4+ 7. (3.7)
JK JK Jo Jo 2 2

The Piola transformation P, [3] [19], associated with the change of the variables (3.2) is defined
by
0= Prit = %jﬁ‘ (3.9)
By the chain rule,
Vp=J"Vp,  p=pFX): (3.9)
Since

/de: Cfrdk, = f(F&). (3.10)
K K
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1
letting v = jjfr, we have
/ Vp - vdK = / Vp-vdK. (3.11)
K K

The following useful properties about Piola transformation can be found in [3] [15] [19].

1. 1
V-v==V-v, v=—-JV. (3.12)
J J
: L 1
/ V.-vdK = | V-vdK, v=-=-JV. (3.13)
JE JE J
: . 1
/ v-nds = / V- nds, v=-=-JV. (3.14)
Jok Jok J

Let the 2 x 2 positive definite matrices K and K satisfy that

K=J7'Kkg, (3.15)
then,
1. . 1 R
K= jjlcj*, K1 = jjflc—lj and K~'=Jg K17 L
If
a=—-KVp, (3.16)
then, (3.8), (3.9) and (3.15) yield
u=Pgu=-KVp. (3.17)

Let us investigate the simple orthogonalities of Piola(under bilinear) transformation. The nor-
mal direction to the level curve, & = Z(x,y) = constant, in the zy-plane is

n; = JVi = J(:ﬁflf'/ ‘%y)t = (y_i)a _x_@)ta (318)
and the normal direction to the level curve, § = 9(x, y) = constant, in the zy-plane is
ng = JVij=J(s. gy)" = (=ys.23)". (3.19)

Similarly, the unit normals of the level curves, & = constant and § = constant in the Zg-plane are

ﬁf;;:%:<(1)> and ﬂ,;:%:(?), (3.20)

respectively. According to (3.9), we have
n; = intfli and ng; = intﬁ@ (321)
Let u = Pgn; and v = Pgny, then, at any point (z,y) € K,

u-ng = fl; . fllg = 0, and v - n; — fl:,) . fl; =0. (322)
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Let ej41 be the line segment, X;X; 11, and |e;11| = [Xii+1], be the length of X;%17, i = 1.2, 3.
Let e; be the line segment, X3X7, and |e1| = |x41|. Then, the corresponding edges to ¢;, i =1,2,3,4
of K are X X o X
e ={(z J)I =0,0<9 <1}, e={(&.9)[§=00<2<1},
5 ’ oy 5 (3.23)
é3={(#.9)]2=1,0<9g<1}, ea={(29)]9=10<i<1}.

Let 1; be the unit normal of é;, i.e., n; = (1,0)", i = 1,3, and fi; = (0,1)*, i = 2,4. Direct

culculations of (2.18) and (2.19) lead to
ngli—o = le1l, [nglg—o = leaf. [ngle=1 = les|. [ngly—1 = [ed]. (3.24)
then, the unit normal, n;, of e;, i = 1,2, 3.4, are expressed by

n;|i=o ny = nlj=o ns — nili=1 n, = Rylo=t. (3.25)
|€1| |62| |€3| |€4|

n; =

Actually, —mj, —ng, n3, ng, are the unit outward normals of K. Definition (3.25) is convenient to
define the unique nodal velocity values. Later, with an obuse of notation, we shall also use (3.25)
to represent the unit noutward ormals of K and keep the sign differences in mind.

1
LEMMA 3.1. For the bilinear transformation (3.2) and the Piola transformation (3.8), if v = 7.7V
then, '
/ v nyds = / voigds, i=1,2.3,4. (3.26)
e; é;

Proof  Note that by a change of variable on e;, ds =
(3.19), (3.21), (3.24) and (3.25),

ds, i =1,2,3,4. According to (3.18),

1
|€,,;|V ‘n; = jj\Af . (Jj_fﬁz) =v-n; i=1234

4. The Mixed Finite Element Spaces
In [19], page IX-21, if the elements are distorted rectangles, Thomas defines the discrete velocity
space by imposing continuity in the normal direction at the mid-point of each element boundary
edge with the same degree of polynomials as in the case of orthogonal rectangular elements. No
stability or error estimates are discussed in [19] for this case. Actually, extra care has to be taken,
otherwise, either the discrete velocity space may no longer be guaranteed a subspace of V or the
divergence of the discrete velocity space is no longer a subspace of the discrete pressure space.
In this section we generate a pair of discrete velocity space, V; and pressure space, W}, such
that
V), CV C H(div; Q)

