SUBSTRUCTURING PRECONDITIONING FOR FINITE ELEMENT
APPROXIMATIONS OF SECOND ORDER ELLIPTIC PROBLEMS.
I. NONCONFORMING LINEAR ELEMENTS FOR THE POISSON
EQUATION IN A PARALLELEPIPED

R.E. Ewing" , Yu. Kuznetsov’ , R.D. Lazarov® , and S. Maliassov

1. Introduction

Let Q be a convex polyhedral domain in IR?, f(x) € L?(Q2) and A(z) be a sufficiently
smooth three by three symmetric matrix-valued function on 2 satisfying the uniform
positive definiteness condition: there exists an « > 0 such that

o teTe < T A(x)E < T, Ve e Q,V¢ e R3. (1.1)

Throughout this paper, we use boldfaced letters to denote vectors in general in
the space RY.
We consider the Dirichlet boundary value problem:

q+ AVu =0, in Q,

V-q=/, in Q, (1.2)

u =0, on 0f),
where 0 is the boundary of Q. In applications of fluid flow in porous media, u(z)
is referred to as pressure and q as to Darcy velocity vector. It is well known that

(1.2) has a unique solution u(z) € H}(Q) N H*(Q), and that the following elliptic
regularity estimate holds true (cf. [14]):

[ullze < cllfllog- (1.3)

where ¢ is a constant dependent only on © and where || - |o.o and || - ||2.o are the
L?(Q2) and H?(Q2) Sobolev norms, respectively defined by

lullog = (/Quzdx)l oo = (/Q 3 |auu|zdx)? (1.4)

laj<m

The problem (1.2) can be discretized in various ways. Among the most pop-
ular and frequently used methods of approximation are the finite volume method,
the Galerkin finite element method and the mixed finite element method. Each
of these methods has its advantages and disadvantages when applied to particular
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2 Substructuring Preconditioning for Nonconforming Finite Elements

engineering problems. For example, for petroleum reservoir problems in geometri-
cally simple domains and heterogeneous media, the finite volume method has proven
to be reliable, accurate and mass conserving cell-by-cell. Many engineering prob-
lems, e.g. petroleum recovery, ground-water contamination, seismoic exploration
etc. mneed very accurate velocity (flux) determination in the presence of hetero-
geneities, anisotropy and large jumps in the coefficient matrix A(x). More accurate
approximation of the velocity can be achieved through the use of the mixed finite
element method. As shown by Wiser and Wheeler in [21], the mixed finite element
approximations with special quadratures on rectangular grids are equivalent to the
finite volume methods and give superconvergent velocity calculations for smooth
solutions. Based on that equivalence, Bramble et al. in [3] have developed efficient
multigrid solution procedures for structured grids. However, in general the tech-
nique of the mixed finite element method leads to an algebraic saddle point problem
that is more difficult and more expensive to solve. Although some reliable precondi-
tioning algorithms for these saddle point problems have been proposed and studied
(see, e.g. [4, 11, 17, 19]), their efficiency depends strongly on the geometry of the
domain, on the coefficient matrix A(x) and on the type of the finite elements used.

An alternative approach can be taken by developing hybrid methods. This ap-
proach has been studied in the pioneering work of Arnold and Brezzi [2] where the
continuity of the velocity vector normal to the boundary of each element is en-
forced by Lagrange multipliers. In general, the Lagrange multipliers on the element
boundaries turn out to be none other that the trace of the pressure u(z).

Now we explain briefly the main idea of the Lagrange formulation of the mixed
finite element method. Introduce the spaces

V = H(div; Q) = {q e (@) .V -qe L2(Q)} LW = LXQ);

then the weak formulation of the system (1.2) is: find a pair (q, u) € V. x W such
that

(V "q, w) + (Ailq: p) - (uv V- p) = (f w): Vwe W: p € V. (15)

The standard mixed finite element approximation to (1.5) reads as follows: let
V, x W, C V x W be a finite element space over the partition 77 of Q into
tetrahedra (or over the partition 7¢ into cubes) (see Raviart-Thomas, Brezzi-Fortin
[16, 6]). The requirement V;, C V implies that the normal component of the vector
q is continious accross the interelement boundaries 977. the construction of Arnold
and Brezzi [2] is based on the idea of backing off this continuity requirement and
defining the space V;, = {q € (L,ZI(Q))3 cqlp €V, T € TT}. In order to introduce
the interelement continuity of the normal component of q we introduce the space of
the Lagrange multipliers

Ly ={\€ L*(0Tr) : Myp € Vv for each T € Tr |,

where v is the normal to 0T vector.

