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Abstract� A nonlinear di�erential system for describing an air�water system in groundwater
hydrology is given� The system is written in a fractional �ow formulation� i�e�� in terms of a
saturation and a global pressure� A continuous�time version of the �nite element method is
developed and analyzed for the approximation of the saturation and pressure� The saturation

equation is treated by a Galerkin �nite element method� while the pressure equation is treated
by a mixed �nite element method� The analysis is carried out �rst for the case where the

capillary di�usion coe�cient is assumed to be uniformly positive� and is then extended to a
degenerate case where the di�usion coe�cient can be zero� It is shown that error estimates of
optimal order in the L��norm and almost optimal order in the L��norm can be obtained in
the nondegenerate case� In the degenerate case we consider a regularization of the saturation
equation by perturbing the di�usion coe�cient� The norm of error estimates depends on the
severity of the degeneracy in di�usivity� with almost optimal order convergence for non�severe
degeneracy� Existence and uniqueness of the approximate solution is also proven�

�� Introduction

In this paper we develop and analyze a �nite element procedure for solving the following
�ow equations for an air�water system in groundwater hydrology� � � a� w ���� ����� ��	�


�����s��

�t

r � ���u�� � f�� x � �� t � �������

u� � �
kkr�
��

�rp� � ��g�� x � �� t � �������

where � � �d� d � � is a porous medium� � and k are the porosity and absolute perme�
ability of the porous system� ��� s�� p�� u�� and �� are the density� saturation� pressure�
volumetric velocity� and viscosity of the ��phase� f� is the source�sink term� kr� is the rel�
ative permeability of the ��phase� and g is the gravitational� downward�pointing� constant
vector� The most commonly encountered boundary conditions for groundwater reservoir
simulation are of �rst�type and second�type


p� � p�D�x� t�� x � ��� t � �������

u� � � � d��x� t�� x � ��� t � �������
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where p�D and d� are given functions� �� � �� � �� with �� and �� being disjoint� and
� is the outer unit normal to ���

In most previous work on the �ow simulation in groundwater reservoirs the air�phase
equation is eliminated by the assumption that the air�phase remains essentially at at�
mospheric pressure ����� ����� This assumption is reasonable in most cases because the
mobility of air is much larger than that of water� due to the viscosity di�erence between
the two �uids� When the air�phase pressure is assumed constant� the air�phase mass bal�
ance equation is eliminated� and thus only the water�phase equation remains� Namely�
the Richards equation is used to model the movement of water in groundwater reservoirs�
However� it provides no information on the motion of air� If contaminant transport is the
main concern and the contaminant can be transported in the air�phase� the air�phase needs
to be included to determine the advective component of air�phase contaminant transport
���� Furthermore� the dynamic interaction between the air and water phases is also impor�
tant in vapor extraction systems� Hence in these cases the coupled system of nonlinear
equations for the air�water system must be solved�

The purpose of this paper is to develop and analyze a �nite element procedure for ap�
proximating the solution of the coupled system of nonlinear equations for the air�water
system in groundwater hydrology� In the next section we derive a fractional �ow formu�
lation for equations ������������ Namely� the �ow equations and boundary conditions are
written in terms of a saturation and a global pressure� The fractional �ow approach is
motivated by petroleum reservoir simulation �	�� ����� The main reason for this approach
is that e�cient numerical methods can be devised to take advantage of many physical
properties inherent in the �ow equations� It should be emphasized that petroleum reser�
voir simulation is very di�erent from groundwater reservoir simulation� The �ow of two
incompressible �uids �e�g�� water and oil� is usually considered in the former case� while
the air phase is compressible in the latter case� Also� in petroleum reservoirs total �ux
type boundary conditions are conveniently imposed and often used� but in groundwater
reservoirs boundary conditions are usually speci�ed for each �uid as in ����� and ����� and
can be very complicated ����� It turns out that compressibility and various boundary con�
ditions complicate error analyses� Indeed� as shown here� if optimality is to be preserved
for the �nite element method under consideration� the standard error argument just fails
unless we work with higher order time�di�erentiated forms of mixed �nite element error
equations�

The weak forms of the pressure�saturation equations are de�ned in section three� Then
in section four we introduce a �nite element procedure for the saturation and pressure
equations� The saturation equation is approximated by a �nite element method� while the
pressure equation is treated by a mixed �nite element method� It is well known that the
physical transport dominates the di�usive e�ects in incompressible �ow� In the air�water
system studied here� the transport again dominates the entire process� Hence it is impor�
tant to obtain good approximate velocities� This motivates the use of the parabolic mixed
method� as in ���� ����� and ����� in the computation of the pressure and the velocity� Also�
due to its convection�dominated feature� more e�cient approximate procedures should be
used to solve the saturation equation� However� since this is the �rst time to carry out an
analysis for the present problem� it is of some importance to establish that the standard ��
nite element method for this model converges at an asymptotically optimal rate for smooth
problems� Characteristic Petrov�Galerkin methods based on operator splitting ����� trans�
port di�usion methods ����� and other characteristic based methods will be considered in
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forthcoming papers�
Asymptotical analyses for continuous�time �nite element methods are carried out �rst

for the case where the capillary di�usion coe�cient is assumed to be uniformly positive�
and then for a degenerate case where the di�usion coe�cient vanishes for two values of
saturation� It is shown that error estimates of optimal order in the L��norm and almost
optimal order in the L��norm can be obtained for the former case� see section �ve� The
analysis for the fully discrete version is more delicate than that for the semidiscrete version�
and will appear elsewhere� Furthermore� our techniques for the treatment of the parabolic
mixed �nite element method are very di�erent from those given in ���� and �����

In the degenerate case we consider a regularization of the saturation equation by per�
turbing the di�usion coe�cient to obtain a nondegenerate problem with smooth solutions�
It is shown that the regularized solutions converge to the original solution as the pertur�
bation parameter goes to zero with speci�c convergence rates given� The norm of error
estimates depends on the severity of the degeneracy in di�usivity� with almost optimal
order convergence for the degeneracy under consideration� see section six�

�� A fractional �ow formulation

In addition to ����� and ������ we impose the customary property that the �uid �lls the
volume


����� sa 
 sw � ��

and de�ne the capillary pressure function pc by

����� pc�sw� � pa � pw�

Introduce the phase mobilities

	� � kr�
��� � � a� w�

and the total mobility
	 � 	a 
 	w�

To devise our numerical method� as mentioned in the introduction we rewrite �����������
in a pressure�saturation formulation� For this� de�ne the global pressure �	� with s � sw


�����

p �
�

�
�pa 
 pw� 


�

�

Z s

sc

	a � 	w
	

dpc
d�

d�

�pw 


Z pc�s�

�

�	a
	

� �
p��c ���

�
d��

where pc�sc� � �� As usual� assume that �� depends on p �	�� Then we de�ne the total
velocity

����� u � �k	 �rp�G�s� p�� �

where

G�s� p� �
	a�a 
 	w�w

	
g�
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Now it can be easily seen that

uw � qwu
 k	aqwrpc � k	aqw �������a�

ua � qau� k	wqarpc 
 k	wqa�������b�

where q� � 	�
	� � � a� w� and �� � ��a � �w�g� Consequently�

���	� u � ua 
 uw�

Equations ����� and ����� can be manipulated using ���������	� to have the pressure equa�
tion

����� r � u � �
��

�t
�

aX
��w

�

��

�
�s�

���
�t


 u� � r�� � f�

�
�

and the saturation equation

�����

�
�sw
�t


r � �qwu
 k	aqw�rpc � ����

� �sw
��

�t
�

�

�w

�
�sw

��w
�t


 uw � r�w � fw

�
�

The terms u� � r��� � � a� w are e�ectively quadratic in the velocities� which are usually
small in almost all of the domain �	�� ��	�� and can be neglected� For the simplicity of error
analysis� we do so below� Also� the water phase is usually assumed to be incompressible�
Then ����� and ����� can be simpli�ed� However� we emphasize that these assumptions
can be easily removed with the techniques presented here� After introducing the following
notation


c�s� p� �
�s

�a

d�a
dp

� D�s� � �k	aqw
dpc
ds

�

f�p� �
fa
�a



fw
�w

� a�s� � k	�

�fw �
fw
�w

� b�s� p� � �k	aqw ���

equations ����� and ����� can be now written as

c�s� p�
�p

�t

r � u � f�p�������

u � �a�s� �rp�G�s� p�� �������

�
�s

�t
�r � �D�s�rs� qwu� b�s� p�� � �fw � s

��

�t
�������

The boundary conditions for the pressure�saturation equations become

p � pD�x� t�� x � ��� t � ��������

u � � � �d�x� t�� x � ��� t � ��������

s � sD�x� t�� x � ��� t � ��������

�D�s�rs� qwu� b�s� p�� � � � �dw�x� t�� x � ��� t � ��������
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where sD and pD are the transforms of pwD and paD by ����� and ������ and �d � da 
 dw�
The model is completed by specifying the initial conditions

p�x� �� � p��x�� x � ������	�

s�x� �� � s��x�� x � ��������

The later analysis in x� and x	 is given under a number of assumptions� First� the
solution is assumed smooth� i�e�� the external source terms are smoothly distributed� the
coe�cients are smooth� the boundary and initial data satisfy the compatibility condition�
and the domain has at least the regularity required for a standard elliptic problem to
have H�����regularity and more if error estimates of order greater than one are required�
Second� the coe�cients a�s�� �� and c�s� p� are assumed bounded below positively


