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Abstract. Derivation, stability and error analysis in both discrete H' and L? norms for cell-
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wind strategies are investigated. The theoretical results are illustrated by numerical examples.
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1. Introduction. In this paper we consider cell-centered finite difference
approximations for second order convection-diffusion equations of divergence type.
Our goal is to construct finite difference methods of second order of approximation
that satisfy the discrete maximum principle. The error estimates are in the discrete
Sobolev spaces associated with the considered boundary value problem.

Approximation of the convection term in convection-diffusion problems by central
finite differences leads to schemes of second order, which are stable only for sufficiently
small mesh size h. The upwinding has been used to avoid the conditional stability, but
these approximations are of first order and add substantial numerical diffusion to the
physical problem. Various modifications of the upwind schemes have been proposed
aiming at a second order of accuracy and unconditional stability, cf., e.g., Samarskii
[20] (see also Axelsson and Gustafson [3]). We investigate a number of modified
upwind finite difference strategies which provide both a second order of accuracy and
that are unconditionally (i.e., not only for small h) stable.

There is a variety of techniques to derive and study finite difference discretiza-
tions for diffusion and convection-diffusion problems (see, e.g., Samarskii [20], Ax-
elsson and Gustavson [3], Spalding [22], Il'in [14], etc.). In [20] an error estimate
of order O(h?) in the discrete maximum norm for smooth solutions (four continuous
derivatives required) is derived. Another modified upwind finite difference strategy
leading to a second order scheme was considered in Axelsson and Gustafson [3]. Run-
chal [19] and also Spalding [22] have proposed and tested numerically upwind finite
difference schemes that can be used in both convection dominated and diffusive lim-
its. For one dimensional problems II'in [14] has proposed finite difference schemes for
convection dominated second order equations and proved an O(h?) error estimate in
the maximum norm.
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A systematic treatment of finite difference schemes on triangular meshes was
presented in Heinrich [12]. For self-adjoint problems the schemes in [12] are similar to
those obtained by the finite element method. Cell-centered finite difference schemes
on triangular meshes (including the case of locally refined meshes) were considered
by Vassilevski, Petrova and Lazarov [24]. The error estimates derived in [24] are
in a discrete H'-norm and for uniform triangulations include superconvergent rates,
namely, O(h?). Cell-centered discretizations on tensor-product nonuniform meshes
were considered by Weiser and Wheeler [25] and superconvergence error estimates
were derived. H'-error estimates of order O(h!T?), L < a < 1 for the Poisson
equation were proved by Sili [23]. Morton and Sili [17] considered point-centered
finite difference schemes for one and two-dimensional hyperbolic equations.

A method closely related to the finite element approximations is the finite volume
element method proposed and analyzed by Cai [6], Cai, Mandel and McCormick [7],
and McCormick [16]; see also an early formulation by Baliga and Patankar [4] that
includes the convection-diffusion case. The relationship of the similar box method and
the finite element method in the symmetric positive definite case has been investigated
by Bank and Rose [5] and by Hackbusch [11]. In Hackbusch [11] second order error
estimates in an H'-norm on uniform meshes has been proved.

This paper is devoted to filling in the lack of results for nonsymmetric equations
and cell-centered finite differences. We construct a number of upwind finite difference
schemes and prove error estimates in a discrete H'-norm of order O(h™~'), % <
m < 3 for solution w € H™()). These results can be viewed as a natural extension of
the results from Ewing, Lazarov, and Vassilevski [9], to non-selfadjoint equations. In
addition, we provide error estimates in an L?-norm elaborating the discrete “Aubin-
Nitsche trick” of duality argument proposed by Samarskii, Lazarov, and Makarov
[21] and used in the case of finite difference schemes for general self-adjoint elliptic
equations in Lazarov, Makarov and Weinelt [15]. For the original duality technique
in the finite element method, refer to Aubin [2], Nitsche [18], and Ciarlet [8].

The remainder of the paper is organized as follows. In §1.1 the boundary value
problem is stated; the notation used is introduced in §1.2. The discretization schemes
are presented in §2. The stability (a priori estimates) and error estimates in an H'-
norm are derived in §3.1. The error estimates in an L?-norm are proved in §3.2.
Finally, in §4, the numerical results are presented.

1.1. Boundary value problem. We use the standard notation for Sobolev
spaces [1]:

W Q) ={ue L’(Q): D"u € L"(Q), |a| <m}, m >0, 1<p< oo
and W,"(Q) = H™(Q). The norm in H™(Q) is denoted || - ||;n.o and defined by

1/2

m 1/2
el = (Z |U|?,Q) o ulia=| D0 D% »
1=0 |a|=1
[|e]]m 00,0 = max sup |D%ul,
|O‘ ‘ <m (=9
where || - [lo.o is the standard L*-norm in 2. We also use Sobolev spaces with real

index m > 0 [1].
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We consider the following convection-diffusion boundary value problem: find a
function u(x) which satisfies the following differential equation and boundary condi-
tion:

div Vu(x)+ b(x in Q
(1) { (—a(x) ()+()((); g() e

where Q C R? is a bounded domain, I' = 99, f(z), and the velocity vector b(z) =
(b1(2), ba(2)) are given functions in . We introduce the bilinear form

a(u, v =/ Zau )0v(a
+ [ @) Vute)ets wu+3é (2)o(@)(V - b(x)) da

ﬂw=4fmdﬁh

Here and hereafter 9; denotes the partial derivative with respect to x;.
The problem (1) can also be formulated in the following weak form:

Find v € H}(Q) such that a(u,v) = f(v) for all v € H (). From

and the linear form

/“(Q(I) Vu(z))u(z)de = —/ V- (b(x)u(z))u(x)dx

=— / (V- b(2z))u*(z) de — / (b(x) - Vu(x))u(z) dx

we obtain

/SZ(Q(L) Vu(z))u(z)de = —% /“(V b(2))u*(x) da

and hence

(2) alu,u) / a(z) Z(au Vdr + = L /(V b(z))u?(x) dx .

Let the coefficients a{x), b(x) satisfy the conditions:
(i) a(z) > a >0, a(x) € WL(Q),

(il) (V-b(x)) > fo > 0, |bi(2)| < 1, by € WL(Q).

Then from (2) it follows that there exists a constant C' > 0 such that a(u,u) >
C|lul]? o ie., a(u,v) is Hg-coercive and by the Lax-Milgram lemma argument the
problem (1) has a unique solution in Hy ().

For the stability analysis (Propositions 2.1, 2.3, 2.5, 2.7) we will need higher
smoothness, i.e., b;(x) € W1F*(Q), a > 0. Condition (ii) can be weakened to 3y = 0:
then the blhnear form a(u,v) is coercive in H' and consequently the finite difference
approximations will have the same property for sufficiently small h. However, 5y > 0
is needed to prove the discrete maximum principle.
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Fia. 1. Cell-centered Mesh

1.2. Grids and grid functions. We suppose that Q is a rectangle with sides
parallel to the axes x; and x3. We consider the case of cell-centered grids, which
owing to their good conservation properties, are very popular in reservoir simulation,
weather prediction, heat transfer, etc. We cover the plane R? by square cells with
sides of length h. The grid points are the centers of the cells (see Fig. 1). We suppose
that the Dirichlet boundary I' passes through the grid points, as shown in Fig. 1.

