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Multiphase �ow simulation with various nonhomogeneous boundary conditions in ground	
water hydrology and petroleum engineering is considered� The phase �ow equations are
given in a fractional �ow formulation� i�e�� in terms of a saturation and a global pressure�
It is shown that most commonly used boundary conditions for groundwater hydrology and
petroleum engineering problems can be incorporated into the pressure	saturation formu	
lation�

INTRODUCTION

In petroleum reservoir simulation the governing equations that describe �uid �ow are usu	
ally written in a fractional �ow formulation� i�e�� in terms of a saturation and a global
pressure 
��� 

�� The main reason for this fractional �ow approach is that e�cient nu	
merical methods can be devised to take advantage of many physical properties inherent
in the �ow equations� However� this pressure	saturation formulation has not yet achieved
wide application in groundwater hydrology� In petroleum reservoirs total �ux type bound	
ary conditions are conveniently imposed and often used� but in groundwater reservoirs
boundary conditions are very complicated�

In this paper multiphase �ow simulation with various nonhomogeneous boundary condi	
tions in groundwater hydrology and petroleum engineering is considered� We show that
most commonly encountered boundary conditions in groundwater reservoirs can be incor	
porated in the fractional �ow formulation� A numerical method based on use of a mixed
�nite element method for the global pressure and a standard Galerkin method for the
saturation is presented�

DIFFERENTIAL EQUATIONS

Let � � IRd� d � �� be a porous medium� The usual equations describing two	phase �ow

�



in � are given by the mass balance equation and Darcy�s law for each of the �uid phases

�����s��

�t
�r � ���v�� � f�� x � �� t � �������

v� � �
kkr�
��

�rp� � ��g�� x � �� t � �������

where � � w denotes the wetting phase �e�g� water�� � � a indicates the nonwetting
phase �e�g� air or oil�� � and k are the porosity and absolute permeability of the porous
system� ��� s�� p�� v�� and �� are the density� saturation� pressure� volumetric velocity�
and viscosity of the �	phase� f� is the source�sink term� kr� is the relative permeability of
the �	phase� and g is the gravitational� downward	pointing� constant vector� Impose the
customary property that the �uid �lls the volume�

����� sa � sw � ��

Also� de�ne the capillary pressure function pc by

����� pc�sw� � pa � pw�

For notational convenience� introduce the phase mobility function

����� �� �
kr�
��

� � � w� a�

Now� substitute ����������� into ����� and ����� to obtain the usual two	pressure equation
formulation� The most commonly encountered boundary conditions for the two	pressure
equations are of �rst	type� second	type� third	type� and �well� type 
��� 
��� Let �� be a
set of three disjoint regions �i� i � �� �� �� and let �� � �j���j where each ���j is connected�
Then we consider for � � w� a and s � sw�

p� � p�D�x� t�� x � ��� t � �������

v� � 	 � b��x� t� s�p� � g��x� t� s�� x � ��� t � ������� Z
���j

�vw � v�� � 	 � gj�t�� x � ���j � t � ������a�

p� � p�D�x� t� � dj�t�� x � ���j � t � ������b�

where p�D� b�� g�� and gj are given functions� dj is an arbitrary scaling constant� and 	
is the outer unit normal to ��� The initial condition is given as

���
� sw��� �� � s�w� x � ��

The model is now completed�
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Pressure�saturation formulation