Now the approximation to (1.5) using Lagrange multipliers is formulated for the
unknown triple (qp, up. Ap) € Vi, x Wy, x L. We skip the details of the weak
formulation of (1.5) over V, x W}, x Ly, refering to [Brenner, Z. Chen, Arbogast &
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Chen, Arnold and Brezzi]. If the vectors Q, U and A correspond to the represen-
tation of qj, uy and A;, with respect to the bases in V;,, Wj, and L;,, respectively,
the algebraic form of this approximation is (see Brezzi & Fortin [6])

M B C Q
BT 0 0 U | =F. (1.6)
cT 0 0 A

where M is a symmetric and positive definite matrix. Important feature of the
matrices M and B is that they are block diagonal since the unknown nodal values
of q; and wuy over a given finite element 7" are related to the nodal values on the
adjacent element only through the matrix €. Therefore, using element-by-element
elimination we can reduce this system to the form

SA=4®. (1.7)

For the description of the structure and the particular form of the Shur comple-
ment S in the case of particular finite element spaces we refer to [1, 5, 7, §].

The important discovery of Arnold and Brezzi [2] is that the system (1.7) can
be obtained also from application to (1.2) the Galerkin method with nonconforming
elements. Namely in [2] it is shown that the lowest-order Raviart-Thomas mixed
element approximations are equivalent to the usual Pj-nonconforming finite element
approximations when the classical Pj-nonconforming space is augmented with Ps-
bubbles. Such a relationship has been studied recently for a large variety of mixed
finite element spaces [1, 5, 7].

This equivalence between the hybrid mixed and the nonconforming finite ele-
ment methods establishes a framework for preconditioning and/or solving the alge-
braic problem and for postprocessing the finite element solution. Schematically this
framework includes the following three steps:

(a) forming the reduced algebraic problem for the Lagrange multipliers, which
is equivalent to the nonconforming problem;

(b) construction and study of efficient methods, based on multigrid, multilevel
or domain decomposition, for solving or preconditioning the reduced problem;

(c) recovery of the solution u(x) and the velocity q from the Lagrange multipliers
that were already found.

The recent progress in each of the steps described above (see, e.g. [20, 18, 10])
gives us an indication that the mixed finite element method can be used as an
accurate and efficient tool for solving general elliptic problems of second order in
domains with complicated geometry.

The goal of this paper is to construct, study and implement efficient precon-
ditioners for the nonconforming finite element approximations of problem (1.2) on
arbitrary tetrahedral meshes.

2. Problem Formulation

We consider © to be a unit cube in IR? and A(z) = a(x) I to be a scalar matrix.
Let 77 be a regular partitioning of 2 into tetrahedra 7" with a characteristic size
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h = diam(T) (see [9]). Later on in Section 3 we introduce a special partitioning
of Q in order to get better algebraic properties of the matrix of the corresponding
algebraic system (see Fig. 1).

We introduce the set (); of barycenters of all faces of the tetrahedral partition

o]
of €2, and the set @);, of those barycenters that are strictly inside 2. The Crouzeix-
Raviart nonconforming finite element space Vj consists of all piecewise linear func-
tions on 77 that vanish at the barycenters of the boundary faces and are continuous

at the barycenters of );,. Note that the space V}, is not a subspace of H}(€2).
Now we define the bilinear form on Vj, by

ap(u,v) = Z / a(z) Vu - Vodz, YV u,v eV (2.1)
TeTr " T

Thus the nonconfirming discretization of problem (2.1) is given by seeking wu;, €
V}, such that
CLh(U,h, U) = (fﬁ lv)a Vwove ‘/h 3 (22)

where (f,v) denotes the L?-inner product of two functions.

The natural degrees of freedom of Crouzeix-Raviart nonconforming elements are
the values at the barycenters of the faces of the tetrahedral elements. Denote the
vector of the unknown values corresponding to a function v, € Vj, by v and assume
that its dimension is N, i.e., v € IR"Y. Note, that all unknowns on faces on the
boundary with Dirichlet data are excluded.