The grid points are denoted by = = (21,22) = (214,22;) = (ih,jh). where
1,7 =0,1,2,....,N are integer indices. We introduce the following notation for various
grids in Q:

w={(2120;) €Q:1,j=0,1,2,..,N};

w=xnNQ, v = o\w;

w =wU~E, where v = {& € v:cos(wi,n) = £1}, i=1,2.

Here n is the unit outer normal to the boundary T'.

Functions defined for x € w are called grid functions. We consistently use the
dual notation for the value of the function y at the grid point = (21 ,, 22 ;); y(z) =
y(®1,i,22,5) = yij and in the points (z1;,22 5 & h/2) = (214,79 j+1/2) and (z1; £
hf2, w2 ;) = (@1 5412 T2,5), Yij1/2 = Y(X1,05 T2 j1/2)s Yik1 j2,5 = Y(@1,i1 /2, 2 7).

For a given function y(z), v € w we use the following discrete inner products and
norms:

(r.0) = o Wy@ete). lollow = (0%

rEw

(vle = Y Wy(n)u(e). Iylls = (u.9)s%, s=1,2.
+

rTEWw,

We introduce the following finite differences for grid functions y(z):
(1) forward difference A, Yij = Yit+1,j—Yi,; and divided forward difference y,, ; ; =
Avyi /b
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(ii) backward difference A, Yij = ¥i,j — Yi—1,; and divided backward difference

Yerig = Dy j/h
(iii) divided central difference of second order

_ Dy — Ay
Yzia, = h—z

Similarly, differences are defined in z5 and in combination of z; and z» coordinate
directions.
We also introduce the discrete analogues of H' and H?-norms:

T = llya, T+ [y, 112,

1913 = w3 o + 119115 s
and
|~1/|%,w = |,7/r,1r,1|2 + 2|yT1T2|2 + |.l/r2r2|2

bl

19113 = lyl3 . +lyllf

We will also need the negative norm:

T oo [lvllie

Any grid function y(x) can be considered as an element of a vector space of
dimension equal to n, the number of the grid points in w. In this case, we denote y(z)

by y € R™ and consider it as an n-dimensional column vector. Then y” will be the
row vector transpose of y.

2. Discretization schemes. The finite difference approximation is derived
from the balance equation. We integrate (1) over each cell e

/ div[(—a(x)Vu(z) + b{z)u(z)] dz = / flx)da
and then using Green’s formula and dividing by h? we get
) 7 [ Favunt b alar= 3 [ 1(e)d
: — —aVu.n 4+ ub-nldy = — x)dx
h? Jae - T = h?J. "
where n is the unit outward vector normal to the boundary of e. Splitting de =

sl+ U 9; U sy Usy (see Fig. 2), the left-hand side of this identity can be written in the
following form:

1 " 1
|| wWav+ | Vil == || Way+ | Vav+ | Way+ | Vdy
h2 i h2
v de Joe v s'l" s'l" s 2
1) : .
+ / W dy + / Vdy+ / W dy + / v d'y]
+ +
Js; s Sg J sy

W = —a(y)Vu(vy)-n and V =b(y)- nu(y).

where we have denoted
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Fra. 2. Cell e(x)

In order to construct the finite difference scheme we approximate the balance
equation (4). We split the approximation of the balance equation (4) in two parts,

(5) APy + AWy,

where A% is the part arising from the approximation of the second derivatives, and
AM comes from the approximation of the first derivatives; y is an approximation to
the exact solution u. We have the expressions

A(Q)y = u,’+,» s —wi g+ u;;rl. - waij, TEW,

(6) ] a X2%) 0o
(1)y = ot e mE

APy U1 ULty v, TEW.

In these formulae w+ wy, U]+, vy, [ = 1,2 are some approximations of the correspond-

ing integrals f+ W, f W, f W, f IV and f V, f Vv, f V., f V', respectively.
Now, in order to Lomplete the finite dlffelence bcheme we hd\e to express the approx-
1mato fluxes u:f, wy, 1,l+, v by the approximate values y(x) of the solution u(x) at
the grid points. We consider the following approximations:

1. central difference scheme CDS

2. upwind difference scheme UDS

3. modified upwind difference scheme MUDS

4. T'in’s difference scheme IDS

2.1. Central difference scheme (CDS). We call this scheme “central”
because of the analogy of A" and a central difference approximation of the first
derivatives. We first rewrite the fluxes —a(2)Vu(z) = (Wi(x), Wa(2)) in the form

ou _ Wila)
or;  a(x)’

re), 1=1,2.

Next, we integrate the equation for I = 1 along the interval with endpoints (21 ;—1, 22 ;)
and (xy ;, 2 ;). We get

i W ( e 1,4 1s
Ui 5 — UWUj—1 5 = —/ a(s " ) ds =~ _Wl,i—l/Z,j a(5 - )
T1,i—1 P25 11 s b2,
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We can now write the following approximate relations

-1
1 ~ . hI’Vl 1'71/24‘ 1 1 £1,e ds [U‘ ;o — Uy—1 ]
— [ Wi(a)ds m L2 2 (2 EAmLLSS
h? ,/51 1) ds h? h \ h / a(s, a2 ) h ’

L1,5—1

-1
1 MW i i1/ 1 (1 [%2i ds [wij — wij—1]
— | Wh(n)dsm —2— " —— | = ol I 2
)., () ds h? w\h / a(11.4,5) I

Tz, i1

These approximate relations allow us to define:

K
+ = wr L2
wy (T) = ml,i,j = — h Yuy,i5s | = 1,2,

(7)

ki j
ol = apry o . — I, .. — ¢
“’l(i) =W = — Yz 4,55 1=12,

h

-1
1 [o ds

R — ) . k= ki,

1,5 <h/¢ (L(S,Ll?gj)) 14,5 Litl,y

1,i—=1

-1
i 1 /”-f ds it i
2,00 = | 7 v Rog 5 = Rz g+l
h Sy, a(z1,5) o

The integrals [+ Vit (x)ds, f*z Vi(x)ds can be approximated as follows (I = 1):
5] ;

where

(8)

h 2
1 o by im1/2,j |wio1,j + Ui
_ Vi(x)ds =~ ) s 4 5] Y .
h? [1 1) ds h 2

And thus we can define the approximations:

Iy PR YEN (YESE
h? .+ ’
S1

biit1/2,
g =Bl Wiy +wig), Bl = =
; bii-1/2,;
iy = Buijig +yi1g), Brig=——75="
(9)
; Do s i1 s
+ I + 2,6,j+1/2
Va5 = BoijWige +yig), By, = 2n
b,ij=1/2
U2,ij = Baij(yij +vij-1), Brij= 2h

Substituting (7) and (9) in (5) we get CDS. This scheme is stable if the local Peclet
number satisfies the inequality [13], [20]:

|b/(7 ) |h
2ki(.,.)

Obviously this is true only for sufficiently small h. We will not further consider the
CDS because of its conditional stability.

(10) <1.
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2.2. Upwind difference scheme (UDS). One of the ways to find a stable
finite difference approximation for the convection-diffusion boundary value problem is
to use an upwind approximation for the first derivatives. In this case, A®) is defined
as in CDS and the terms v; and vf’ in A are approximated in the following way:

(11) g =By = 1B Dyis + (B + BV 5 Dwi s
V14,5 = 1,4,5 — |P1,4,51)Yi,5 1,4, 1,4,51)Yi—1,5-
i = (Biij = 1Buiil)yij + (Buij =+ [Biijlyi-1,

In order to investigate the properties of the UDS we need the following auxiliary
result.