divV, =W, Cc W C L*(Q), (4.1)

are satisfied. We shall keep the same number of unknowns as in [19], therefore, our mixed finite
element method is in consistence with the lowest-order Raviart-Thomas orthogonal rectangular
mixed finite element method [14][19]. That is, when the elements degenerate back to parallelograms,
our mixed finite element method is exactly the lowest-order Raviart-Thomas orthogonal rectangular
mixed finite element method. Most importantly, because of (4.1) our new mixed finite element
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method satisfies the B-B inf-sup condition which is necessary and sufficient condition for existence
and uniqueness (e.g., see [3] [13]). In §7, by means of our new mixed finite element method, we
shall show the convergence, existence and uniqueness of Thomas’s method.

THE PRESSURE SPACE Wj,: Denote x(K) the characteristic function of domain K, then, W) =
span{x(K)}ker,. W), is the piecewise constant space, then, W, C L?(€).

THE VELOCITY SPACE V,: In order to insure the normal direction continuity on the element edges,
we require that the restriction of the nodal bases b; € V,, ¢« = 1,2, 3,4 on element K satisfy

V -b; = constant,

(4.2)
b‘i'nj|6j = 613

By (3.12) and the orthogonality property of the Piola-bilinear transformation (3.22), (4.2) is equiv-
alent to

~ ~

V-b; = .J-constant,

L ] (4.3)
b'i . nJ|@l = |€1|0U
Note that .J is a linear function of & and ¢ by (3.6).
LEMMA 4.1.  There exists a by € R? defined on K such that
PN J
V - by — —1,
A | K| (4.4)
bOﬁJ|(3J = 0, 7=1234
and then,
/@-Bodkzo (4.5)
K
Proof Indeed, let
: ¢ pi(e —1) Y95 — 1)
by = , (=—, n=—"—"T7", 4.6
then, the by given by (4.6) satisfies (4.4) and (4.5). In addition,
1
0 < max{lCl. nl} < 7. (4.7)
K
O
JFrom (4.6), we see that by is solely determined by .J. Now, let
. 1-2 . 2 .
b1 = |ey| < 0 ) — le1|bo, bz = |eg] ( 0 ) + |es|bo.
4.8
) 0 o 0 ) (4.8)
by = |es] 10 |- lea|bo.  bs = |e4] J lea|bo.
Then, let
1 .
b;==Jb;,  i=1234. (4.9)
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It is straight forward to check that those nodal bases defined by (4.4) and (4.6) satisfy (4.3). Hence,
the nodal bases given by (4.8) satisfy (4.2). Therefore, any u € Vj,, its restriction on K is uniquely
determined by

4
11|K = u.;b;,
; o (4.10)
w, = w-nle,, @=1,2,3.4.

Clearly, divVy, C Wj, and from the dimension of V}, and W}, the operator div : V;, — W}, is onto,
therefore W;, C divVy,. Finally, the numerical space V, x W, satisfies (4.1) as we desired.

REMARK 4.1. From (4.6) and (4.7) we can see that the Z-components of bi, i = 1.2,3.4 are
quadratic functions of & and the g-components of ‘f).,;7 1 = 1,2,3,4 are quadratic functions of
9. If the we drop the quadratic terms, the flux at all the boundary edges of K are the same,
but unfortunately the divergence of the discrete velocity space will not be the piecewise constant
pressure space any more. we shall overcome this problem in §7.

Now, we are ready to define the approximation problem for (2.4). The numerical scheme to
approximate (2.4) is to seek a pair (uy.pp) € Vj, x Wy, such that

(K_luh: V) = (ph: \%E V): v E Vim

(Veouy,w) = (f,w), w e Wy, (4.11)

5. The Projections

For mixed finite element methods, projections play dominant roles in stability and error esti-
mates, according to Fortin’s Lemma [12]. First, the L?-projection is defined in the usual sense,
Qn: W — Wy, by

(f — Quf.w) = /(;(f QW N)wd2 =0,  VfeW. weW, (5.1)

By definition (5.1), we can see that, if f is a piecewise constant function, f = @, f, hence, applying
Bramble-Hilbert Lemma [2] and the quasi-regularity (2.5), we have that

1f = Qnfllo < Cllfll1 b (5.2)

The H(div)-projection is an extension [18] of the Raviart-Thomas projection [14][19], [T, : V — V,,
given by

