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Abstract� An explicit �nite element method is used to solve the linear convection�di�usion�
reaction equations governing contaminant transport in ground water �owing through an adsorbing
porous medium� The use of discontinuous �nite elements for the convective part of the equations

combined with mixed �nite elements for the di�usive part renders the method for the concentration
solution� which displays strong gradients� trivially conservative and fully parallelizable� We carry
out a stability and convergence analysis� In particular� the method is proven to satisfy a maximum
principle� to be total variation bounded� and to converge to the unique weak solution of the equations�
Special attention is paid to the convective part of the equations� Numerical simulations are presented
and discussed�
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�� Introduction� In this paper we propose and analyze a �nite element method
for solving the linear convection�di�usion�reaction equation�

�����
�

�t
��u� 	 div�V u�Dru� 
 �Ku�

which describes the transport of a solute in a �uid phase �owing through a porous
medium ��
� ���
� In this case� u 
 u�t� x� y� is the concentration of the solute in
the �uid phase for which we solve ������ V 
 V �t� x� y� is the Darcy velocity of
�uid� � is the volume fraction�dependent constant� D is the di�usion constant� and
K 
 K�t� x� y� � � is the �rst�order chemical reaction rate� This equation� while
formally parabolic� is more nearly hyperbolic in practice ��
� In recent years many
�nite element methods have been proposed to solve this important partial di�erential
equation� The classes of optimal spatial methods and characteristic methods have
been extensively studied ��
� ��
� ���
� ���
� ���
� for example� However� all these �nite
element methods are de�ned by taking advantage of the parabolicity of the equation
for the concentration u� As a result� the solution of the di�erential equation is re�
quired very smooth in the derivation of error estimates� and the constants for the
error estimates blow up as the coe�cient of the di�usion term goes to zero�

In this paper we propose and analyze a �nite element method for numerically
solving ������ It is similar to a �nite element method introduced in ��
� ��
� ��
� ���
�
���
 in that we approximate the convective part of the equation using a upwinding
discontinuous �nite element method or a upwinding �nite volume method ���
� ���
�
We use� however� a mixed �nite element method for the di�usive part of ����� ��
�
The main advantages of this method are that it is trivially conservative and fully
parallelizable� and that it can capture discontinuities within a couple of elements
without producing spurious oscillations�
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A stability and convergence analysis is carried out here for the �nite element
method for equation ����� in two space dimensions� While a stability analysis was
completed for the similar approach for the two�dimensional semiconductor device equa�
tions in ��
� we are here able to prove much stronger results than those obtained in ��
�
Namely� besides a strong maximum principle� the boundedness of the total variation
and the modulus of continuity in time of the approximate solution is proven here� only
an estimate on the weak derivatives of the approximate solution is given in ��
� These
properties su�ce to show that the numerical method converges to the weak solution
of the di�erential equation� in ��
� however� convergence of the approximate solutions
to the weak solution is proven under the assumption that there is a convergent subse�
quence� It is also emphasized that this paper contains the �rst stability analysis for the
two�dimensional equation ����� with the di�usion term included and the �rst conver�
gence analysis for ����� with the boundary conditions� The properties derived in this
paper will be exploited in a forthcoming paper where error estimates will be obtained
with minimum requirements on the solution and with the property that the constant
for the error estimates does not involve the small di�usion coe�cient� Especially� the
error estimates apply to the case of D equal to zero�

The equation ����� is completed by specifying the boundary and initial conditions�

�u��� 
 �� �x� y� � ���� t � J�����a�

u 
 uD� �x� y� � ���� t � J�����b�

u��� x� y� 
 uinit�x� y�� �x� y� � ������c�

where J 
 ��� T �� � 
 ��� ���� �� 
 ������� with ������� 
 � and �� containing
the endpoints of its segments� and � denotes the normal unit�vector to ��� The
boundary conditions need to be modi�ed properly in the case of D 
 �� Namely�
only the in�ow boundary condition is imposed for the concentration �see ����� below��
Moreover� in this case� note that� while the equation ����� is analogous to a classical
conservation law� the value of the Darcy velocity V at a point �t� x� y� contains the
information of all the values of the solution u�t� �� �� on �� Hence a perturbation of
the solution u at any given point of the domain has a global e�ect immediately� This
is in sharp contrast with the classical conservation laws where local perturbations of
the solution have a local e�ect in �nite time�

The rest of the paper is organized as follows� The �nite element method is de�ned
in the next section� Then� in x� we state and discuss our main results on a maximum
principle �Theorem ����� a total variation boundedness of the scheme �Theorem �����
continuity with respect to data �Theorem ����� and convergence to the weak solution
�Theorem ����� The proofs of these properties are carried out in x�� x�� x�� and
x�� respectively� Numerical results are displayed in x�� These numerical results are
devised to test the performance of the method and to indicate the order of convergence�
Finally� a concluding remark is given in x��

�� The �nite element method� In this section we de�ne the �nite element
method for approximating the solution of the di�erential system ������ Toward that
end� let fxi����gnxi�� � fyj����gnyj�� be a partition of � with x��� 
 y��� 
 � and

xnx���� 
 yny���� 
 � and let ftngnTn�� be a partition of ��� T 
 with t� 
 � and
tnT 
 T � Then� we introduce the following notation

xi 
 �xi���� 	 xi�������� yj 
 �yj���� 	 yj��������

Ixi 
 �xi�����xi������ Iyj 
 �yj�����yj������



�

�xi 
 xi���� � xi����� �yj 
 yj���� � yj�����

Jn 
 �tn� tn���� �tn 
 tn�� � tn�

�x 
 max
��i�nx

�xi� �y 
 max
��i�ny

�yi�

�t 
 max
��n�nT

�tn� h 
 maxf�x��yg�

We tacitly assume that each exterior edge has imposed on it either Dirichlet or Neu�
mann conditions� but not both� Associated with these partitions� we introduce the
spaces

Qh 
 fv � H�div� �� � vjIxi �Iyj 
 �a�i�j 	 a�i�jx� a
�
i�j 	 a�i�jy�� a

k
i�j � IR�

i 
 �� � � � � nx� j 
 �� � � � � ny� v � �j��� 
 �g�
Wh 
 fw � L���� � wjIxi �Iyj � P ��Ixi � Iyj �� i 
 �� � � � � nx� j 
 �� � � � � nyg�
W�t 
 fw right continuous � wjJn � P ��Jn�� n 
 �� � � � � nT � �g�

If v � Qh� vi�����j and vi�j���� denote v�xi����� yj� and v�xi� yj������ respectively� If
w �Wh� then wi�j represents the constant value w�x� y�� �x� y� � Ixi � Iyj � w

n indicates

the constant w�t�� t � Jn� if w � W�t� For notational and expositional convenience�
let �x� 
 �x�� �xnx�� 
 �xnx � �y� 
 �y�� �yny�� 
 �yny � �xi���� 
 ��xi 	
�xi������ i 
 �� � � � � nx� �yj���� 
 ��yj 	 �yj������ j 
 �� � � � � ny� and � 
 ��

Finally� de�ne the notation v� 
 maxfv� �g and v� 
 minfv� �g�
Let PQh

� PWh
� and PW�t denote the L��projections into Qh� Wh� and W�t�

respectively� To discretize ������ we �rst discretize the data as follows�

uinit�h 
 PWh
uinit�����a�

uD��t 
 PW�tuD�����b�

Vh 
 PQh
V�����c�

The subscript h is omitted below when no ambiguity occurs� Then the approximate
solution uh � W�t�Wh is required to satisfy the equation� for n 
 �� � � � � nT ��� i 

�� � � � � nx� and j 
 �� � � � � ny�

un��
i�j � uni�j
�tn

	
fn��i�����j � fn��i�����j

�xi
	
fn��i�j���� � fn��i�j����

�yj

� D

�xi

�
qn��i�����j � qn��i�����j

�
� D

�yj

�
qn��i�j���� � qn��i�j����

�

 �Kn

i�ju
n
i�j �

����a�

where

fn��i�����j 
 uni���jV
n�

��i�����j 	 uni�jV
n�

��i�����j �����b�

fn��i�j���� 
 uni�j��V
n�

��i�j���� 	 uni�jV
n�

��i�j���������c�

and the function qh 
 �q�� q�� �W�t �Qh is the solution of

�qh�t
n�� vh� 
 ��uh�tn�� div vh� 	 huD��t� vh � �i��D � 	vh � Qh�

After the mass matrix has been mass�lumped ���
� the expression for the degrees of