PROPOSITION 2.1. Let b(z) € (WLF*(Q))?, o > 0 and V - b(x) > fo for some

Bo > 0. Then there exists hg such that for h € (0,hg) the following inequality holds:

(B},

B1/)+(B BZI ]ch)a

1,4, 2,4,7

where cg = o — O(h*), 0 < a < 2.

Proof. Consider the linear functional:

biitisz; —briciy2y  Obigj
() s= ALt S

This functional is bounded for b, € W1r*(Q), 0 < @ < 2 and vanishes for all poly-
nomials of second degree. Therefore, by the Bramble-Hilbert lemma argument we
get

|l(bl)| S Cha|b1|1+a,oo,e-

A similar inequality holds for b,. Using the triangle inequality and the assumption
V b > Py, the desired inequality is obtained. O

Remark 2.1. The above proposition means that, if the divergence of the vector b
is greater than Jy > 0, then the discrete analog of V - b, defined by

biiviszy —biiciy2, n byijriy2 = baijo /2
h h

is also positive for sufficiently small h.

First we will prove that the considered scheme is monotone.

ProPoOsITION 2.2. UDS satisfies the discrete mazimum principle and the corre-
sponding matriz A s an M matriz.

Proof. Let a;iy j41 be the coefficient in front of y; 4 j41, k,1 = —1,0,1 in the
finite difference scheme. Then it is enough to check the conditions [12]:
1. a;; > 0;

2. a;—1j, @iy15, @5 j—1, and a; j41 are negative;

3. a;; — Zk,l:il itk j+1 > 0, i.e., A is strictly diagonally dominant.
We have '

1.

2
, ki
i —Z K o ,,’) + (Bf; ;= Buig) + B | + [ Bui
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2.
Ky
|Bl,i,j|+Bl,i,j20:>—< ]J+|BZZJ|+BIU> 0,
it
BIIJ |B’I7J|<0:> ZhZJ—I—BIIJ |Bl-,'f~j|<0
3.

2
a;; — Z @itk j+1 = 2Z(Bl—t—i7j - Bl,i,j) > 2¢o > 0.
k,l==x1 =
O
Now we concentrate on the positive definiteness of the operator 4 and the matrix
A. In Section 1 we showed that the bilinear form, corresponding to the continuous
problem (1) is H{-elliptic. In the following proposition we establish that the discrete
analog of the bilinear form inherits this property.
PROPOSITION 2.3. Let b(z) € (WLF*(Q))?, @ > 0 and V -b(x) > By. Then the
matriz A of UDS is a positive real matriz and there exists a constant C' such that the
following inequality is true:

(Any,y) > C||y||12w, for all y € D° = {y, Yy = 0}.

The constant C depends only on the ratio a(x)/[b(x)|.
Proof. Let z(x) and y(2) be grid functions from D?. Then

(Any, z) Zzh l - klhljlln”] Zi j

rCw l=1
(12) 2 2
r€w |=1 =1

We transform the sums in formula (12) for [ = 1, 2 using summation by parts thus
obtaining

2
= E : E :k77'71J157117'l’J

=1 z€Ew
Using (11) we rewrite .J; in the following way

]1:2:}'2[( 1,6, |Blz1|) "Hl—l—( 12]+|Blzg|)yi7j
rEwWw

—(B1,i,j = |B1,ij1)yij — (Biij +|Buijl)yi-1,5] 25

(13 ‘
‘ ) = Z hz [B?_’i,jyi-i-l,j B, 4,iYi—1 ] Zig + Zh 1 i Bl,i,j] Yij=i,j
TEW TEW
= R [IBE 1Ay — Bl Ay ] 2
rEwWw

We now transform the first term in the last identity in (13)

Z W [BY; jyic1.s = Buijyioig) #ij

rEw
=Y W [Bf; vy — Brigyis] 7+ Y Buij(Wig = vi19)7ie

rTEW rEw
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Using summation by parts for the first term above we obtain

YR BE jyisg = Buigyiong] zig = D W Bui(z 80 — viiBizig).

rEW rew

Finally we get

2
(Any.2) = Y D 0% (kiig + 1Buighl) ye,iize.ig

=1 z€w
2
+ Z Z W2 By, j(zi Ay — yi A1z 5)
=1 z€w
2
—1—2 Z h2 (B]_FIJ — BWJ) Yij%ij-
=1 x€Ew

Letting z = y in the above formula the desired result follows using Proposition 2.1. O

2.3. Modified upwind difference scheme (MUDS). As we will later show
the UDS is only O(h) accurate. In order to obtain a diagonally dominant matrix and
achieve O(h?) order of accuracy we modify the upwind scheme in the following way

[3] (see also [20]):

/ biu dy

= (B jh* = |Briih?)) wij+ (Brijh® + |Brijh?|) wiza j + O(h)
=1, + O(h),
biu dy
= By i jh*(uij+ui—1 j) + O(h?)
= I, + O(h?),

/ (—aﬁ + b111> dvy
s Oxy

= —kl,i,jﬁlui,j + I, + O(hZ)
= _(kl,i,j — |B172'7]'h2|)31’u/i7j + 11 + O(/IZ)

ki A
_ ki Aqu; ;
1+ |Byijh?| [k

51

2
— | krij — |Byijh?| - it Avuij+ I + O(h?)
T R kg +|Bragh? )= T /

=_ ki Aju; i + Biit” Avuj+ 5+ O(h?)
L [Brijh? [k~ 7 kg + [Buagh?] T
ki

=- ; Ayu;j+ I + O(h?).
L [Burih®|[kay 77 )

In the last step we have taken into account that Bih* = O(h). These heuristic
formulae show that if we want to get a second order finite difference scheme we should
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choose uzf, w, 1)?‘, and vy in such a way that they satisfy the following conditions:
+ + kr' Bt Bt Du: . BTt Bt .
Wy U= A — Ly g+ (B = 1B Dy + (B 5+ 1By D g
. ]ﬁ1 ,2 _)
wiij+ g = = Ye g+ (Buig = [Briil)yij + (Buij + |Buijyi-

We remark here that we split the scheme into two parts only for convenience of the
error analysis. Then we define MUDS as follows: AX) is the same as in CDS and
the expressions w; and LLlJr in A® are defined by

1
w?,_i,j:_ﬁ( Iz]+|BZZ]h |)y$leﬂ =12,

14
(14) 1 , ‘
wiiy = =7 (ki +1Buigh’l) yaij, 1=1.2.
where
B i -
k1, = ey ) ki, =k i
YT T B b [k A
15 .
kyij = ‘2,2,]2 , k; = k2 jt1-
L+ By jh?|/k2,i J

Using a similar argument as in Propositions 2.2 and 2.3 we can prove the following.
ProrosiTioN 2.4. MUDS satisfies the discrete maximum principle and the
corresponding matriz A is an M-matriz.
PROPOSITION 2.5. Let b(x) € (WLF*(Q))?, a > 0 and V -b(x) > By. Then the
matric A of the MUDS is a positive real matrixz and there exists a constant C' such
that the following inequality 1s true:

(‘471?/7?/) 2 C(”yH%W’ for all y € D’ = {yv Y~y = 0}

The constant C' depends only on the ratio a(x)/[b(x)].