(V- (u—-THu),V-v) = / V. (u-TLuwV -viQ =0, VueV,veV,  (53)
Q
If we take V-v = w € W, in (5.3) and combining (5.1), we derive that
/V-HhuwdQ:/ V-uwdQ:/ QnLV - uw dSQ, (5.4)
Q Q Q

that is, divIl;, = @) div.
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Now, we give the local expression for ITu explicitly for u € (H'(Q2))%. Since IT,u € V;, the
restriction of IIpu on K is given by

4
p, Def
Myulg =Y uib; = Pk E el | = Prll il (5.5)
=1 €4

In (5.3), taking v € V}, such that V-v = x(K) € Wy,

0 = / Ve(u—Txu) x(K)dQ= [ V-(u-Iju)dK = (u —TIIzu) - nds
JK JOK (56)

= / V. (a-I0)dK = [ (& —1II,a) - ads.
OK

By Lemma 3.1., if we define 4; = / a-n;ds, 1 =1,2,3.4, then,

u; = /u n;ds = / -n;ds, i=1,2,3.4, (5.7)
Jeil feil — Teal

therefore, ITju|x = PKf[hﬁ|f{ satisfy (5.6). Then, (5.5) can be rewritten as

SN ’&1 + gl’f? + g[)C
Myl = [ 00798 q 5.8
vk < iy + 929 + gon ) / (58)

where

01—u3—u1—/ 030 dK.
92:“4_u2 /81/ul/dK (59)
90:U3—’LL1+’LL4—U2:/A@-ﬁd}%:/ V- udK.

JK JK

JFrom Cauchy-Schwarz inequality and (2.5),

a0l = | | V- udk| < \/IK|IV - wloe < CHIV - ullox. (5.10)
We are ready to prove

LEMMA 5.1.  Assume that u € (H*(Q))?, and V -u € H*(Q), then,

[lu = pulfo Clhalfy

<
B 5.11
IV-(u—uly < CIV-ulh (5.11)

Proof  The second estimate in (5.11) is actually (5.2). For the first one, we get

=Ml = 3 fu-Tuff = ¥ [ (0= Iw- (u=updk.

KeT, KeT,
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and
1 . . N
/ (1= Tyu) - (u — u)dK — / (= 3,77 (@ — 12K,
K K -

By the Bramble-Hilbert Lemma [2], it suffices to assume that each component of @ is at most linear,
ie,

1 N 1
g + (2 = 5)0:4" + (5 = 5)00
u=
) 1 P 1
i+ (= D)0 + (5~ )05
PPN | g a1l
where 4j = 4"(-, =) and 4y = @Y(, <). Then by (5.7),
2°2 2°2
N R PN
iy = ug — %Oiu
iy = i) — 50y
Denote 1
L (9 = 5)954" = go¢ R
v=u-Ilua= v =Pgv.

1
(& — 5)3:;;16" = go7

According to [4] the local estimates for the bilinear map, the quasi-regularity assumption (2.5),
(4.7) and (5.10), we have
Ivllo.x < ChjullLk.

Summing over all the element K € 7, we finish the proof of Lemma 5.1. O

Thus, if the domain Q is a convex polygon, so that H?(Q)-regularity is well defined, by Fortin’s
Lemma [12], the B-B inf-sup condition

l[wllo < C sup (0. V-v)

, Yw e Wy, (5.12)
vevy HV“H(div)

holds for Vj;, x W}, defined in §4. Further, since the mass balance property is the property of
H(div;Q), and, V), C V C H(div; ), the mass balance property is retained for V;, element-wise.

REMARK 5.1. According to [12][20], divV}, C W}, is not a necessary condition for (5.12) being
held, which is also verified by the result of §7 in this paper.

6. Approximation Properties
Taking advantage of the well settled machinery for analyzing mixed schemes, by inequality (5.2)
and Lemma 5.1., we have that

THEOREM 6.1. Under the assumption 2.1., let the pair (u,p) be the solution of (2.4) and (uy, py)
be the solution of (4.6). Then,

[lu—wllo < Clullih,
[V-(u—w)lo < C|V-ulh, (6.1)
lp—pullo < Clpll + |Jull1) A
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Proof  First, we show that
lu —upllo < Cllu —Ijullp. (6.2)

The error equations of (2.4) and (4.11) take the form of

(K_l(u — Up, V) = (p — Ph \E V): \AS Vht
(V-(u—up),w) = 0, w € Wp,.