�

freedom of qh is taken as follows�

qn��i�����j 
 �uni�j � uni���j���xi���������d�

qn��i�j���� 
 �uni�j � uni�j�����yj���������e�

Finally� the Neumann boundary condition ����a� is discretized by the usual re�ection
principle� and on ��� uh is de�ned by uD��t� This implies that� if �x���� yj� lies on
the Neumann boundary ���� u

n
��j in ����� and the subsequent analysis is calculated

by

un��j 
 un��j �

if it is on the Dirichlet boundary ���� u
n
��j is computed by

un��j 
 unD��t�x���� yj��

Similar extensions hold for uni��� u
n
nx���j � and uni�ny�� in ����� and the subsequent

analysis�
Note that the lowest�order Raviart�Thomas mixed method ���
 over rectangles

has been used in ����a�� Since the elements in Qh have continuous normal compo�
nents on interelement edges� the numerical �uxes fn��i�����j and f

n
��i�j���� in ����b� and

����c� are well de�ned� Furthermore� if appropriate approximations of the coe�cient
Vh are introduced and the mass�lumping technique is used as in ����d� and ����e��
the conservative scheme ����a� can be deduced from the discontinuous �nite element
method ��
� ���
 or from the �nite volume method ���
� ���
 combined with the mixed
�nite element method ���
� Finally� the scheme applies to the case of D 
 ��

The following approximation properties are used later ���
� ���
�

jjV n
h jjL�	�
 
 C�jjV njjL�	�
�����a�

jj div V n
h jjBV 	�
 
 C�jj div V njjBV 	�
�����b�

for each n� Moreover� since the operator PQh
is locally de�ned� we have for each n�

����c� jjV n � V n
h jjL�	Ixi �I

y
j 


 C���xi 	�yj�jjrV njjL�	Ixi �I

y
j 

�

for i 
 �� � � � � nx� j 
 �� � � � � ny� where C� is independent of i and j�

�� Stability and convergence results� In this section we state and discuss
the stability and convergence results of the scheme ������ Let QT 
 T ��� We assume
that the data satisfy the following conditions�

uinit� uD � ��� u�
�����a�

V � �L��QT ��
�� rV � �L��QT ��

������b�

uD � L��J �BV �����������c�

uD � L������BV �J�������d�

div V � L��J �BV ���������e�

K � ���K�
�����f�

uinit � BV ���� K � L��J �BV ���������g�

For expositional convenience� let

V �
� 
 C�jjV�jjL�	QT 
� V �

� 
 C�jjV�jjL�	QT 
� V �
D 
 C�jj div V jjL�	QT 
�



�

Theorem ��� �Stability�� Suppose that ����a�� ����b�� ����f�� and for n 

�� � � � � nT � � the following Courant�Friedrichs�Lewy �CFL� condition are satis�ed�

�tn 
 �

D�
ij 	 �V �

� ��xi 	 �V �
� ��yj

� i 
 �� � � � � nx� j 
 �� � � � � ny�
�����

where D�
ij 


D
�xi

�
�

�xi����
	 �

�xi����

�
	 D

�yj

�
�

�yj����
	 �

�yj����

�
	K�� Then

� 
 uh�t� x� y� 
 etV
�
Du�� �t� x� y� � QT ������

In addition� if

����� �div V n
h �ij 	Kn

i�j � ��

then we have

����� � 
 uh�t� x� y� 
 u�� �t� x� y� � QT �

Obviously� since K � �� ����� is satis�ed if V� is nondecreasing in x and V� is
nondecreasing in y� or div V is uniformly positive by the de�nition of PQh

���
�
De�ne� for n 
 �� � � � � nT �

jjunhjjBV 	�
 


nxX
i��

nyX
j��

�juni���j � uni�j j�yj 	 juni�j�� � uni�j j�xi
�
�

and set

�x� 
 minf�xi� i 
 �� � � � � nxg� �y� 
 minf�yj � j 
 �� � � � � nyg�
Theorem ��� �TVB�� Assume that ����� and for n 
 �� � � � � nT�� the following