2.4. 1Il’in’s difference scheme (IDS). Another approximation we derive in
a similar way as in [14] is

L f du(y) '*"fr,i,j + +
th+(—“( N e +bi(v)u(v)) dy = — o Yeig + Bl i + By i
or
A)/Z,'7 / /’l &
(16) Wi = T ey Wi = = Sy i 1=1,2,

and v;r and v; are defined as in CDS. We choose the coefficient v such that the above
approximate relation is exact for u = e?*/% when a(x) and by (z) are constants. We
get

B+ ,»hz B],‘ xhz
(17) 71 iy B,JFZ ]h coth (ﬁ) , Vi = Blt,»’jh? coth <k7j) .

1ij 14,5

)
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It is easy to see that “y,+ and ~; > 0 are positive regardless of the sign of b;. From
|coth(z)| > 1 we have ;" > |B;'|h? and 7, > |Bi|h%. Using the same technique as in
previous propositions we have:

ProOPOSITION 2.6. IDS satisfies the discrete maximum principle and the corre-
sponding matriz A is an M-matriz.

PROPOSITION 2.7. Let b(x) € (WLF*(Q))?, a > 0 and V - b(x) > By. Then the
matriz A of the IDS is a positive real matriz and there exists a constant C such that
the following inequality is true:

(Any,y) > Cllyll3 . forall y € D® = {y,y, = 0}.

The constant C depends only on the ratio a(x)/[b(x)|.

Remark 2.2. If 3y = 0 the UDS, MUDS and IDS in general does not satisfy
the discrete maximum principle, but for sufficiently small & the constructed finite
difference operators are coercive in discrete H'-norm. Therefore, all error estimates
which we prove in the next sections hold for gy = 0.

Summarizing these approximations we formulate the following discrete problem
for (1): find a grid function y(x), which satisfies the finite difference equations:

2 2

(18) Z(uﬁf (x) —wi(x))+ Z(r;“(T) —u(x)) =¢, inw,
=1 =1
y(x) =0, onvy,

where w; and v; are defined by (7), (14), (16), (9) and (11), respectively and ¢ =
# fe f(x)dx. These schemes can be written as systems of linear algebraic equations

(19) Ay = ¢.

3. Stability and error analysis. The stability of problem (19) is a simple
consequence of the positive definiteness of matrix A. Namely, we prove the following
lemma.

LEMMA 3.1. For all considered difference schemes the following a prior: estimate
18 valid:

19llw < Cllofl -1
where y is the discrete solution and ¢ is the right-hand side of (19). (The constant C
does not depend on y or ¢.)

Proof. The proof follows from the inequalities based on the coercivity of the
operator A and on the definition of the norm || - ||-1 .-

191 o < C(Any.y) = C(6.9) < Cllol— o Iyl o

Remark 3.1. Since ||6]|=1.w < [|¢llo.o and ||y]Jo.o < ||¥|]1,o we also can obtain the
following estimate:

Iyllo. <C

@H[):w-
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3.1. Error estimates in discrete H'-norm. The error analysis presented
here is done in the general framework of the methods developed in [21] and [9]. We
consider only the case when a(x) = 1. Let

z(x) = y(z) — u(a), TEW
be the error of the finite difference method. Substituting y = z + w in (18) we obtain
(20) Az=¢—Au=v

Then using (4)—(19) we transform ¢ in the following form

1 1 ou 1 ou
— — dy —hw'| — | = d~ry — T
; h { [h /Sl+ oy e ] [h s) Oy ' m[]}
1 : 1
+ Z 7 { [— /l biudy — h?)?‘] - [Z /SZ biu dy — h,mj| } =Y+ Yy =1,

=1

where the local truncation error ¢ has been split up into two terms:

2 2
1 , 1
L 7 Z [0 (z) = m(2)] . Y2 =5 Z i (x) — ()],
ey L7 L r
u
m== [ ——dy-1 =— [ buudy—1
m=y ./l oz, 1~ I o= / jwdry — huy.

Here ¢/ is the error of approximation of the first derivatives, and ¥, is the error of
approximation of the second derivatives.

Note that the components of the local truncation error n; and u; are defined on
the shifted grids wl+, [ = 1,2. Using summation by parts and the Schwarz inequality,
we get

(wa) :ZZ}Z |:ﬂl x) 77l( :|4(1 Z z 12 fll(i
=1 gewf

=1 z€w
1/2 1/2
< z > Wi () Z > nsl < (bl =+ Nm2W2) 121 -
=1 ,LE,u, (=1 IEwl

Likewise
(U1 2) < ([l + [lp21l2) 2] e

Summarizing these results and using Propositions 2.3, 2.5, and 2.7 we obtain the
following main result.

LemMA 3.2. The error z(z) = y(z)—u(z), v € w of all considered finite difference
schemes satisfies the a priori estimate

(22) Izl < O Ul + ladlo) s
=1
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where the components 0y, pu1, | = 1,2 of the local truncation error are defined by (21)
with approximate fluzes wf, wy, vlf, v, | = 1,2 determined by (7), (11), (14) and
(16) for the UDS, MUDS and IDS, correspondingly. (The constant C' does not
depend on h or z.)

In order to use the estimate (22) of Lemma 3.2 we have to bound the corresponding
norms of the local truncation error components 1, g7, { = 1,2 defined by (21). These
estimates are provided in the lemma given below.

LEMMA 3.3. Let the solution of the problem (1) be H™-reqular, % < m, and
the components of the local truncation error my, pr, | = 1,2 be defined by (21) with
approzimate fluzes w}, wy, v, v, 1 = 1.2 determined by (7). (11), (14). and (16).
Then the following estimates are valid (I =1,2):

3
(23) |m| < C’hm72|u|m75, 3 <m <3,

(24)] < { Ch™ bl 5.0 |t|me for MUDS and IDS,
FES0 C bilosoc [uli e + 2™ Hlbill1 o2 [tme]  for UDS,

where 1l <m <2;e=e;_q1jJesj forl=1and e=e; ;-1 Jeij; for 1 =2.
Proof. Consider first the component 1 (x) = 1 (21 ;. 22 ;) for the UDS. Then
1 0 1 Ou
m (,77) = Z /.;I —at—:l (1")” — h,'ll/‘] (T) = E |:/.;I —a%:(;rl7i,1/2,ﬁ/’) d'\/ + (ui,j - 71/1:—'1,j)

L1

For a fixed z € w?_ 1 is a linear functional of u. Using the embedding of Sobolev
spaces H™(Q) C Loo(R2), 1 < m (see for example [1]), we conclude that this functional
is bounded in H™(e), for % < m;ie p(x)| < %Hu”mﬁ for every u € H™(e), % < m.
It is easy to check that 5; vanishes if « is a polynomial of second degree. Therefore,
by the Bramble-Hilbert lemma argument we get

(25) [ni(z)] < CR™ 2|t e
Now we counsider 7y for the MUDS. By construction

) = 1 .. — +\Vh2 - 2( 0
]{'1(1) = <1—|—|B17,l| + |Bl’27]|) = 1—|—C1(l)h . Cl(i) Z)1(l)

Then

1 O 1 O
m(z) = 7 / ——lf dy —wq(z) = — [/ _3'_;1 dv+ (1+ C4 h?)(u,,;‘j — U1 )

We consider u; ;j —u; 1 ; as alinear functional of u for a fixed = € wT. This functional
is bounded in H™(e), 1 < m < 3 and vanishes for all polynomials of zero degree.
Therefore, by the corollary of the Bramble-Hilbert lemma [12] we get

(26) |wij —ui—yj] < C(Julyz + Bl [t|m 2), 1<m<3.