Since K is bounded, (6.3) yields
1
6”11 —wl3 < (KYu—-up),u—uy)

(’Ci (11 - uh)7 u— Hhu) + (’Cil(u - uh): Hhu - uh)
(K~'(u - uy), u — [ju).

[ay

For 0 = V- (IIu — u;,) € Wy, and the L?-projection (5.1), it is straightforward to check that
(K='(u — up,). Iyu — up,) = 0. Thus, (6.2) follows by applying Cauchy-Schwarz inequality, hence,
Lemma 5.1 gives rise to the first inequality in (6.1). Again, because 0 = V- (II,u —uy) € Wy, (5.3)
and (6.3) imply that

IV (0= wpllo < IV - (u — Thu)o. (6.4)

Then, inequality (5.11) yields the second one of (6.1). Finally, applying the discrete B-B inf-sup
condition (5.12),

(th —pp. V- V)

1Qnp —pullo < C sup
vev, HV“H(div)
K-t(u—up),
- C sup ( (11 uh)/v) < C’||u _ uhHO'
vev, “VHH(div)
Combining above results with (6.2), the proof is complete. O

By the duality argument of the standard mixed finite element methods(e.g., see [3]), we can
derive the following superconvergence result for pressure alone

COROLLARY 6.2.  Under the assumption of Theorem 6.1., then,

1Qnp = pallo < CJlully + |V - ull)”. (6.5)

7. On Thomas’s Velocity Space

Denote by V, the discrete velocity space on the same partition 7;, defined by Thomas [19].
In this section, we overcome the difficulty of Thomas’s velocity space: divV, is not a subspace of
W;, and then, give theoretical support for the usage of Thomas’s method. First, we set up some
notations. From (4.8), if we define

{Zi = f)l — |€.l‘,|f)[)7 1= ]_, 2, {31 = f)l + |€.l‘,|f)[)7 1= 3, 4:, (71)
then, for by given by (4.6), let

box = Pxbo, ti=Pxt, i=1234. (7.2)



Mixed Methods on Distorted Grids 13

For any u € Vy, its restriction on K is uniquely determined by

=
=

Il
N

by,
. (7.3)

: n'i,|€

2 %

~.
Il

£
Il
o

i=1,2,3.4.

Since K is a unit square, the linear combination of t;, i = 1,2.3.4 are tensor product of one-
dimensional linear polynomials of # and § respectively. By definition [14][19], t;, i = 1,2,3.4 are
the bases for lowest-order Raviart-Thomas mixed finite orthogonal rectangular element bases on
the reference element K. But as long as P is not a constant matrix, t;, 2 = 1, 2. 3,4 do not satisfy
(4.2). Therefore, divV), # W), even though V, C V. The following lemma tells us how close the
two spaces Vj, and \th are related.

LEMMA 7.1. For any u € Vy,, there 1s unique u € V;, such that u and @ have exactly the same
nodal values, i.e., on the boundaries of each element K,

(u—u)-n; =0, i=1,2,34, VK €T, (7.4)
Further, iof we let
uv'=u-u (7.5)
then, for u € Vy,
Ju=ily = Jullo < CIV - uloh .
IV-(a—1u)lo = [[V-uo <V -ulloh.

Proof For u € Vy,, u; = u-n,|, is a constant, then, combining with Lemma 3.1.,

1 7 Ly
leil Je, lei Je,

Let

then, by (5.8) and (5.9),

4 4 B
u = Z (Z u,b,) = PK <ZLAL,—1>
K KeT, i el

KeT, \i=1

4 : ,
t;
= Z Pr Z&,— + (/ V-udK) bo.x
i [ KeT, VK

KeT,

(7.7)

= u-+u*.