To devise our numerical method� as mentioned in the introduction we rewrite ����� and
����� in a pressure	saturation formulation� For this� de�ne the global pressure 
��

p �
�

�
�pw � pa� �

�

�

Z s

sc

�a � �w
�

dpc
d


d
������

�pw �

Z pc�s�

�

�
�a
�

��
p��c �
�

�
d
�

where � � �w � �a and pc�sc� � �� and the total velocity

������ v � �k� �rp�G�� �

where

G� �
�w�w � �a�a

�
g�

Then it can be easily seen that

vw � qwv � k�aqwrpc � k�aqw��g������a�

va � qav � k�wqarpc � k�wqa��g������b�

where q� � ����� � � w� a� and �� � �a � �w� Consequently�

������ v � vw � va�

Add ����� with � � w and � � a to give the pressure equation

������ r � v � �
��

�t
�

aX
��w

�

��

�
�s�

���
�t

� v� � r�� � f�

�
�

Substitute �����a� into ����� with � � w to obtain the saturation equation

�
�sw
�t

�r � �qwv � k�aqw�rpc � ��g��������

� �sw
��

�t
�

�

�w

�
�sw

��w
�t

� vw � r�w � fw

�
�

The capillary di�usion term D�s� in this saturation equation is clearly de�ned by

D�s� � �k�aqw
dpc
ds

�
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We now have the pressure	saturation equations ������� ������� and ������� Let �p�i � �i�
i � �� �� �� �s�� � ��� and �s�� � �� � ��� Then the boundary conditions for the pressure	
saturation equations become

p � pD�x� t�� x � �p��� t � ��������

v � 	 � b�x� t� s�p � G�x� t� s�� x � �p��� t � �������� Z
�p���j

v � 	 � gj�t�� x � �p���j� t � �������a�

p � pD�x� t� � dj�t�� x � �p���j� t � �������b�

s � sD�x� t�� x � �s��� t � ������
�

�qwv � k�aqw�rpc � ��g�� � 	������

� bw�x� t� s�p � Gw�x� t� s�� x � �s��� t � ��

where pD and sD are the transforms of pwD and paD by ������ and ������ and

b � bw � ba�

G � gw � ga � bapc � b

Z pc�s�

�

qa
�
p��c �
�

�
d
�

Gw � gw � bw

Z pc�s�

�

qa
�
p��c �
�

�
d
�

The initial condition is the same as in ���
��

Petroleum reservoirs

The �ow of two incompressible �uids �e�g� water and oil� in a porous medium � has been
extensively studied by petroleum engineers for many decades� In this case the pressure	
saturation equations ������� ������� and ������ reduce to the following simpli�ed equations�

r � v � �
��

�t
� f� x � �� t � ��������

v � �k� �rp�G�� � x � �� t � ��������

�
�sw
�t

�r � �qwv � k�oqw�rpc � ��g�� � �sw
��

�t
�  fw� x � �� t � ��������

where f � fw��w � fo��o and  fw � fw��w� We remark that ��
�t

is quite small� and is
usually neglected� Typical examples of the relative permeability functions kr�� � � w� o�
the capillary pressure function pc� the fractional �ow function qw� and the capillary di�usion
function D for an oil	water system are plotted in Figure ��
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Groundwater hydrology

We now consider an air	water system where the water is assumed to be incompressible�
but the air is supposed to be compressible� Furthermore� the air density is assumed to be
a function of air pressure� Then we see from ������ that

�

�a

��a
�t

� ca

�
�p

�t
� qw

�pc
�t

�
�

�

�a
r�a � ca �rp� qwrpc� �

where compressibility ca is de�ned by

������ ca �
�

�a

d�a
dpa

�

Apply these equations in ������� ������� and ������ to obtain

saca
dp

dt
�r � v � �

��

�t
� sacaqw

dpc
dt

� f� x � �� t � ��������

v � �k� �rp�G�� � x � �� t � ��������

�
�sw
�t

�r � �qwv � k�aqw�rpc � ��g�� � �sw
��

�t
�  fw� x � �� t � ��������

where
d

dt
� �

�

�t
�

va
sa
� r�

Note that the pressure equation is a parabolic equation in the present situation� Thus we
need the initial condition

p��� �� � p�� x � ��

An example of the air density function is given by the relation 
���

�a � ��a

�
� �

pa
p�a

�
�

where ��a is the density of the air phase at the pressure p�a� Typical examples of the relative
permeability functions kr�� � � w� a� the capillary pressure function pc� the fractional �ow
function qw� and the capillary di�usion function D for an air	water system are plotted in
Figure �� The initial and boundary conditions in ���
� and ������������� remain the same
in the two situations above�

FINITE ELEMENT METHOD

We now develop a �nite element approximation procedure for numerically solving �������
������ and �������������� We only consider the latter case� i�e�� an air	water system! the

�



Fig� �� a� Relative permeability
b� fractional �ow function c� capillary pressure

d� capillary di�usion function for an oil	water system�

former case is simpler� Let ��� ��R denote the L��R�	inner product �we omit R if R � ���
and set S � f
 � H���� � 
j�s�� � �g� For � � hp � � and � � h � �� let Thp and Th be
quasiregular partitions of �� For each R � Thp � let Vh�R��Wh�R� denote some standard
mixed �nite element space for second order elliptic problems �see� e�g�� 
��� 
��� 
��� 
��� 
����

�



and 
����� Then we de�ne

Vh � f
 � �L�����d � 
jR � Vh�R� for each R � Thpg�

Wh � f
 � L���� � 
jR �Wh�R� for each R � Thpg�

Lh�� �

�
r � L�

� �
e��Thp

e

�
� rje � Vh � 	je for each e � �Thp !

�r � �� r��e � �� r� � Vh � 	je� �e � �p��!

�r � � � dj � r��e � �� r� � Vh � 	je� �e � �p���j � for each j

�
�

Finally� let Sh � S be a standard C� �nite element space 
�� associated with Th� Our �nite
element method is formulated as follows� The mixed �nite element solution of the pressure
equation is fvh� ph� lhg � �����	 Vh �Wh � Lh�pD satisfying

�
��� sh�ca�sh� ph�

dph
dt

� 


�
�
X

R�Thp

�r � vh� 
�R

� �

�
��

�t
� ��� sh�ca�sh� ph�

dpc�sh�

dt
� f�sh� ph�� 


�
� �
 �Wh�

�
�k��sh��

��vh� 

�
�
X

R�Thp

��ph�r � 
�R � �lh� 
 � 	R��R�

� �G��sh� ph�� 
�� �
 � Vh�X
R�Thp

�vh � 	R� r��Rn�p�� � �G�sh�� b�sh�lh� r��p�� �
X
j

�gj� r��p���j
j�p���jj

� �r � Lh���

ph��� �� � p�h� x � ��

and the �nite element solution of the saturation equation is sh � �����	 Sh�sD satisfying

�
�
�sh
�t

� 


�
� �qw�sh�vh � k��aqw��sh��rpc�sh�� ���sh� ph�g��r
�

� ��Gw�sh�� bw�sh�lh� 
��s�� �

�
 fw � sh

��

�t
� 


�
� �
 � Sh�

sh��� �� � s�h� x � ��

where p�h and s�h are some approximations in Wh and Sh of p� and s�� respectively� We
conclude with three remarks� First� while� for completeness� the standard �nite element
method is considered for the saturation equation here� due to its convection	dominatedness
feature it can be solved using more e�cient numerical approaches such as characteristic

�



Petrov	Galerkin methods based on operator splitting 
��� transport di�usion methods 
����
and other characteristic based methods� Second� the Lagrange multipliers over edges or
faces are here used� The reasons for this are that the linear system arising from this
unconstrained mixed formulation leads to a symmetric� positive de�nite system for the
Lagrange multipliers� which can be easily solved� and that the boundary conditions �������
������ can be easily incorporated in this formulation� Finally� note that we have a coupled
nonlinear system for the velocity vh� the pressure ph� and the saturation sh� In general� the
boundary data depend on the saturation� which makes the whole system even more di�cult
to solve� Our future work will be concentrated on development of computer programs based
on the pressure	saturation formulation for physically reasonable data and on extension of
the present techniques to three	phase �ow�
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