CFL condition are satis�ed�

�tn 
 �

D�
ij 	 �V �

� ��x� 	 �V �
� ��y�

� i 
 �� � � � � nx� j 
 �� � � � � ny�
�����

Then there is a constant C� depending solely on the data and T such that

jjuhjjL�	J�BV 	�

 
 C�

�
� 	 jjKjjL�	J�BV 	�



�����

	D

�
�

�x�
	

�

�y�

�
jjuDjjL�	J�BV 	���



�
�

We remark that either in the case of D 
 � or in the case of uD being constant
in space� ����� shows that the total variation of the solution uh is bounded� The
latter case means that the total variation of the solution uh in the one�dimensional
case is always bounded since uD is constant in this case� The numerical experiments
given in x� show that the bounds in ����� and ����� below are sharp when D �
 � and
jjuDjjL�	J�BV 	���

 �
 �� in the sense that the left�hand sides of the inequalities �����
and ����� blow up as �x� or �y� converges to zero �see Example � in x���

In the following� vh stands for the approximate solution of ����� and ����� with
the data vinit and vD satisfying the conditions ����a�� ����c�� and ����d��



�

Theorem ��� �Continuity with respect to data�� Assume that the hy�
potheses of Theorem ��� are satis�ed for both sets of data� Then there exists a constant
C� depending only on the data and T such that

jjuh � vhjjL�	J�L�	�

 
 C�

��
� 	D

�
�

�x�
	

�

�y�

��
� jjuD � vD jjL�	J�L�	���

 	 jjuinit � vinitjjL�	�


�
�

�����

As for the convergence result� we now consider a simple case where D 
 �� In this
case Theorem ��� implies the total variation boundedness of the numerical scheme as
remarked above� which together with Theorem ��� yields the following convergence
result �see x��� For nonzero D� concrete error estimates for the numerical scheme �����
will be obtained in the work mentioned earlier�

In the simple case where D 
 � the boundary conditions ����a� and ����b� are
replaced by the following in�ow boundary condition�

����� u 
 uD� �x� y� � ���� t � J�

where ��� 
 f�x� y� � �� � �V � ���x� y� � �g� We now extend the numerical �ux
introduced in ����� to the general setting�

f�uleft� uright��� 
 uleft�
� 	 uright�

��

Also� we de�ne

C��
�
��� T �� �

�

 f� � C� �J ��

�
� ��T� x� y� 
 �� �x� y� � �g�

Then a weak solution of the di�erential equation given by ����� with D 
 �� ������ and
����c� is de�ned to be a function u � L��J �BV ���� satisfying the weak formulation�

�u� �t�QT 	 �uV�r��QT 	 �uinit� ��ft��g��

� �f�u� uD�V � ��� ��J�	��
 � �Ku���QT 
 �� 	� � C��
�
��� T ���

�
�

������

where ��� ��S denotes the inner product in L��S� for some set S� Note that the role
of the �ux f is to select the correct boundary value for u� and that the smoothness
hypothesis on V guarantees the uniqueness of weak solution to �������

Theorem ��� �Convergence�� Assume that the hypotheses of Theorem ���
are satis�ed� Then the sequence fuhgh�� produced by the scheme ����� converges in
L��J �L����� to the unique solution of ������� Moreover� u � L��J �BV �����

�� Proof of the maximum principle� In this section we prove Theorem ����
Let

Un 
 maxfuni�j � � 
 i 
 nx 	 �� � 
 j 
 ny 	 �g�
Lemma ���� Suppose that

�� �tn

�xi
�V n�

��i�����j � V n�

��i�����j��
�tn

�yj
�V n�

��i�j���� � V n�

��i�j�����

� D�tn

�xi

�
�

�xi����
	

�

�xi����

�
� D�tn

�yj

�
�

�yj����
	

�

�yj����

�
�Kn

i�j�t
n � ��

�����

Then� if

����� � 
 uni�j � � 
 i 
 nx 	 �� � 
 j 
 ny 	 ��



�

we have� for � 
 i 
 nx 	 � and � 
 j 
 ny 	 ��

����� � 
 un��
i�j 
 Un�� 


�
� 	�tn max

Ixi �I
y
j

fjdiv V n
h jg

�
Un�

In addition� if

����� �div V n
h �ij 	Kn

i�j � ��

we have

����� � 
 un��
i�j 
 Un� � 
 i 
 nx 	 �� � 
 j 
 ny 	 ��

Proof� For i 
 �� � � � � nx and j 
 �� � � � � ny� it follows from ����� that

un��
i�j 
 An

i���ju
n
i���j 	An

i�j��u
n
i�j�� 	Bn

i�ju
n
i�j 	En

i���ju
n
i���j 	En

i�j��u
n
i�j���

where

An
i���j 
 ��tn

�xi
V n�

��i�����j 	
D�tn

�xi�xi����
�

An
i�j�� 
 ��tn

�yj
V n�

��i�j���� 	
D�tn

�yj�yj����
�

Bn
i�j 
 �� �tn

�xi

�
V n�

��i�����j � V n�

��i�����j

�
� �tn

�yj

�
V n�

��i�j���� � V n�

��i�j����

�
� D�tn

�xi

�
�

�xi����
	

�

�xi����

�
� D�tn

�yj

�
�

�yj����
	

�

�yj����

�
�Kn

i�j�t
n�

En
i���j 


�tn

�xi
V n�

��i�����j 	
D�tn

�xi�xi����
�

En
i�j�� 


�tn

�yj
V n�

��i�j���� 	
D�tn

�yj�yj����
�

Then� by ������ we see that

An
i���j � A

n
i�j��� B

n
i�j � E

n
i���j � E

n
i�j�� � ��

so that� by ������

un��
i�j � �� i 
 �� � � � � nx� j 
 �� � � � � ny�

Furthermore� by the de�nition of Qh and ������

un��
i�j 
��� �tn

�xi
�V n

��i�����j � V n
��i�����j�

� �tn

�yj
�V n

��i�j���� � V n
��i�j������Kn

i�j�t
n
�
Un



�
���tn�div V n

h �i�j �Kn
i�j�t

n
�
Un�

which implies ����� immediately since K � �� and together with ����� yields ������
Lemma ���� If for i 
 �� � � � � nx and j 
 �� � � � � ny

����� �tn 
 �

D�
ij 	 �jjV n

h�jjL�	�
��xi 	 �jjV n
h�jjL�	�
��yj

�

where D�
ij is de�ned as in Theorem ���� then ����� is satis�ed�

The lemma follows obviously from the inequality ����� and the de�nition of D�
ij �



�

We are now ready to prove Theorem ��� by means of induction on n�
Proof of Theorem ���� For n 
 �� the results ����� and ����� follow trivially from

the assumption ����a�� Let the results be true up to n� By Lemma ��� and ����a�� �����
clearly implies ������ Then iterating ����� on n and using the induction hypothesis
and ����b� yield that

� 
 un��
i�j 
 et

n��V �
DU�� i 
 �� � � � � nx� j 
 �� � � � � ny�

Consequently� by ����a�� ����� follows�
If ����� is true� so is ������ Then� in this case� it follows from ����� and the

induction hypothesis that

� 
 un��
i�j 
 Un 
 U�� i 
 �� � � � � nx� j 
 �� � � � � ny�

which implies ����� by ����a��

�� Proof of total variation boundedness� In this section we prove Theorem
���� In order to �x ideas� let

��� 
 f�x� y� � x 
 �� � � y � �g � f�x� y� � x 
 �� � � y � �g�
��� 
 �� n ����

other cases can be treated similarly�
Lemma ���� For i 
 � and j 
 �� � � � � ny�

un��
��j � un��

��j 
un��j � un��
��j 	

�
��tn

�x�
V n�

������j 	
D�tn

�x����x�

�
�un��j � un��j�

	

�
��tn

�yj
V n�

����j���� 	
D�tn

�yj�����yj

�
�un��j�� � un��j���

	

�
�� �tn

�x�
V n�

������j 	
�tn

�yj
V n�

����j���� �
�tn

�yj
V n�

����j����

� D�tn

�x��x���
� D�tn

�yj�yj����
� D�tn

�yj�yj����

�
�un��j � un��j�

	

�
�tn

�yj
V n�

����j���� 	
D�tn

�yj�yj����

�
�un��j�� � un��j���

�
�
�tn

�x�

�
V n
������j � V n

������j

�
	

�tn

�yj

�
V n
����j���� � V n

����j����

��
un��j

	