By definition (4.10), (7.3) and the nodal bases relation (7.1), the first assertion (7.4) is proved.
Now, from (2.5), (3.2), (3.4) and (4.7), we have

K
K[lbo| = VBo By < o fla, 502 1 (s + 90 < Ch.
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Then,
lu*3 = (/ V- udK) /bo bod K
KeT
< Ch? Z “V‘“||0,K:C“V'“H0h2'
KeT,

For (7.6), from (7.7),
Vout| = ( v-udK)v-bo,
JK

and from (3.12),

1o - 1 |K|]
V.bg= -V -by=— |12
0 |K|{ J
Thus,
K)? o (2 +7%)
KQ/ bo)2dK = ¥K<7< 2,
K [ (V-bg)? /. 7 < 157 < Ch2,
for
- ) 1 o1, 10
[-impzak = [ [ - 924020 - 37 - 209 - )6 - )] des
JK
_ ﬁ2+7)
12

0 < J,=min{J} < Ch? and 0 < |3|. |y| < Ch?. Finally,
K

IVl = >

ket VK

< ORIVl = CIV - ulin.
KeT, '

V- udK)2/ (V -bg)2dK
K

Od

Apparently, Lemma 7.1. also implies that V;, C V. Now, we define another approximation

problem for (2.4). The numerical scheme to approximate (2.4) is to seek a pair (0, pp) € V, x W,
such that R

(K™t v) = (pn.V-v). veEVy,

(V-iy.w) = (f,w), w € W, (7.8)

Combined with inequality (5.2) and Lemma 5.1., Lemma 7.1 enables us to show that

THEOREM 7.2. Under the assumption 2.1., let the pair (u,p) be the solution of (2.4) and (0, py)
be the solution of (7.8). In addition, if h is sufficiently small, then,

lp—oullo < ClpllL + |Jull1) ~
lu—allo < Cllulh, (7.9)
[V-(u—uap)lo < C[V-ulih
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Proof The error equations of (2.4) and (7.8) take the form of

(K_l(u - ﬁh: {’) = (p - ﬁht V- {’)' v E Vht (7 10)
(V ’ (11 - ﬁh)alw) = 0. w € Wi, .
Since K is bounded, (7.10) yields
1 - _ . .
6||11—11h||% < (KM (u—1y),u —1y) (7.11)

= (IC*I(u - ﬁh), u— Hhu) + (IC*I(u - ﬁh); IIpu — ﬁh)-

Let u* be the O(h)-perturbation part of IIpu such that IIyu — u* € V),. Similarly, let u; be
the O(h)-perturbation part of u; such that uj, + uj € Vj. Thus, Lemma 7.1. gives rise to
lu*|lo < CRh||V -ul|p and |Juj|lo < CR||V - ullp. Rewrite the second term in (7.11) as

(K7 — @), yu — i) = (K7 (u — ). Tpu — u* — i) + (K7 (= i) u¥).

Since
(K™ (u = 1,), u")| < Cllu — iy lo[[u*[lo < Cllu — iy jo]|V - ullo A,

and IT,u — u* — @, € V}, the first equation of (7.10) gives rise to
(’C_l(u - ﬁh)7 Hhu —u* - ﬁh) = (P - ﬁh: V. (Hhu —u* - ﬁh))-
Then, (5.4) and the second equation of (7.10) lead to

|(p —pp. V- (Hhu —u* - ﬁh))| = |(p —pp. V- (u;k, - U*)) + (th —pp. V- U*)|
< C(Mplly + 1Qnp — 2rllo) IV - ullo b

Put the above results in (7.11), we derive that
la — a5 < € (Jlu = wllollulls + 1Qup = BrllollV - wllo + Allpll1 [V - wllo) A (7.12)

Next, we show that, if A is sufficiently small,

1Qup = pnllo < € (lhw = dnllo + A [lpllr) - (7.13)

If v € V,, is arbitrary, then, Lemma 7.1. implies that v = v + v*, v € V,, such that Iv¥lo <
CL||V - v||o and ||V - v*||o < Ch||V - v|p. Since v € Vy, (5.1) and the first equation of (7.10) yield

(th—ﬁh,V'V) = (p—ﬁh,V-V)
= (p - ﬁh: V- ‘7) + (p - ﬁh: V. V*) (714:)
(Kﬁl(u - ﬁh)a‘}) + (p —Pp V- V*)~

Triangal inequality and Lemma 7.1. yield
¥llo < l[vllo + CAIV - vllo < ClIvilzaiv)s

and
IV %" llo < CIIV -Vl b < CIVI i) b
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Applying Cauchy-Schwarz inequality to (7.14), we have

(@Qup =71 V3| < C (llw = dnllo + B2llpll + BlIQup = allo) Wl (7:15)

Then, (5.12) and (7.15) give rise to

|Qnp — drllo £ C <||Ul — apllo + R2(|pllr + R Qrp — ﬁh“o) .

and if & is sufficiently small, (7.13) holds. Again, if A is sufficiently small, (5.2), (5.11), (7.12) and
(7.13) yield the first two inequalities of (7.9). Finally, by (5.11) and the second equation in (7.10),

IVou—pllf = (V- (u—i), V- (u—Tu) + (V- (u—1). V- (u - i)
(V . (u - fl},/), V- (u - Hhu)) + (V . (ll - flh), V- fl;‘)
)
(u

+ (V : (11 - ﬁh)7 = (Hhu —up — ﬁ;;

IA
<
=

I
=g
<
)

I
=
£
+
<

ClIV - (u = ap)]ol[V - ully A,

Thus, Theorem 7.2. is proved.