� � a� � a�s� � a� ���������

� � �� � ��x� � �� ���������

� � c� � c�s� p� � c� ���������

Finally� the capillary di�usion coe�cient D�s� is assumed to satisfy

������ � � D� � D�s� � D� ���

While the phase mobilities can be zero� the total mobility is always positive ��	�� The
assumptions ������������� are physically reasonable� Although the reasonableness of the
assumption ������ is discussed in ����� the di�usion coe�cient D�s� can be zero in reality�
It is for this reason that section seven is devoted to consideration of the case where the
solution is not required smooth and the assumption ������ is removed� As a �nal remark�
we mention that for the case where point sources and sinks occur in a porous medium� an
argument was given in ���� for the incompressible miscible displacement problem and can
be extended to the present case�

�� Weak formulations

To handle the di�culty associated with the inhomogeneous Neumann boundary condi�
tion ������ in the analysis of the mixed �nite element method� let d be such that d � � � �d
and introduce the change of variable u � �u 
 d in equations ������������� Then the ho�
mogeneous Neumann boundary condition holds for �u� Thus� without loss of generality� we
assume that �d � �� Let

H�div��� � fv � �L�����d 
 r � v � L����� d � �� �g�

V � fv � H�div��� 
 v � � � � on ��g�

M � fw � H���� 
 w � � on ��g�

The weak form of ������������ on which the �nite element procedure is based is given
below� Let J � ��� T � �T � �� is the time interval of interest� The mixed formulation for
the pressure is de�ned by seeking a pair of maps fu� pg 
 J 	 V 
 L���� such that

���s�u� v�� �r � v� p� � �G�s� p�� v�� hpD� v � �i�� � �v � V�����a�

�c�s� p�
�p

�t
� 
� 
 �r � u� 
� � �f�p�� 
�� �
 � L���������b�
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where ��s� � a�s���� the inner products ��� �� are to be interpreted to be in L���� or
�L�����d� as appropriate� and h�� �i�� denotes the duality between H

������� andH
���������

The weak form for the saturation s 
 J 	M 
 sD is given by

�����
�
�
�s

�t
� v
�


�
D�s�rs� qw�s�u� b�s� p��rv

�
�
�
�fw� s

��

�t
� v
�
�hdw� vi�� � �v �M�

where the boundary condition ������ is used� Finally� to treat the nonzero initial conditions
imposed on s and p in ����	� and ������� we introduce the following transformations in
����� and �����


s�x� t� ��s�x� t� 
 s��x��

p�x� t� ��p�x� t� 
 p��x��

u�x� t� ��u�x� t� 
 u��x��

where u� � �a�s���rp��G�s�� p��� and �u � �a��s
s���r��p
p���G��s
s�� �p
p����u��x��
Then we have zero initial conditions for �s� �p� and �u� Thus� without loss of generality again�
we assume that

����� s� � p� � u� � ��

The reason for introducing these transformations to have zero initial conditions is to vali�
date equation ������ below�

�� Finite element procedures

Let � be a polygonal domain� For � � hp � � and � � h � �� let Thp and Th be
quasi�regular partitions into elements� say� simplexes� rectangular parallelepipeds� and�or
prisms� In both partitions� we also need that adjacent elements completely share their
common edge or face� Let Mh � W ������ �M be a standard C���nite element space
associated with Th such that

����� inf
��Mh

kv � 
k��q � C
�X

K

h�kK kvk
�
k���q�K

����
� k 
 �� � � q � ��

where hK �diam�K�� K � Th and kvkk�q�K is the norm in the Sobolev space W k�q�K� �we
omitK when k � � and kvkk�K � kvkk���K�� Also� let Vh
Wh � Vhp
Whp � V 
L���� be
the Raviart�Thomas�Nedelec ����� ����� the Brezzi�Douglas�Fortin�Marini ���� the Brezzi�
Douglas�Marini ��� �if d � ��� the Brezzi�Douglas�Dur�an�Fortin ��� �if d � ��� or the
Chen�Douglas ���� mixed �nite element space associated with the partition Thp of index
such that the approximation properties below are satis�ed


inf
��Vh

kv � 
k � C
�X

K

h�rp�Kkvk
�
r�K

����
� � � r � k� 
 �������

inf
��Vh

kr � �v � 
�k � C
�X

K

h�rp�Kkr � vk�r�K
����

� � � r � k��������

inf
��Wh

kw � 
k � C
�X

K

h�rp�Kkwk
�
r�K

����
� � � r � k��������
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where hp�K �diam�K��K � Thp � kvk � kvk�� k
�� � k�
� for the �rst two spaces� k�� � k�

for the second two spaces� and both cases are included in the last space� We are now in a
position to introduce our �nite element procedure�

The continuous�time �nite element method is given as follows� The approximation
procedure for the pressure is de�ned by the mixed method for a pair of maps fuh� phg 

J 	 Vh 
Wh such that

���sh�uh� v�� �r � v� ph� � �G�sh� ph�� v�� hpD� v � �i�� � �v � Vh�����a�

�c�sh� ph�
�ph
�t

� 
� 
 �r � uh� 
� � �f�ph�� 
�� �
 �Wh�����b�

where the approximate saturation sh 
 J 	Mh 
 sD is given by

���	�

�
�
�sh
�t

� v
�


�
D�sh�rsh � qw�sh�uh � b�sh� ph��rv

�

�
�
�fw � sh

��

�t
� v
�
� hdw� vi�� � �v �Mh�

The initial conditions satisfy

ph��� �� � ������a�

sh��� �� � ������b�

uh��� �� � ������c�

We now make a remark about existence and uniqueness of the approximate solution to
the nonlinear system ����� and ���	�� Introducing bases in Vh� Wh� and Mh� the problem
����� can be written in matrix form as

A�S�U �BP � G�S� P ������a�

C�S� P �
dP

dt

BtU � F �P ������b�

with P ��� given� where A�S� and C�S� P � are positive de�nite by ������ and ������ and S�
U � and P are the respective degrees of freedom of sh� uh� and ph� Substituting the relation

����� U � A�S���BP 
A�S���G�S� P ��

into ����b�� we see that

C�S� P �
dP

dt

 BtA�S���BP 
 BtA�S���G�S� P � � F �P ��

which� in turn� produces the system

������
dP

dt
� F��P� S��

Also� using ������� it follows from ���	� that

������
dS

dt
� F��P� S��

with S��� given� Now� ������ and ������ can be treated as a nonlinear system of ordinary
di�erential equations for �P� S�� which has a unique solution� at least locally� In fact� since
we assumed that the coe�cients in ����� and ���	� are smooth� the vector valued function
�F�� F�� is globally Lipschitz continuous� and the solution �P �t�� S�t�� exists for all positive
time t�
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�� Error analyses for the semi�discrete scheme

In this section we give a convergence analysis for the �nite element procedure ����� and
���	�� As usual� it is convenient to use an elliptic projection of the solution of ������ into
the �nite element space Mh� Let �s � �sh 
 J 	Mh 
 sD be de�ned by

�����
�
D�s�r�s� �s��rv

�

 �s� �s� v� � �� �v �Mh� t � J�

Set

����� � � s� �s� � � �s� sh�

Then it follows from standard results of the �nite element method ����� ����� ���� that

k�k
 hk�k� � C
�X

K

h
��k���
K ksk�k���K

����
�����a�

k�k��� � Chk��
�
logh��

��
kskk���������b�

where � � � for k � � and � � � for k � �� The same result applies to the time�
di�erentiated forms of ����� ����


����� k
��

�t
k
 hk

��

�t
k� � C

�X
K

h
��k���
K

�
ksk�k���K 
 k

�s

�t
k�k���K

�����
�

As for the analysis of the mixed �nite element method� we use the the following two
projections instead of the elliptic projections introduced in ���� and ����� So the present
analysis is di�erent from and simpler than those in ���� and ����� Each of our mixed �nite
element spaces �������� ����� ����� ���� has the property that there are projection operators
�h 
 H

����	 Vh and Ph � L��projection
 L����	Wh such that

kv ��hvk � C
�X

K

h�rp�Kkvk
�
r�K

����
� � � r � k� 
 �������

kr � �v ��hv�k � C
�X

K

h�rp�Kkr � vk�r�K
����

� � � r � k������	�

kw � Phwk � C
�X

K

h�rp�Kkwk
�
r�K

����
� � � r � k��������

and �see� e�g�� ���� ��	��

�r � �v � �hv�� w� � �� �w �Wh������

�r � v� w � Phw� � �� �v � Vh������

Set �p � Php� �u � �hu� and

� � u� �u� � � �u� uh�������

� � p� �p� � � �p� ph�������
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Note that� by ����� and ������

��x� �� � �������a�

��x� �� � �������b�

��x� �� � �������c�

Finally� we prove some bounds of the projections �s and �p� Let s � sh be the interpolant
of s in Mh� Then we see� by ������ ����b�� and an inverse inequality in Mh� that

k�sk��� �ks� �sk��� 
 ksk���

�ks� �sk��� 
 ks� sk��� 
 ksk���

�Ch��ks� �sk��� 
 ks� sk��� 
 ksk���

�Ch��
�
k�s� sk��� 
 ks� sk���

�

 ks� sk��� 
 ksk���

�Chk�logh����kskk���� 
 ksk����

where � is given as in ����b�� This implies that k�sk��� is bounded for su�ciently smooth
solutions since k 
 �� The same argument applies to k��s
�tk���� Next� note that� by the
approximation property of the projection Ph �����

k�ptk��� � Ckptk����

These bounds on �pt� r�s� and r���s
�t� are used below�
We are now ready to prove some results� Below � is a generic positive constant as small

as we please�

���� Analysis of the mixed method� We �rst analyze the mixed method ������ The
following error equation is obtained by subtracting ����� from ����� and applying ����� and
�����


���sh��� v�� �r � v� �� �
�
���sh�� ��s��u� v

�
� ���sh��� v�



�
G�s� p��G�sh� ph�� v

�
� �v � Vh�

������

�
c�sh� ph�

��

�t
� 

�

 �r � �� 
� ��f�p�� f�ph�� 
�



�
�c�sh� ph�� c�s� p��

�p

�t
� 

�

� �c�sh� ph�
��

�t
� 
�� �
 �Wh�

������

Lemma ���� Let �u� p� and �uh� ph� satisfy ����� and ������ respectively� Then

������ k
��

�t
���k � Ck

��

�t
���k�

Proof� ������ follows from setting 
 � ��
�t at t � � in ������ and using ����� and
������ �
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Lemma ���� It holds that