Hence the estimate (25) is valid in this case as well. Finally for the IDS the result
follows from the fact that

By ijcoth(By ;) =1+ e (m)hz, C, (x) ~ b%(m)
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and for the same reasons as in the case for the MUDS. In a similar way we can
estimate 72(x).
For the component y; () let us begin again with the UDS. We have,

1 by i
(27) i) = E/ biuds — hvy = wﬂlui’j —(by,u)

where {(b1, u) is defined by

Ui+ ui—1 4 1 h h
(28) l(blﬁu) = bl,i—1/21j []le] - E/an (l’l,i - 5’7) u (161,2‘ - 577) .

Now we can estimate the first term in (27) by

b1,i—1/2,1 |

5 u; ;= ti—1,j| < Clbii0c.00 (|u|1£ + pm! |u|m,é) , 1<m<3.

The functional (b1, u) is estimated in the following lemma, which concludes the proof
for the second component of the truncation error ;. We note that for MUDS and
IDS we have only the first term [ in the formula (27). O

LEMMA 3.4. If the solution of problem (1) is H™ -regular, 1 < m, then for the
bilinear functional [(by,u) defined by (28) the following estimate is valid:

[1(by, )| < CR™ H|bi]l1 o [[w]mes l<m<2.
Proof. After the change of variables z; + s;h = ~; we get the domain F =

{(s1,82): =1 < 51 <0, |sa] < %} and the functions @(s1, s2) = u(x1 + s1h, x2 + s2h),

bi(s1,82) = by(w1 + s1h, v2 + s2h),

l(bl,u) = l(l)l,

. 1 @(0,0) 4+ @(—=1,0 1/2 . 1 1
= bl __,0 U( - )_F‘LL( - ) - / b1 — 552 U ——, 89 (l.S‘g.
2 2 . _1/2 2 2

We rewrite ! in the following way

. . i (= 1/2
by, @) = by (_%70) l (0,0) +2 (-1,0) _/1/;& (_%52) c152]
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where the linear functionals p(a), q(é1) and the bilinear functional (3(51 , 1) are defined

by
- 0 1/2
(i) = W00 + (=10 _/ . <_l132> iy,
__— V. 1 R 1 1 1
C(bl,ﬁ) = /_1/2 [bl (—5,82) - Z)l (—50)] |:’d (_§,SQ> — U <—§0):| ng,
and
- - 1 1/2 - 1
q(b1) =10 (-—,0) —/ b (——q&) dss.
(b1) 1 5 i 1 5 52 2
Hence

|l(51»'l~6)| < |l~10c><E|])(l~l)| + |C(51,d)| + |1709<E|Q(Z;1)|

First we consider the linear functional p(@). It is bounded for « € H™(E), 1 < m and
vanishes for all polynomials of first degree. Hence |p(u)| < Ch™ Hulm,e, 1 <m < 2.
Obviously ¢(by,@) is a bilinear functional bounded for (by,a) € WL (E) x H'(E)
and vanishes for r,s polynomials of zero degree; ie., c(r,u) = 0 for « € H'(E)
and (/(515) =0 for b, € WL (E). Then by the bilinear variant of the Bramble-
Hilbert lemma we have |c(b1,w)| < Chlb1]1,00,e |¢t]1,.. And finally the linear functional

q(by) fulfills ¢(b;) = 0 for all polynomials of first degree and therefore the estimate
|g(b1)] < Ch|b1]1,00,c holds. Combining the above estimates we have
|t (b1, w)] < CR™ ! [[wlme [b1]o,oo,e + 227 b1t so,e(Juli e + [ulo,n06)] -

Hence by the embedding H™(2) C L>=(Q), m > 1 we get the desired assertion. O
Now we are ready to prove the main result of this subsection.
THEOREM 3.5. If the solution w(x) of the problem (1) is H™-regular, with % <
m < 3 then:
(1) the MUDS and the IDS defined by (14), (9), (16), and (9) have O(R™~")

rate of convergence in the H'-discrete norm, and
ly = ulliw < CR™ 7 (L4 B0 (b1l 0e.0 + [1B2]1,00,2)) [[ullm 2
(i1) the UDS defined by (7) and (11) has at most first order of convergence in
the H'-discrete norm, and
ly = ull o < Ch(|br]o.con + [b2]o,00.0) [u]10
O (L4 Do (bl oo + [[b2ll.c0.2)) llllm.g-
Here

5= 1, %<m§2,
1 3-m, 2<m<3.

Proof. In Lemma 3.3 we have proved the estimates for the components 1, 1y,
[ = 1,2 of the local truncation error. Hence
1/2 1/2

Il = { D ki) SOl < Ch" Ml o

me?’ r€w?’
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In the same way we get for ||x]];

Tl < CR™[[bill1 000 llellm o

when MUDS or IDS are used, and

el < C ™ b1l 0o, llllmo + R|bi]o, .0 |ui o)

otherwise. This completes the proof. D

3.2. Error estimates in discrete L?-norm. Here we elaborate the discrete
Aubin-Nitsche “trick” for finite difference operators obtained in §2 (see also [21]).
Since the issue of constructing and studying monotone approximations to convection-
diffusion operators is our main goal we disregard the differences that may occur from
the approximation of the right hand side. Thus we consider the following homogeneous
problem:

. div(—a(z)Vu(z) + b(z)u(z)) = 0, in €,
(29) { uw(x) = g(z), onT,

where g(x) € L*(T). In order to simplify our presentation we consider only the case
a(x) = 1. First, we introduce the following averaging operators [21]:

1 Lith/2 ‘
Siu = Z/ w(@y, ..., &iyennyan) dé,

imh/2
1 x;+h
Stu = Z/ Wt i) dé,
_ 1 /™
STu=— w1, iy, ) dE;,
h z;—h

Then applying T to the differential equation (29) at any grid point # € w and using

the properties,
2, 1
Ti <%) (17) = Ug,z;s S;F (51) (1’) = Ug,,

?

we get

(30) — (Tzu) — (Tlu) 3 + Tle_ (blu)h + T152_ (bQ’LL)QC2 =0.

T1,T1 Ty,

We express the operator Ay in the form

(31) hwy o, + hwy oy + Ay =0, z€w,

(32) y(x)=Ts_9(x), z€ "y’li, 1=1,2.
Let z(z) = y(z) — u(x), * € @ be the error of the finite difference method. We define

"= { u(x), rE€wW

Ts_19(x), wx€ ’yli, l=1,2.
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Then z = (y — %)+ (& —u) = 24+ @ — u. Note that Z =0 on v. Substituting y = 2+ @
in (31) we obtain

(33) ARz = Apy — Apa.

The right-hand side of (33) is the local truncation error. In order to obtain an a priori
estimate we represent the local truncation error in a divergence or almost divergence
form (depending upon the choice of the difference scheme). Next, we rewrite (33) as

2 2
Az = Z [h,u;l + (T;;_;u)rl]m + Z [hm -T58, (b;u)]xl

=1 =1
2 2
=Y (Tsow =), + [l = ToS; ()],
=1 =1
2
+ Z [~ (k= Dug,],, -
=1
Finally, we find the expression for the local truncation error
(34) Apz = M,z x,; + n2,xyy + M1 + 2 0, + El,rl + 62,9@2
where
(35) m=Ts_ju—1u, x€ w]i
(36) ;= hoy — Tg_zsl_(blu)‘ & = —(k?z - l)ﬁi“ T € u}?—,

where v is gotten by replacing v with @ in formulas (9) and (11).
Let us introduce the solution of the following auxiliary discrete problem

AZU; =z inw,
w=20, on~.