�
��tn

�yj
V n�

����j���� 	
D�tn

�yj�yj����

�
�un��j�� � un��j�
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Similar expressions hold for un��
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Proof� From ������ we see that
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Proof� From ����b� we see that the coe�cients of the terms between the brackets

fg in the expressions of Lemma ��� are nonnegative� Then the estimate of a typical
term is given as follows�
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Thus simple algebraic manipulations and use of ����c� yield the desired result�

We are now in a position to prove Theorem ����
Proof of Theorem ���� Note that the CFL condition ����� implies ����b� by ����a��

Then the result ����� follows by iterating on n the inequality in Lemma ��� and using
Theorem ��� and ����b��

�� Proof of continuity with respect to data� In this section we prove Theo�
rem ��� and a result on equicontinuity in time of the approximate solution� Proposition
��� below� We recall that vh stands for the solution of ����� with the data vD and
vinit�
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The result easily follows from ������
Lemma ���� Supposed that ����� is satis�ed� Then
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Proof� Since� by ������ the coe�cients in the equality of Lemma ��� are nonneg�
ative� we see that
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Then multiplying by �xi�yj � adding over i� j� and rearranging terms imply the
desired result�
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Now Theorem ��� can be easily seen from Lemma ����
Lemma ���� Assume that the CFL condition ����� is satis�ed� Then
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Then the lemma follows by multiplying this inequality by �xi�yj and adding the
resulting one over i� j�

Proposition ��� �Equicontinuity in time�� Under the assumptions of The�
orem ���� there is a constant C� depending only on the data and T such that for
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 �� � � � � nT
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Proof� Take vn��
h 
 unh in Lemma ��� and use Lemma ��� to obtain the result�

�� A convergence analysis� In this section we prove Theorem ��� by applying
the ideas used in ���
 for analyzing the one�dimensional drift�di�usion semiconductor
device equations� We point out that the analysis here is much simpler than that
given in ���
� The reason is that we are here using the standard entropy j � j� while
a smoother entropy has been used there� which requires muck work to estimate the
distance between the smooth entropy and the standard one� We also emphasize the
di�erence between the present analysis and that used in classical conservation laws� in
the present case the delicate part is how to handle the boundary terms in the �entropy
form� � �see ����� below�� while an unbounded domain is treated in the classical
conservation laws�

It should be emphasized that this whole section concerns the case of D 
 �� and
that� although the di�erential equation ����� is linear� techniques which have been
originally developed for nonlinear hyperbolic conservation laws will be used�

The proof of Theorem ��� proceeds as follows� First� we prove that there is a
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subsequence fuh�gh��� converging to a limit u� Then� we show that

lim
h���

R�uh� � �� 
 R�u� �������a�

R�u� �� 
 ������b�

for � � C������ T � � ��� where R��� �� de�nes the left�hand side of ������� Since the
weak solution of ������ is assumed unique� this completes the proof of Theorem ����

As in classical conservation laws� ����� follows from the following result ���
�
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��uh� � c�Vh� ��� 
 ��u� c�V ���� 	c � IR� � � C��QT ������a�

��u� c�V ��� 
 �� 	c � IR� � 
 � � C��QT ������b�

where � is de�ned in ����� below� Most part of this section is devoted to proving this
result�

���� The entropy form� The entropy form ��u� c�V ��� with boundary terms
included is de�ned as follows�

��u� c�V ��� 
� �ju� cj� �t�QT � �ju� cjV�r��QT�����

	 �ju� cj� ��jft�Tg�� � �juinit � cj� ��jft��g��

	 �G�u� c� uD � c�V � ��� ��J�	��

� �H�u� c��div V 	K�� ��QT 	 �Kju� cj� ��QT �

where c � IR� � � C��QT �� and the �entropy �ux� G and the function H are de�ned
by

G�uleft� uright�V � �� 
 juleftj�V � ��� 	 jurightj�V � ����
H�u� c� 
 ju� cj � u sign �u� c��

The motivation of the form � can be given as in the one�dimensional case ���
�

���� A convergent subsequence� In this subsection we prove the existence of
a convergent subsequence fuh�gh����

Lemma 	��� Assume that the hypotheses of Theorem ��� are satis�ed� Then
there exists a subsequence fuh�gh��� converging in L��J �L����� to a limit u in
L��J �BV ���� � C��J �L������

Proof� We note that the ideas in ���
 can be used to prove the lemma� In ���
� a
discrete version of Azcoli�Arzel�a Theorem was used� In the present case with D 
 ��
the equicontinuity in time is provided by Proposition ���� and the compactness of
the range is given by Theorem ���� Also� the regularity result on u follows from the
convergence and Theorem ����

���� Proof of 	���a
� Here we prove ����a� under a condition�
Lemma 	��� Suppose that for c � IR and nonnegative � � C��QT ��
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Proof� First� for every nonnegative � � C������ T ����� ����� follows from Lemma
��� and the standard argument in the classical conservation laws ���
� Also� since
u � C��J �L����� by Lemma ���� the same result holds for � � C������ T 
����

We now consider the case where � � C���J � ��� ��� ��� ���� Since we are mainly
concerned with the boundary term associated with the edge fx 
 �� � � y � �g� it
su�ces to consider ��t� x� y� of this form ��t� y�	�x�� Then� set
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Since the sequence fuh���� �	� ��gh��� is bounded in L��J � ��� ��� by Theorem ����
there is a subsequence fuh����� �	� ��gh���� converging in L��J � ��� ����weak� to a
limit eu� Let 
t�y be the Young measure corresponding to eu� Then� by Lemma ��� and
����a�� we see that
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Take 	 such that its support is contained in ��� �
� Then� by ����� and Theorem ���� it
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follows from ����� and ����� that
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Since the sign of � is arbitrary and this inequality is true for any nonnegative � �
C���T � ��� ���� we have
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which together with ������ implies that g� 
 g�� This completes the proof of the case
where � � C���J � ��� ��� ��� ���� The same argument applies to the remaining three
cases�

It is now clear that it su�ces to prove ������ This is done in the next two
subsections�

���� A discrete entropy inequality� The following discrete entropy inequality
will be needed for obtaining an upper bound for ��uh� � c�Vh� ����
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Lemma 	��� Under the CFL condition ������ we have� for c � IR�
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Proof� From ����� and the de�nition of the mixed �nite element space Qh� we
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Note that the term between the brackets is nonnegative by ������ Thus the lemma
follows by multiplying this expression by sign �un��

i�j � c��

���� An upper bound of entropy form� In this section we obtain an up�
per bound for ��uh� � c�Vh� ���� which implies the inequality ������ We �rst have the
following decomposition of ��uh� � c�Vh� ����
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Lemma 	��� �decomposition of ��� We have
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where �with arguments omitted	
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Proof� From the de�nition of � and the fact that div Vh is piecewise constant� we
have
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Then simple algebraic manipulations yield the desired result�
Lemma 	��� �Upper bound of ��� Suppose that the conditions of Theorem

��� are satis�ed� Then there is a constant C� depending solely on the data and T such
that for any � � C��QT �� � � ��

�ent 
��

�com 
C��� 	 jcj�
�
�xjj�xjjL�	QT 
 	�yjj�yjjL�	QT 
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�
�

Proof� The �rst inequality follows immediately from Lemmas ��� and ���� Also�
observe that

j�n��
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Then� if an integration by parts on n is applied to the last two terms in the expression
of �com� the second inequality follows from Theorems ��� and ���� Proposition ����
Lemma ���� and ����a��

We are now in a position to prove Theorem ����
Proof of Theorem ��
� From Lemma ��� there exists a subsequence fuh�gh���

converging in L��J �L����� to a limit u� Now� by Lemma ���� we have

lim
h���

��uh� � c�Vh� ��� 
 ��



��

for every c � IR and nonnegative � � C��QT �� Thus� by Lemma ���� we see that

lim
h���

��uh� � c�Vh� ��� 
 ��u� c�V ��� 
 ��

This implies that u is the unique solution of ������� Consequently� the whole sequence
fuhgh�� converges to u� and thus Theorem ��� is proven�

�� Numerical results� This section reports on numerical results with the �nite
element method ����� for three problems� They are designed to show the performance
of the method and to indicate the convergence properties� In all examples the CFL
condition ����� is required to hold�
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FIG� �� The �"� � �� � ��� and �� � � � represent the exact u
and approximate solution uh with h 
 ���� and h 
 ����

Example �� In this example we consider a convecting Gaussian hill in one space
dimension� Speci�cally� we solve equation ����� with � 
 �� V 
 ��� D 
 ���� and
K 
 � on the interval ��� �
� The initial datum uinit is given by

uinit�x� 
 e��x
�

�

As a pure initial�value problem� this leads to the analytical solution

ua�t� x� 

�p

� 	 �
Dt
e�

��x�V t��

����Dt �



��

We obtain an initial�boundary�value problem with the same solution by imposing the
Dirichlet boundary condition�

u�t� �� 
 ua�t� ��� u�t� �� 
 ua�t� ���

In Figure � we display the analytical solution ua and the approximate solution
uh at time T 
 ����� In Table � we display the errors and their respective order of
convergence at the same time� From the table we see that the scheme is �rst�order
accurate both in L� and in L� for the concentration� This shows that the scheme
����� is �rst�order accurate in both spaces when the solution of the di�erential equation
is smooth� Also� Figure � agrees with the stability property given in Theorem ����
Finally� our numerical experiments report �not shown here� that� if the CFL condition
����� is violated� then the stability result ����� and the TVB boundedness ����� are no
longer valid�
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Table �� Convergence of uh in ��� �� at T 
 ����

Example �� In this example we consider a problem whose solution displays a
discontinuity� The problem has the data� � 
 �� V 
 ����� andK 
 �� The boundary
and initial conditions are given by

u�t� �� 
 �� u�t� �� 
 �� t � ��

uinit�x� �� 
 �� x � ��� �
�

The exact and approximate �nonviscous� solution �i�e�� in the case of D 
 �� and the
�viscous� solution with D 
 ���� at T 
 ��� are displayed in Figure �� Notice that the
biggest error in the approximation of u occurs around the location of the discontinuity
x 
 ����� In Table � we show the errors and their convergence orders with D 
 ��
Note that the orders of convergence in L� and L� are nearly ���� This implies that
the presence of discontinuity has an e�ect on the convergence� Finally� from Figure ��
we see that the �nonviscous� solution is quite close to the �viscous� solution�
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Example �� In the third example we consider a two�dimensional problem which
has a shock� The data are set as follows� � 
 ��� ���� � 
 �� V 
 �cos� 
� �� sin�



� ���



��

K 
 �� and D 
 ����� The Neumann and Dirichlet boundaries ��� and ��� are
de�ned by

��� 
 f�x� y� � � 
 x 
 �� y 
 �g�
��� 
 �� n ����

and the boundary and initial data by

uD 


�
�� x 
 �� �� � y � ��

�� elsewhere�

uinit 


�
�� � 
 x 
 �� �� � y 
 ��

�� elsewhere�

The approximate solution of this problem obtained using the method ����� with �x 

�y 
 ���� at time T 
 � is shown in Figure �� The graph clearly shows that the
method can capture the shock around the location y 
 ����
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FIG� �� The approximate solution uh on ��� ����

Example �� In the �nal example we test the sharpness of the bounds appearing
in ����� and ����� when D �
 � and jjuDjjL�	J�BV 	���

 �
 �� The same set of data are
chosen as in Example � except that the initial and boundary data are determined by

uinit�x� y� 
 x� �x� y� � ��

uD�x� y� 
 x� �x� y� � ����



��

where

��� 
 f�x� y� � y 
 �� ��� � x � ���g � f�x� y� � y 
 �� ��� � x � ���g�
��� 
 �� n ����

Uniform partitions of � into rectangles are exploited� The TVB bounds on di�erent
meshes at T 
 � are given in Table �� From this table we see that the left�hand side
of the inequality ����� blows up as h 
 �x 
 �y converges to zero� Similar results
are observed for the bound in ����� �not shown here��


�h 
	 �	 �	 �	 
�	 ��	

TVB ������ ������ �	���
 ����	� ����	� 
����	

Table �� TVB Bounds of uh in � at T 
 ��

�� A concluding remark� A new �nite element method for numerically solving
the two�dimensional convection�dominated transport equation in ground water has
been formulated and analyzed in this paper� The primary computational advantage
of the method is that it is local and thus fully parallelizable� and is conservative� The
stability properties of this method and its convergence in a suitable topology have
been established� Moreover� the numerical results have shown that the method is
�rst�order accurate when the solution is smooth and is one�half order accurate when
the solution has discontinuities� and that the method is non�oscillatory and shock�
capturing� Future work will be devoted to obtaining error estimates for both cases of
zero and nonzero coe�cient D�
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