����	�

k
��

�t
�t�k� 


Z t

�

k
��

�t
���k�d�

� C�

�
k
��

�t
���k� 


Z t

�

�
k
��

�t
k� 
 k�k� 
 k

��

�t
k� 
 k�k� 
 k

��

�t
k� 
 k

���

�t�
k�
�
d�




Z t

�

�
k�k� 
 k�k� 
 �� 
 k

��

�t
k������k�k� 
 k�k��


 k
��

�t
k� 
 �� 
 k

��

�t
k���� 
 k

��

�t
k�����k

��

�t
k�
�
d�
�
� t � J�

where

C� � C��k
��s

�t
kL��J���� k

�p

�t
kL��J���� k

��p

�t�
kL��J���� kukL��J���� k

�u

�t
kL��J�����

Proof� Di�erentiate equations ������ and ������ with respect to t to have

������

�
��sh�

��

�t
� v�� �r � v�

��

�t

�
�
�
���sh�� ��s��

�u

�t
� v
�

�
�
��sh�

��

�t
� v
�
�
���
�t

�sh��� v
�



� �
�t
���sh�� ��s��u� v

�



� �
�t
�G�s� p��G�sh� ph��� v

�

�
���
�t

�sh��� v
�
� �v � Vh�

and

������

�
c�sh� ph�

���

�t�
� 

�

 �r �

��

�t
� 
� �

� �
�t
�f�p�� f�ph��� 


�

�
��c
�t

�sh� ph�
��

�t
� 

�



�
�c�sh� ph�� c�s� p��

��p

�t�
� 

�



� �
�t
�c�sh� ph�� c�s� p��

�p

�t
� 

�

�
�
c�sh� ph�

���

�t�
� 

�

�
��c
�t

�sh� ph�
��

�t
� 

�
� �
 �Wh�

Set v � ��
�t in ������ and 
 � ��
�t in ������ to �nd that

������
�
��sh�

��

�t
�
��

�t

�



�

�

d

dt
�c�sh� ph�

��

�t
�
��

�t
� �

��X
i��

Ti�
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where

T� � �
���
�t

�sh���
��

�t

�
� T� �

��G
�t

�s� p��
�G

�t
�sh� ph��

��

�t

�
�

T	 �
�
���sh�� ��s��

�u

�t
�
��

�t

�
� T
 �

�
�
��

�t
�sh��

��

�t
�s��u�

��

�t

�
�

T� � �
���
�t

�sh���
��

�t

�
� T� � �

�
��sh�

��

�t
�
��

�t

�
�

T
 �
� �
�t
�f�p�� f�ph���

��

�t

�
� T� �

� �
�t
�c�sh� ph�� c�s� p��

�p

�t
�
��

�t

�
�

T� � �
��c
�t

�sh� ph�
��

�t
�
��

�t

�
� T�� � �

�

�

��c
�t

�sh� ph�
��

�t
�
��

�t

�
�

T�� �
�
�c�sh� ph�� c�s� p��

��p

�t�
�
��

�t

�
� T�� � �

�
c�sh� ph�

���

�t�
�
��

�t

�
�

It is easily seen that

������ jT	j
 jT�j � C�

�
k�k� 
 k�k� 
 k

��

�t
k�
�

 �k

��

�t
k��

Next� note that

T� �
�

�
����sh�

��

�t
��

��

�t
��

�

�
����sh�

��s

�t
��

��

�t
��

so that

������ jT�j � C�

�
� 
 k

��

�t
k����

�
k�k� 
 �k

��

�t
k��

Similarly� we see that

jT�j � C�

�
k�k� 
 k�k� 
 k�k� 
 k�k� 
 k

��

�t
k�������


 k
��

�t
k� 
 k

��

�t
k� 
 k

��

�t
k�
�

 �k

��

�t
k��

jT
j � C�

�
k�k� 
 k�k� 
 k

��

�t
k� 
 k

��

�t
k�
�

 �k

��

�t
k��������

jT�j � C�

�
� 
 k

��

�t
k����

�
k�k� 
 �k

��

�t
k��������

jT
j � C�

�
k�k� 
 k�k� 
 k

��

�t
k� 
 k

��

�t
k�
�
�������

jT�j � C�

�
k�k� 
 k�k� 
 k�k� 
 k�k�����	�


 k
��

�t
k� 
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��

�t
k� 
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��

�t
k� 
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��

�t
k�
�

jT�j � C�

�
k
��

�t
k� 
 �� 
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��

�t
k���� 
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��

�t
k�����k

��

�t
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�
�������

jT��j � C�

�
� 
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��

�t
k���� 
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��

�t
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�
k
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�t
k��������
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jT��j � C�

�
k�k� 
 k�k� 
 k�k� 
 k�k� 
 k

��

�t
k�
�
�������

jT��j � C�

�
k
���

�t�
k� 
 k

��

�t
k�
�
�������

Now� integrate ������ on t� substitute ������������� into the resulting inequality� and use
������ and ������ to get the result ����	�� �

The error equations ������ and ������ are usually exploited to derive error estimates in
the parabolic mixed �nite element method ���� ����� ����� To handle the di�culty arising
from the combination of the Dirichlet boundary condition ����� and the nonlinearity of
the di�erential system ������������� we must use the time�di�erentiated forms ������ and
�������

���� Analysis of the saturation equation� We now turn to analyzing the �nite element
method ���	��

Lemma ���� Let s and sh satisfy ����� and ���	�� respectively� Then

������

Z t

�

k
��

�t
k�d� 
 kr��t�k�

� C�

�Z t

�

�
k�k� 
 k�k� 
 k�k� 
 k

��

�t
k� 
 k

��

�t
k� 
 k

��

�t
k�
�
d�




Z t

�

�
k�k�� 
 k�k� 
 k�k� 
 k

��

�t
k� 
 kr�k�k

��

�t
k����

�
d�


 k��t�k� 
 k��t�k� 
 k��t�k� 
 k��t�k� 
 k��t�k� 
 k��t�k�
�


 �

Z t

�

k
��

�t
k�d�� t � J�

where

C� � C�

�
k
�s

�t
kL��J���� kr

��s

�t
kL��J���� kr�skL��J���� kukL��J���

�
�

Proof� Subtraction of ���	� from ����� and use of ����� leads to the error equation

������

�
�
��

�t
� v
�

 �D�sh�r��rv� ��

�
�
��

�t
� v
�

 ��� v�

�
�
qw�sh��u� uh��rv

�


�
�qw�s�� qw�sh��u�rv

�

 �b�s� p�� b�sh� ph��rv��

���
�t

�s� sh�� v�

�
�
�D�s��D�sh��r�s�rv�� �v �Mh�

Take the test function v � ��
�t in ������ and write the resulting equation as follows


������
�
�
��

�t
�
��

�t

�



�

�

d

dt
�D�sh�r��r�� �

�X
i��

Bi 

�

�

��D
�t

�sh�r��r�
�
�
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where

B� �
�
� � �

��

�t
�
��

�t

�
� B� � �

�
qw�sh��u� uh��r

��

�t

�
�

B	 �
�
�qw�s�� qw�sh��u�r

��

�t

�
� B
 � �b�s� p�� b�sh� ph��r

��

�t

�
�

B� � �
���
�t

�s� sh��
��

�t

�
� B� � �

�
�D�s��D�sh��r�s�r

��

�t

�
�

It can be easily seen that

������ jB�j
 jB�j � C�

�
k�k� 
 k�k� 
 k

��

�t
k�
�

 �k

��

�t
k��

Next� to avoid an apparent loss of a factor h� we use integration by parts in time to see
that