(37)

Note that similarly to the Aubin-Nitsche “trick”, w is a solution of a discrete second
order problem with right-hand side the error Z(x) of the method. Obviously,

(38) (ApzZ,w) = (Afw,z) = (%,2) = ||2||3’w.

On the other hand from (34) we get

2
(‘Ah'ga 'LU) = Z [(m,flﬂfz 3 w) + (/“,in ) ’LU) + (Sl,rv 5 ’LU)]

=1
2 2

(39) = 2(7717 Wy ;) — E {(ﬂlv lUTl]Z + (Elﬂu”fl]l}
=1 =1

2
< Ulmllow + el + €00 Nz e llow + llws, )
=1

To complete the proof of the a priori estimate we need the following lemma.



FINITE VOLUME METHODS FOR CONVECTION-DIFFUSION PROBLEMS 19

LeMMA 3.6. Letb e (WL ) Then for the error z(x) = y(x) — u(x), x € w of all

considered schemes and the solution w of the problem (37) the inequalities are valid:
(40) o < Gl wlo o < Coll2o.c

for sufficiently small h.
Proof. Using the definition of AELZ) and the triangle inequality we get

14 wlo w = N[F1ws, Lo, + (haws, e, lly o
= [+ cat@rnz) w10+ Coa)wnl,,
> |0z, 00 + Wayaslow
—h2||CY oy ey + Crwe ey + Co gy, + Cowayaylow
> [y wy + Wayas o, — Dah?|Jw]ls -
Here k; =1, C; =0, 1= 1,2 for the UDS and
k=14 Ci(x)h?,  Ci(x) ~bi(z), 1=1,2,

0,w

otherwise. We also use the fact that Cy,C5 and C} ,,,C5 5, are bounded.
Finally using the equivalence of ||wz, 2, + Wz,a,]J0w and [|w]|2,. in the space D°
we obtain

|42, = (01 = Dob?) oo

where Dy and D, are positive constants. Hence for sufficiently small ko the lower
bound in (40) is proved.

An upper estimate for 44(2) ‘ is derived by using the standard a priori estimate
0,w
in W3 (w), [|[w|]iw < C||Z]|o.w. Then
T T
H 4(2) U = HA@) w = H A;, - AS)) w
w 0,w

< ||AT a||0M, + H AV

<[zl + Clleli o < Cllloe.
W

O
Remark 3.2. Lemma 3.6 is actually a discrete regularity result in W(w) (cf.,

Hackbusch [10]):
lwll2w < Cli=llo e

Then (38) and (39) yield

2
12015 o = (Anz, w) Z (nello o + leeaTle + 11€:T10) 1% [lo -

Thus, we have proved the following a priori estimate.
LemMA 3.7. The error z(z) = y(z)—u(z), v € w of all considered finite difference
schemes satisfies the a priori estimate,

2
1Zllow < C D Ulmllow + el + 1€

=1
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where the components n, py and &, 1 = 1,2 of the local truncation error are defined
by (35) and (36). The constant C does not depend on h or Z.

Now we are ready to prove the following basic lemma.

LemMa 3.8. If the solution w of the problem (1) with constant coefficient a(x) is
H™(Q)-regular, 1 < m < 2, then the components of the local truncation error n; and
. L =1,2, defined by (35) and (36), respectively, satisfy the following estimates:

(i)
Imllow < CA™ [[ullm 0,
()
Ch™||bil|1,00,0]|t]|m., for MUDS and IDS,
el < { C (hbilo.coalulr o + R |bills coalfullma) for UDS,
(iid)
Ch2||u|lm o, for MUDS and IDS
0, for UDS,

€T < {

Proof. Counsidere; j = {(x1,22) : 1,1 < @y < @1 i41,202,j-1 < @2 < 2 j41 ;. We
begin with UDS. To obtain (i) we rewrite (35) in the form

1
m = w15, 20,) — / (1= |s2])u(®q i, 20 j + s2h) dssy.
—1

It suffices to prove the estimate for # € w because by construction 1, = 0 on wli.

We have that 77 is a linear functional of u(x), bounded for « € H™(Q), 1 < m < 2.
This functional vanishes for all polynomial of first degree. Therefore, by the Bramble-
Hilbert lemma argument we get

I ()] < Ch™ Hulme, 1<m<2,

(41) 1/2
Imllow = <Z '712(1')}12> < O |ulm e

rCw

We note that in this case & (x) = 0. Now, let us take the component 7, (z) for
the MUDS and the IDS. In both schemes the coefficients k; (z) and v (x) are
perturbations of the coefficient ky(x) = 1 of the UDS with a term of order O(h?).
More precisely,

S 1 |b1 (2)|h ) :
ki(z) = =1 B MUDS
) = T i) 2 O, )
and
()= bl(_f)h coth (bl(_;r)h) =1+ Cih%, (IDS).
Since
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we have
l€(2)| < Ch(July e + B [u|me), 1<m <2
for the interior points and hence
€] < CR?||ullm o, l<m<2.
For the boundary points we have &;(2) = —Chlu; j — u; 1 j]+ Chlu; j — @; ;] and the
second term is estimated with the approach used in the proof of Theorem 3.9.

For the second component ui(x) we proceed in the same way as in Lemma 3.3.
First, we need the equality (see [21]):

TZSf(blu)(;ru,xw)
1 -0
= / (1—|s2]) [/ bi(x1; 4 s1h, o + soh)u(aq s + s1h, 2o j + s2h) dst| dss.
J1 J—1
Now, let us consider the component for the MUDS and IDS:

bii 1/ B ‘
LTUZ][?—I‘LJ’ + 1_11'717]'] — T2S1 (bl’lll)(il?lji,ngj).

We can represent p; in the following way

p(r) =

() = by i—1y2,50(u) = c(br,u) + ;i jq(br)
where
[@ij + iz ]

1 0
p(u) = e / (1= s2]) [/ w(1,i+ s1h, a2 ; + s2h) dsl] dss,

2 J-1 J—1

a1 .0
c(by,u) = / (1—|s2]) [/ u(wy i+ s1h,xy j + soh) — Ui,j]
—1 —1

. [bl(l'l:i + Slh,.TrQ’j + .S‘gh) — bl,i—l/Z,j] dsq dss
and

q(b1) = b1i—1/2,
1 0
_ / (1 — |SQ|) |:/ bl(wl,i —|— Slh./ 1721]’ —|— .5‘2]7,) — bl,i—l/?,j (l51:| dSQ.
-1 -1
We have the estimates:
Ip(uw)| < CR™ Hu|m e, 1<m<2,
le(br, w)] < Chlbi]1,0,ett]1,es
lg(w)] < Chlbr]1 o e
Hence
()] < CR b1 | ([ulme + B2 7™ (Juli e + [ufo,oc e ))-
For UDS we have to add the error of the term —|by ; jluz, which is
h (|b1|0’oo7c(|u|17c + hm’1|u|m7c))]. Combining the above results we obtain the asser-
tions of the lemma. 0O

Now we can prove the main result in this subsection.
THEOREM 3.9. If the solution of problem (1) is H™ -regular, 1 < m < 2 then:
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(i) the MUDS and IDS defined by (14), (9), (16) and (9) have O(h™) rate of

convergence in the L?-discrete norm, i.e.,
ly = wllow < Ch™ 1+ oallsc.c + el o) lullm s + Ny |

