PRECONDITIONING CELL-CENTERED FINITE DIFFERENCE
EQUATIONS ON GRIDS WITH LOCAL REFINEMENT

ILYA. D. MISHEV

ABSTRACT. We consider cell-centered finite difference discretizations with lo-
cal refinement for nonsymmetric boundary value problems. Preconditioners
with mesh independent convergence properties for corresponding matrices are
constructed. The method is illustrated with numerical experiments.

1. INTRODUCTION

This paper is devoted to construction of preconditioners of Bramble-Ewing-
Pasciak-Schatz (BEPS) type [3] for solving nonsymmetric boundary value problems
discretized by finite difference schemes on cell-centered grids with local refinement.
Approximation properties of cell-centered finite difference schemes are investigated
in [5], [11] for the symmetric problems, and in [7] for the nonsymmetric ones (see
also [4] and [9]). The theory for two-level preconditioners is developed in [3],[6] and
[8]. We extend the results obtained in [6] for nonsymmetric matrices without loss
of optimality of the preconditioners, i.e., convergence rate is mesh independent.

We consider the following convection-diffusion boundary value problem:
find a function u(x) which satisfies the following differential equation and boundary
condition:

(1.1) { div(—a(2) Vu(w) + b(x)u

u(

(z)) = flx) inQ
(x) = 0 on I'

where @ C R? is a bounded domain and ' = 9Q. The coefficients a(z) and
b(x) = (b1(w),b2(x)) are supposed to fulfill for some constants ag and Jo, 1 the
conditions

(i) a(z) > a9 >0, a(z) € WL(Q),

(it) | bi(2) |< Buy bi € WL (),

and in order to obtain coercivity it is sufficient that

(#ii) (V.b(x)) > 8o > 0.

The function f(x) is given in Q and f(z) € L*(Q).
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2. DESCRIPTION OF THE PRECONDITIONERS

Suppose the domain Q is divided in two parts £ and Q,, Q = Q; UQ,, QYNNG =
¢, where )y is the nonrefined and {2 is the refined subdomain. Let us consider
the composite grid w (see [7] for a detailed description) divided in the same way,
e, w=w Uws, wi C Q, wy C Qy. The nodes of w can be partitioned into
three groups. The first group consists of the nodes in the refined subdomain (2,
the second one consists of nodes in 27 next to the interface boundary, denoted by
v, and in the last are the rest of the nodes from (2. Correspondingly our finite
difference matrix A [7] admits a three-by-three block structure, i.e., we have

.411 A12 0 }wz
A= 4421 A22 Agg }’\, .
0 Agy Ass }M \’Y
We need also the s.p.d. coarse-grid matrix C', which is a approximation of matrix

A derived from the nonrefined finite difference scheme. We partition C' in the same
manner as A into a three by three block structure on the nonrefined mesh &

Cii Ciz 07 Y
C=|Cn Cy Cyu | tv
0 Cs Csz | twi\y

where &y = &N Q. Then the preconditioner (BEPS) is constructed as follows [3],
[6].
Given a vector v = [v; vy v3]?, we perform the following steps
(¢) solve in
Au?/f = V13

(77) compute the defect

d=v—A [ y(? -| = [ 772_/0421y1’7 -| b :

Lol [ v ]

(7ii) approximate the coarse-grid correction

(iv) find y{’ in wy such that

Apyl 4+ A = 0.

Then
[ yt + ol ]
y=B"lv= Y2
L ow

An 0 I [ A7'A; 0]
0 I ’
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where
ie ie oD Yo
- AC — Ac AC (& &
S, = Ay — A5 AT fa  Asg
AC C
Ay Ay
is the Schur complement of the coarse-grid matrix C.
Using the results in [7], we can easily prove the following auxiliary result.

Lemma 2.0.1. There exists two positive constants 41 and %y independent of h such
that

o I;QT Av‘z < vl Av
S SN 1
vT Ay < Favg Ava)? (yy Ay2)?,

where v = [ v ] Je\w

v tw

Our task is to estimate the eigenvalues of the preconditioned matrix B~' 4. We

have
I *
_1/_ .
b A‘[o (Sf,)lsz]

and from
MBT'4) = (LA((5.)7'52))

is clear that we have to evaluate the spectrum of ((50)’152).

We consider two cases for the matrices C' and C', respectively:

A _ At AT _ AtA”
1. C — T . C —NT 5
i.e., the symmetric part of 4 and A, and
2. C=AW, C =AW,

i.e., the part arising from the approximation of the diffusion term.

[

For the first case we have v7 Av = v7Cw. Using the results in [7], we get for the
second one

1:5'41(1)1/’2 < 7,7’21"402 < E’U;fi(l)ﬁg.