REMARK 7.1. Throughout the argument of Theorem 7.1., we have tacitly assumed that (7.8) is
solvable. The existence and uniqueness of (7.8) can be established from (7.12) and (7.13). Since
for finite dimensional cases, uniqueness implies existence, we only need to demonstrate uniqueness.
Momentarily, we interpret (ay,py) in (7.8) as a solution pair of the homogeneous problem. If / is
sufficiently small, (7.13) yields

“ﬁh“o < CHﬁh“Ot

and (7.12), with f = 0, shows that
[anllo = 0.

Therefore, p;, and uy, vanish for small 4. Finally, the necessity of the discrete B-B inf-sup condition
for existence and uniqueness (e.g., see [13]) implies that the discrete B-B inf-sup condition holds
for V;, x W), also, if & is sufficiently small.

Similar to Corollary 6.2., we have the superconvergence result for pressure alone

COROLLARY 7.3.  Under the assumption of Theorem 7.2., then,

1Qnp = Bullo < C(Jlully + |V - ull1)”. (7.16)

Proof  Define the adjoint problem of (1.2)

K 'q —Vo, in Q.
V-q = Qup—pn in Q
o = 0, on I'y,
q-n = 0, on I'g,
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and assume that [|¢[|1. [[alli < Cl|Qnp — Pullo- Let q* be the O(h)-perturbation part of II;q such
that II,q — q* € V, and ||q*||o < Ch||V - q]lo by Lemma 7.1. Then,

(Qnp — ph V-q)=(Qup—0n V- -14q) = (p—pn, V- 11q)
(p—pn. V- (Mpa—4a*) +(p —pn. V- q¥)

= (K 'u—w,). g —q*) 4+ (p —pn. V- q*)

= (K 'u—-w,).1I,q—q) + (K 'q.u —ay)

— (KN u—1w,).q%) + (p — ph V-q*)

= (K (u—-w).1I,q—q) + (¢, V- (u—1y))

- (K u—a),q") + (p—pr. V- q*)

= (KT (u—-w). g —q) + (¢ — Q. V- (u— 1))

- (K u—a),q") + (p— pr. V- q*)

C([laflellall + IV - ullll¢ll + (hulls + 1201V - allo) 22

+ C1llQnp — PrllollV - qllo 7

If 7 is sufficiently small, then, (7.16) is valid.

1Qnp = Bull§

IN

8. Conclusion Remarks

(From Theorem 6.1. and Theorem 7.2., we can see that these two mixed method discretizations
(4.11) and (7.8) provide O(h)-order accurace for both pressure and velocity. The only shortcoming
of (7.8) is requiring & be sufficiently small. This provides theoretical support for the computational
results of Farmer et. al. [11] and partially for Russell’s (not the superconvergence for velocity) [16].
The discrete space Vp x W}, given in §4, not only serves as the theoretical foundation for both meth-
ods but also offers a reasonable solver to approximate (2.4). In computational implementations,
compared with the space Vj, x W, given in §7, the only draw back of method (4.11) is the small
amount of work to calculate the integrals of the quadratic terms element-wise in the mass matrix
formulation. The mass matrices of these two methods have exactly the same band structure.

These two methods would be superior in accuracy, to the corresponding triangular method, if
some superconvergence results for velocity can be derived, similar to [6][7][8][9] for orthogonal grid.
But this is beyond the purpose of this paper.

Finally, the piecewise constant Lagrange multipliers on the boundaries of elements are well
defined for our mixed finite element space defined in §4 and the Thomas’s [19] given in §7. Therefore,
the superconvergence results of the Lagrange multipliers will follow without any difficulties. The
great advantage of introducing Lagrange multipliers is that we can convert the saddle-point problem
(4.11) and (7.8) to positive definite algebraic systems. We refer to Arnold and Brezzi [1] for details
on the orthogonal rectangular grids.
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