(i) the UDS defined by (7) and (11) has at most first order of convergence in

the L%-discrete norm, i.c.,
ly = ullow < Ch(|bilo,con +102]0,50.0) ] 0

+Ch™ [(1 + [1b1l1,00,2 + [102]]1,50.2) [ullm.2 + HgHm—%,F} :

Proof. We have ||y — ullo.w < ||y — @ljo,w + ||& — @ljo. From Lemma 3.6 and
Lemma 3.7 we get immediately the estimate for ||y — @||o .- To find the upper bound
of the second term,

2

le = allfe =D > 0 (Tig(e) = gle))*

=1 %
7y

we observe that we can consider T5_;g — ¢ as a linear functional of g which is bounded
in H™~'/2(T) and vanishes for all polynomials of first degree. Then |T3_;9 — g| <
Chm’1||‘(/||m_1/2ye_‘/ where ey, = (2; — h,2; + h), which shows that ||u — @0, <
Chm”g”mfl/ll‘- a

Remark 3.3. The technique used in §3.1 and §3.2 directly gives the same estimates
for the CDS as for MUDS and IDS, when this scheme is stable, i.e., when (10) holds.

4. Numerical results. In this section on the basis of model test examples
we study the error behavior of our three schemes (UDS, MUDS, and IDS) in both
H' and L? discrete norms.

We consider

(42 div(—eVu(x,y) + bz, y)u(z.y)) = f(x,y), inQ
) u(;L'qy) =0, onT,

and for velocity vector b we choose
by = —(1 — zcosa) cosa, by = —(1 — ysina)sin a,

where the angle is a = 15%.
Problem 1. f(x,y) is chosen such that the solution is

u(r,y) = (1 —2)y(l —y)e?@+2) ford=0ord=1.

In Tables 1-6 we display the error for smooth solutions without boundary layer
behavior. In the first and the second rows we show the L?(w) and H'(w)-norms
of the error z = y — u and the “numerical” rate of convergence is 3, i.e., A”. Our
computational experiments clearly show that MUDS and IDS exhibit a second order
of convergence both in L? and H'-norms for problems with moderate convection (i.e.,
not too small £ > 0); the factor 3 is in the range of 1.822-1.995, correspondingly. For
these problems UDS is only a first order accurate: 3 is between 0.947-1.260. For
highly dominating convection all schemes show about a first order of accuracy. The
results for £ = 1072, 10~ show that all considered schemes are stable.
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TaBLE 1
UDS, o =15%,d=0

AN 16 32 64 128 256
L2 | 0.389.107" | 0.198.10=* | 0.100.10=* | 0.503.10~* | 0.252.10—*

3 0.947 0.974 0.986 0.991 0.997
. H' | 0.154.1072 | 0.859.10=3 | 0.454.10=3 | 0.233.10—3 | 0.118.10-3

8 0.699 0.842 0.920 0.962 0.982
L? | 0.149.10~1 | 0.811.1072 | 0.425.10"2 | 0.218.1072 | 0.110.10~2

Lo-2 3 0.780 0.878 0.932 0.963 0.987
H' | 0.633.1071 | 0.462.10~" | 0.288.10~1 | 0.163.10~" | 0.868.10~2

8 0.298 0.454 0.682 0.821 0.909
L? | 0.233.10~1 | 0.135.10~1 | 0.737.10~2 | 0.388.1072 | 0.200.10~2

I 0.667 0.787 0.873 0.926 0.956
10 ! 0.110.10° | 0.779.10=" | 0.505.10=" | 0.305.10—! | 0.180.10—!

Jé; 0.338 0.498 0.625 0.727 0.761

TABLE 2
MUDS, o =15%,d=0

AN 16 32 64 128 256
L? | 0.213.10~% | 0.567.10~5 | 0.146.10—> | 0.372.10=5 | 0.940.10— "7

B 1.822 1.909 1.957 1.973 1.985
: H' | 0.818.10~* | 0.239.10* | 0.649.10—% | 0.169.10=5 | 0.431.10~¢

Jé; 1.559 1.775 1.881 1.941 1.971
L? | 0.102.10~' | 0.416.10—2 | 0.148.10=2 | 0.468.10—% | 0.134.1073

| B 1.100 1.294 1.491 1.661 1.804
10 H' | 0.436.10~" | 0.240.10~" | 0.101.10~" | 0.347.10=2 | 0.104.10~2

B 0.609 0.861 1.249 1.541 1.738
L? | 0.233.10-1 | 0.135.10~1 | 0.736.10~2 | 0.387.10—2 | 0.198.10—2

| 8 0.667 0.787 0.875 0.927 0.967
10 o 0.110.10° | 0.784.10~" | 0.511.10~" | 0.309.10—" | 0.174.10~"

B 0.338 0.489 0.618 0.728 0.820

TABLE 3
IDS, o =15, d=0

E\N 16 32 64 128 256
L? | 0.169.107* | 0.451.1075 | 0.116.10=% | 0.295.10=5 | 0.740.10~7

8 1.840 1.906 1.959 1.975 1.995
! H' | 0.650.10~* | 0.189.10~* | 0.511.10~5 | 0.133.10~5 | 0.338.10°6

3 1.578 1.782 1.887 1.942 1.976
L? | 0.860.1072 | 0.288.1072 | 0.816.1073 | 0.213.10=3 | 0.540.10~*

102 & 1.253 1.578 1.819 1.937 1.980
H' | 0.366.10~! | 0.166.10~1 | 0.557.10~2 | 0.158.10~2 | 0.420.1073

B 0.786 1.141 1.575 1.818 1.911
L2 | 0.233.107" | 0.133.107" | 0.736.1072 | 0.387.10~2 | 0.198.10—2

L0-5 Jé; 0.667 0.787 0.875 0.927 0.967
0 H' | 0.110.10° | 0.770.10~% | 0.511.10~' | 0.309.10~' | 0.175.10~*

B 0.338 0.515 0.592 0.728 0.820
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TaBLE 4
UDS,a=15%d=1

AN 16 32 64 128 256
L2 | 0.232.1072 | 0.102.10=2 | 0.470.10~% | 0.223.10—3 | 0.113.10~3

B 1.260 1.186 1.118 1.040 0.981
. H' | 0.930.10—2 | 0.451.10=2 | 0.218.10—2 | 0.106.10—2 | 0.545.10~3

8 0.984 1.044 1.049 1.040 0.960
L? | 0.486.101 | 0.267.10~1 | 0.141.10~' | 0.725.1072 | 0.368.10~2

L0-2 3 0.769 0.864 0.921 0.960 0.978
H' | 0.228.10° 0.170.10° 0.110.10° | 0.637.10~" | 0.345.10~"

8 0.291 0.423 0.628 0.788 0.885
L? | 0.719.10~1 | 0.408.10~1 | 0.219.10~' | 0.114.10~' | 0.585.10~2

I 0.690 0.817 0.898 0.942 0.963
10 ! 0.329.10° 0.215.10° 0.138.10° | 0.847.10—' | 0.496.10~!