Therefore, there exist constants v, and -, such that the following inequalities hold:

(2.2) yvd Cvy < 0! Av

(2.3) 0" Ay < 7o (o] Cua)F (yF Cy)

We apply the technique proposed by Vassilevski [10] for the same problem and
prove the auxiliary result.

Lemma 2.0.2. Let the assumptions (2.2) and (2.3) be fulfilled. Then the following
spectral equivalence relations hold:

1T ~ « NI « <
(2.4) " 7,7;2) S(,vgz) < 1;52) 521)52) for all n(zz),
T ~2 T ~ T T ~ T
wg2) 52/052) < Q(’wgz) Sc’wgz) )%(’Ug% Sc’ugz) )% for all w(2‘2) and /052) .
Y1

Now we are ready to prove our main result.
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Theorem 2.0.1. The spectrum of B~'A lies in the following rectangle

{z: Rez>min(1,y,), Rez,|Imz| <max(1,75/v)}

Proof. We can rewrite (2.4) in the following way

T ~ T
A syl oL (ST 4 5) ol

oD o2 5D =
Hence
ReA[B'4] > min (1,ReA[S;152D
> min (1,>\ [S{.%% (ST + 8,) 501?]>

> min(l,7).
For the other bound we have

B 4]l < max (L[A[5715:]|)

and
8 _ o
r;éz)TS(,zr;?) m
Then ,
p[sors]| =[x [se s8] < 2.
O

Theorem 2.1 implies the following corollary.

Corollary 2.0.1. The the preconditioned G CG-LS from Azelsson [1], [2] for solv-
g the composite grid system with the preconditioner B will have rate of convergence
independent of h and jumps of the coefficient a(x).

3. NUMERICAL RESULTS

In this section we illustrate the convergence behavior of the two preconditioners
on two model examples. We solve the problem (1.1) in the domain Q = (0,1)x(0,1)
with the velocity field

(3.5) by = (14 zcos(a)) cos(a), by = (14 ysin(a))sin(a),
where o« = 159, The refined subdomain is 2, = {05<2 <1, 05< 2, <1}

Problem 1. Consider a smooth solution u(z) and a smooth coefficient a(x),

a(z) = [1 +10(27 + 1?%)]_1 s u(®) = o1 (a)va(ae),

0?2 wi—d; [rd=
bi(ai) = { sin (ﬂ'ﬁ) , x; € (0.875,1),

0, otherwise.
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TaBLE 1. Preconditioner with C' = (A + AT)/2

Problem 1 Problem 2
N h(,/h,f iter | arfac | iter | ar fac
3 4 10.0264 | 3 |0.0038
20 5 3 10.0098 | 3 |0.0038
7 4 10.0229 | 3 | 0.0036
3 3 10.0070 | 3 |0.0032
40 5 3 10.0055| 3 |0.0030
7 2 10.0009| 3 |0.0029
80 3 2 10.0006 | 2 | 0.0009
5 1 10.0001| 2 |0.0008
TABLE 2. Preconditioner with C' = A(")
Problem 1 Problem 2
ne | he/hy | iter | arfac | iter | arfac
3 4 10.0203 | 3 |0.0038
20 5 3 10.0093| 3 |0.0038
7 3 10.0082| 3 |0.0037
3 2 10.0009| 3 |0.0032
40 5 2 10.0006 | 3 |0.0030
7 2 10.0005| 3 |0.0029
80 3 2 10.0004| 2 |0.0010
5 1 10.0001| 2 |0.0008

We report the numbers of iterations for the preconditioned GCG-LS [1], [2].
The stopping criterion is ||riase||/||7 firsel| < 107, r = b — Ay where y is the
current iteration, and ar fac = (||’r;,,,s,,||/||r'/,;,‘5,||)1/mr. Our initial guess is found
by counstant interpolation of a coarse grid solution.

Problem 2. Consider a piecewise continuous solution u(x) and piecewise constant
coefficient a(w):
(1 = b1)(w2 = b2)

o) = | | oo

where

¢(x) =sin (grl) sin (zrz) . a(z) = { 1000, z; > (n.+3)h./2,

2 1, otherwise.

The results in Tables 1 and 2 show that the convergence rate of the consid-
ered algorithms is independent of a mesh size h, jumps of the coefficient a(x) and
smoothness of the solution. Although each iteration is relatively expensive (it in-
cludes solution of two problems on a refined grid and one problem on a coarse grid),
the overall algorithm is very efficient because we need only a few iteration.

The theoretical and numerical results are in accordance with the general theory
of overlapping domain decomposition. In fact we have overlap of the whole refined
subdomain and that explanes the very good numerical results we report.
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