B� ��
d

dt

�
qw�sh��u� uh��r�

�


��qw
�t

�sh��u� uh��r�
�



�
qw�sh�

�

�t
�u� uh��r�

�
�

so that

������

j
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�
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k��t�k� 
 k��t�k�




Z t

�
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�� 
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�
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�
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�

Analogously� we have
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�
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Finally� since

��D
�t

�sh�r��r�
�
� �

���
�t
D��sh�r��r�

�


���s
�t
D��sh�r��r�

�
�

we see that

������ j
��D
�t

�sh�r��r�
�
j � C�

�
� 
 k

��

�t
k����

�
kr�k��

Now� integrate ������ on t� substitute ������������� into the resulting inequality� and use
������� ������� and �����b� to get the result ������� �

���� L��error estimates� We now state the main result in this section� De�ne

E�t� �
X

K�Thp

hk
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p�K

�
kpkL����t�Hk���K�� 
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��p
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X
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�
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kL����t�Hk���K��

�
� t � J�

Theorem ���� Let �u� p� s� and �uh� ph� sh� satisfy ������ ����� and ������ ���	�� respec�

tively� Then� if the parameters hp and h satisfy

������ �h�d�� 
 h�d��p �
�
hk
���
p 
 hk

��

p 
 hk��
�
	 � as h	 ��

we have
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 kp� phkL��J �L�����


 k
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�
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 hks� shkL��J �H����� 
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�s
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�
�sh
�t

kL��J �L����� � CE�T ��

where C � C�C�� C�� T ��

Proof� Take a �C�
���multiple of ������� add the resulting inequality and ����	�� and use
����������� and ������ to obtain
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where C	 � C	�C�� C��� In deriving ������� we required that the � appearing in ������ be
su�ciently small that �C� 
 ��� � �
�� this increases C�� but not C�� Observe that

������ k��t�k� �

Z t

�

d

dt
k����k�d� � C

Z t

�

k�k�d� 
 �

Z t

�
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the same result holds for � and �� Apply ������ and ������ to see that
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We now make the induction hypothesis that
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�
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Then it follows from the Gronwall lemma that
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�t
kL��J �L����� 
 k
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�t
kL��J �L����� � C�E�T ��

where C� � C��C�� C�� C
�� Now the theorem follows from ����������� and ������� It thus
remains to prove the induction hypothesis ������� Obviously� it holds for t � � from the
choices of the approximate initial data� Set

F �t� �
�
kr�kL����t�L����� 
 k�kL����t�L����� 
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Since F �t� is continuous in t� there is a t� such that

F �t� � C
E�T �� � � t � t��

F �t� � C
E�T �� t � t��

We prove that t� � T � Exploiting ������ and the inverse inequalities in Mh and Wh

k
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�d��k
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we see that
F �t� � �C�

�C��h
�d�� 
 h�d��p �E��T �� � � t � t��

By the relation ������� h can be selected to be su�ciently small so that

F �t�� �
C


�
E�T ��

Therefore� t� � T � i�e�� ������ holds� �

We remark that� if h and hp are of the same order as they tend to zero� then

�h�d�� 
 h�d��p �
�
hk
���
p 
 hk

��

p 
 hk��
�
� Ch�d��

�
hk
��


 hk��
�
�

since k�� � k� 
 �� Since k 
 ��

h�d��hk�� 	 � as h	 �� d � �� ��

Also� if k�� 
 �� we see that

h�d��hk
��

	 � as h	 �� d � �� ��

Thus� for ������ to be satis�ed� we assume that k�� 
 �� This excludes the mixed �nite
element spaces of lowest order� i�e�� k�� � �� The lowest order case has to be treated using
di�erent techniques� If the nonlinear coe�cients ��s� and c�s� p� in ����� are projected
into the �nite element space Wh� the technique developed in ��� can be used to handle the
lowest order case� We shall not pursue this here�

���� L��error estimates� The main objective of this paper is to establish the L��error
estimates given in Theorem ���� For completeness� we end this section with a statement
of L��estimates for the errors s� sh and p� ph in the two�dimensional case�

Theorem ���� Assume that �p� s� and �ph� sh� satisfy ������ ����� and ������ ���	�� respec�
tively� and the parameters hp and h satisfy ������� Then

kp� phkL��J �L����� � C log h��p
�
E�T � 
 hk

��

p kpkL��J �Hk��������

�
�������

ks� shkL��J �L����� � C
�
log h��

���
E�T � 
 hk��kskL��J �Wk��������

�
�������

where C � C�C�� C�� T �� � � � for k � �� and � � �
� for k � ��

Proof� First� it follows from the approximation property of the projection Ph ���� that

������ kp� �pk��� � Chk
��

p

�
logh��p

����
kpkk�����

Also� from ���� Lemma ���� and ������� we see that

k�k��� � C logh��p k��sh�� 
 ���s�� ��sh��u
 ��sh�� 
 �G�sh� ph��G�s� p��k�

so that� by Theorem ����

k�kL��J �L����� � C logh��p E�T ��

This� together with ������� implies ������� Finally� apply the embedding inequality ����

k�k��� � C
�
logh��

����
k�k��

����b�� and ������ to obtain ������� �
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�� A degenerate problem

In this section we consider a degenerate case where the di�usion coe�cient D�s� can be
zero� Since the pressure equation is the same as before� we here focus on the saturation
equation� For simplicity we neglect gravity� Then the saturation equation ������ can be
written as

�	��� �
�s

�t
�r � �D�s�rs� qw�s�u� � �fw � s

��

�t
� �x� t� � �
 J�

For technical reasons we only consider the Neumann boundary condition ������


�	��a� �D�s�rs� qw�s�u� � � � �dw�x� t�� �x� t� � ��
 J�

and the initial condition is given by

�	��b� s�x� �� � s��x�� x � ��

where � � s��x� � �� x � �� We impose the following conditions on the degeneracy of
D�s�


�	��� D�s� 


�	

	�

��jsj
�� � � � s � ���

��� �� � s � ���

�	j�� sj�� � �� � s � ��

where the �i are positive constants and �j and �j �j � �� �� satisfy the conditions


� � �� � �
� � �� � �� � � �j � ��

Di�culties arise when trying to derive error estimates for the approximate solution of
�	��� and �	��� with D�s� satisfying the condition �	���� To get around this problem� we
consider the perturbed di�usion coe�cient D��s� de�ned by ����� ����� ����

D��s� � maxfD�s�� ��g�

where � � � and � � maxf��� ��g� Since the coe�cient D��s� is bounded away from zero�
the previous error analysis applies to the perturbed problem


�
�s�
�t

�r � �D��s��rs� � qw�s��u� � �fw � s�
��

�t
� �x� t� � �
 J��	��a�

�D��s��rs� � qw�s��u� � � � �dw�x� t�� �x� t� � ��
 J��	��b�

s��x� �� � s��x�� x � ���	��c�

We now state a result on the convergence of s� to s as � tends to zero� Its proof is
given in ���� for the case where dw � � and the right�hand side of �	��� is zero� and can be
easily extended to the present case�
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Theorem ���� Assume that D�s� satis�es �	��� and there is a constant C� � � such that

�	��� C�jqw�s��� qw�s��j
� � �D�s���D�s��� �s� � s��� � � s�� s� � ��

where

D�s� �

Z s

�

D���d��

Then there is C independent of �� s� and � such that

�	�	� jjs� s�jjL����J �L������� � C��

As shown in ����� the requirement �	��� is reasonable� We now consider the continuous�
time �nite element method for �	���� Let Mh be the standard C� piecewise linear polyno�
mial space associated with Th� due to the roughness of the solution to �	��� and �	���� no
improvements in the asymptotic convergence rates result from taking higher order �nite
element spaces� Also� we extend the domain of D� and qw as follows


D���� �

�
D���� if � 
 ��

D����� if � � ��

and

qw��� � �� �� � ���� �� � ������

The �nite element solution sh 
 J 	Mh to �	��� is given by

�
�
�sh
�t

� v
�


�
D��sh�rsh � qw�sh�u�rv

�
�	��a�

�
�
�fw � sh

��

�t
� v
�
� hdw� vi�� � �v �Mh�

sh��� �� � Phs
���	��b�

where Ph is the L��projection onto Mh� The following theorem states the convergence of
sh to s� For �	��� below to be satis�ed� we need that the perturbation parameter � satis�es
the relation � � O�h���� where 	� is given below�

Theorem ���� Let s and sh satisfy �	���� �	��� and �	���� respectively� and let the hy�

potheses of Theorem 	�� be satis�ed� Then there is C independent of �� s� and � such

that

�	��� jjs� shjjL����J �L������� � Ch��
�
log h��

���
�

where 	� � �� 
 ���
�� 
 ��
 ��� and 	� � �
��� 
 ���� 
 ����

The proof can be carried out as in ����� ����� and ����� we omit details�
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