B 0.536 0.614 0.640 0.704 0.772

TABLE 5
MUDS, a=15%,d=1

AN 16 32 64 128 256
L? | 0.768.1073 | 0.204.10~% | 0.526.10~* | 0.134.10—* | 0.337.1075

B 1.830 1.911 1.956 1.973 1.991
. H' | 0.302.10—2 | 0.900.10—3 | 0.246.10~3 | 0.646.10=* | 0.165.10—*

& 1.531 1.747 1.871 1.929 1.969
L? | 0.291.10~' | 0.117.10~' | 0.415.10=2 | 0.130.10—2 | 0.374.1073

Lo-2 B 1.101 1.315 1.495 1.675 1.797
"' 0.132.10° | 0.721.10~" | 0.306.10~" | 0.106.10~" | 0.319.10~2

B 0.677 0.872 1.236 1.529 1.732
L% | 0.719.1071 | 0.407.10=% | 0.218.10~! | 0.114.10=1 | 0.576.10~2

| 8 0.690 0.821 0.901 0.935 0.985
10 o 0.329.10° 0.216.10° 0.138.10° | 0.840.10~" | 0.432.10"

B 0.536 0.607 0.646 0.716 0.822

TABLE 6
IDS, o =15, d=1

E\N 16 32 64 128 256
L% | 0.752.10~% | 0.200.10~3 | 0.515.10~* | 0.131.10~* | 0.330.1075

8 1.828 1.911 1.957 1.975 1.989
! H' | 0.296.1072 | 0.883.107% | 0.242.10~3 | 0.634.10~* | 0.162.10~%

B 1.532 1.754 1.867 1.932 1.968
L% | 02271071 | 0.755.1072 | 0.212.10~2 | 0.553.10—% | 0.138.1073

102 & 1.277 1.588 1.832 1.939 2.002
H' | 0.100.10° | 0.454.10~1 | 0.153.10~! | 0.443.10~2 | 0.116.10—2

B 0.880 1.139 1.569 1.788 1.933
L2 | 0.718.107" | 0.407.107" | 0.218.107" | 0.114.10" | 0.576.10—2

I 0.690 0.819 0.901 0.935 0.985
10 H' | 0.329.10° 0.216.10° 0.138.10° | 0.840.10~' | 0.475.10~*

B 0.536 0.607 0.646 0.716 0.822
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UDS, o = 159, boundary layer

TABLE 7

E\N 16 32 64 128 256
L% | 04271072 | 0.252.1072 | 0.147.1072 | 0.894.10~% | 0.594.1073
_— 8 0.622 0.761 0.778 0.717 0.590
o' | 0.414.1071 | 0.276.10~1 | 0.172.10~1 | 0.109.10~1 | 0.744.10—2
3 0.332 0.585 0.682 0.658 0.551
L2 | 0.393.1072 | 0.225.102 | 0.122.10=2 | 0.645.10=3 | 0.342.10~3
10— I¢] 0.641 0.805 0.883 0.920 0.920
H! | 0.365.1071 | 0.233.10~1 | 0.134.10~! | 0.733.10~2 | 0.396.10—2
3 0.380 0.648 0.798 0.870 0.888
L2 | 0.319.1072 | 0.223.102 | 0.119.10~2 | 0.621.10~3 | 0.318.103
105 3 0.642 0.810 0.906 0.938 0.965
H' | 0.361.10~1 | 0.229.10~' | 0.130.10—! | 0.700.10—2 | 0.364.10~2
8 0.387 0.657 0.817 0.893 0.943
TABLE 8
MUDS, o = 15°, boundary layer
AN 16 32 64 128 256
L? | 0.392.10~2 | 0.224.10~2 | 0.122.10=2 | 0.682.10—3 | 0.340.10—3
Lo Jé] 0.640 0.807 0.877 0.839 0.652
H' | 0.364.10~" | 0.233.10~" 0.135.107" 0.790.10~2 | 0.525.10—2
I¢] 0.381 0.644 0.787 0.773 0.415
L? | 0.390.1072 | 0.223.10~2 | 0.119.10~2 | 0.618.10~3 | 0.315.10—3
Lo+ 8 0.643 0.806 0.906 0.945 0.972
H' | 0.361.10~" | 0.228.10~" | 0.130.10~" | 0.696.10~2 | 0.361.10~2
Jé] 0.384 0.663 0.811 0.901 0.947
L% | 0.390.10~2 | 0.223.10=2 [ 0.1191.1072 | 0.618.10~3 | 0.315.10~3
- 8 0.643 0.806 0.906 0.945 0.972
H' | 0.360.10~1 | 0.229.10~1 | 0.130.10~1 | 0.696.10~2 | 0.361.10—2
Jé] 0.388 0.653 0.806 0.901 0.947

Problem 2.

flay) =V (buo), wuol(a,y) =a"y(1—y).

Here uq is the solution of equation (42) when ¢ = 0. In Tables 7-9 we show
lly = wollo,z, where @ is a grid in Q = [0,7/8] x [0,1], i.e., away from the boundary
layer. This gives us reasonable information since for small £ the function wg is close
to the exact solution of problem 2, except within the boundary layer. In fact we
have an estimate ||u — ug||y o < Ce, and when ¢ is significantly less than h we may
use wug instead of the unknown exact solution u in €. In case h and = are of the
same order, this is inappropriate as is shown by Tables 79, h = 1/256 and ¢ =
1073, Qur experiments show very weak dependence of the numerical solution with
respect to £ — 0 in Q. This means that if we use a more sophisticated method near
the boundary layer, e.g., local refinement, defect-correction, in combination with the
proposed schemes outside the layer we can get better results.
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TABLE 9
IDS, o = 15", boundary layer

e\N 16 32 64 128 256
L% | 0.390.1072 | 0.222.10~2 | 0.116.1072 | 0.594.10~% | 0.376.1073
_— 8 0.643 0.813 0.936 0.966 0.660
H' | 0.361.1071 | 0.227.10~" | 0.124.10~" | 0.665.102 | 0.454.10~2
B 0.384 0.669 0.872 0.899 0.551
L2 | 0.390.10=2 | 0.223.102 | 0.119.10=2 | 0.619.10=3 | 0.314.10~3
10— Jé; 0.643 0.806 0.906 0.943 0.979
H' | 0.360.10~' | 0.229.10~1 | 0.130.10~1 | 0.697.102 | 0.360.10~2
3 0.384 0.653 0.817 0.899 0.953
2 | 0.390.1072 | 0.223.10=2 | 0.119.1072 | 0.619.10~3 | 0.315.10—3
105 B 0.643 0.806 0.906 0.943 0.975
0 H' | 0.360.10~% | 0.229.10~1 | 0.130.10~' | 0.697.10~2 | 0.361.1072
8 0.384 0.653 0.817 0.899 0.949

5. Concluding remarks. We studied finite difference approximations of
convection-diffusion problems on square meshes with step size h. The extension on
rectangular meshes with step sizes hy and hy in the directions x; and zy is almost
immediate and all obtained results will be true with h* = h{ 4+ h3 as long as the ratio
hi/hs is bounded from above and by constants when h — 0.

Extension of some of the results can be made to rectangular nonuniform grids.
However, this requires a different technique (see e.g., Weiser and Wheeler [25]) that
is beyond the scope of this paper.

For more general domains, similar results can be accomplished using the tech-
nique described in Samarskii, Lazarov and Makarov [21, Chapter III, p. 123] with
introduction of new notation and considering a few different cases.

Although our theoretical results are for the diffusion coefficient £ comparable to
the convection coefficient b, the numerical experiments show that the constructed
schemes are very robust with respect to . For very small ¢ (down to ¢ = 10™°) the
schemes produce reasonable results and the convergence rates are of first order.
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