Let (u.v) be a bilinear form defined on IRY by

(u7 V)N =n’ Z U(I)U(x)* u, v € V. (23)
:1:6(02,,,

It is clear that (-,-)y is equivalent to the L2-inner product on Vj,; i.e. there exists a
constant ¢ > 0 such that

¢l < vl <elloll§,  veV (2.4)
where )
||V|| = (V,V)?\; for v € V.

Then the discretization operator A : IRY — IRV (we shall call A sometimes
global “stiffness” matrix) is defined by

(Av,w)y = ap(u, w), u.v € V. (2.5)
Similarly, we introduce the vector F as
()= (v Voei
Now, the problem (2.2) can be rewritten in a matrix form
Au=F (2.6)

where A is symmetric and positive definite.
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3. Matrix Formulation and Its Properties

Our goal is to introduce an algebraic formulation of the approximate problem using
a type of static condensation that eliminates some of the unknowns. In this way
we can reduce substantially the size of the problem. For this approach we need a
special partitioning of the domain into tetrahedra that have some regularity and
preserve the simplicity of the algebraic problem.

First, we partition €2 into cubes with size of the edges = 1/n and denote them
by C' = C7kF) where (214, 2, x31,) is the right back upper corner of the cube. This
partitioning is denoted by 7¢.

Next, we divide each cube C = CU-7F) into two prisms P; = 1(”]”) and Py, =
Pé"""""kt) as shown in Fig. 1 and denote this partitioning of 2 by 7p.

Finally, we divide each prism into three tetrahedra as shown in Fig. 1 and denote
this partitioning of Q into tetrahedra by 77.

Let P = PU3k) € Tp be a particular prism of the partition 7p. Denote by VhP
the subspace of restrictions of the functions in Vj, onto P. These restrictions define
vectors up that are restrictions of a vector u € IR". The dimension of V}I’ we denote
by N¥. Obviously, for prisms with no faces on 9 the dimension N = 10.

FIGURE 1 Partition of cube into prisms and tetrahedra.

Local stiffness matrices AT on prisms P € Tp are defined by

(APup.vp)y = Z / a(x) Vuy, - Vo, dz (3.1)
Tcp’T
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for any P € Tp.
Then the global stiffness matrix is determined by assembling the local stiffness
matrices. The following equality holds true for any u, v € R":

(Au,v)y = > (ATup,up)y. (32)
PeTp

Now we consider a prism P of an arbitrary cube that has no face on the boundary
0$2 and enumerate the faces s;, j = 1,...,10 of the tetrahedra in this prism as shown
in Fig. 2.

Then the local stiffness matrix of this prism for the case a(X) = 1 has the
following form:

1 0 0 0 0 0] 0 0 -1 0]
0o 1 0 0 0 0|l 0 0 0 -1
0o 0 1 0 0 0[-1 0 0 0
0 0 0 1 0 0/ 0 -1 0 0
qp_3k| 0 0 0 0 1 0 0 0 -1 0 E%lAH An]
21 0o 0o 0o 0o 0o 1/ 0 0 0 -1 2 | Ay Ay
0 0 -1 0 0 0| 2 0 -1 0
0o 0 0 -1 0 0| 0 2 0 —1
-1 0 0 0 -1 O0f|-1 0 4 -1
L 0 -1 0 0 0 —-1| 0 -1 -1 4]
(3.3)
where
2 0 -1 0
0 2 0 -1
Az=1 _1 o 4
0 -1 -1 4

Along with matrix A” we introduce the following matrix B defined on the
same space V,I':

3 -1 -1 0
-1 3 0 -1
-1 0 3 0

0 -1 0 3

(3.4)

BY ==
Az1 By

3h [ Ay Al
2

]: By =

It is easy to see that the following holds true.
PROPOSITION 1. ker AY = kerBY.

Remark. If the prism P € Tp has a face on 99, the dimension of the matrix A”
will be less than 10 and the modification of By is obvious.

Then we define the N x N matrix B by the following equality:

(Bu,v)y = Z (BYup.vp)n VuveRY, (3.5)
PeTp

Since matrix B will be used for preconditioning the original problem (2.6) it is
important to estimate the condition number of B! A.
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E} 2
3 2
(b) P,
s1=(2.3,5) s3=(1,24) s5=(1,23) sr=(L34) so=(23,4)
5o = (2,4,5) s4=(3,5,6) s6=(4,5,6) ss=(3,4,6) s10=(3,4,5)

FIGURE 2. Local enumeration of faces in a prism.
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Using the fact that all element stiffness matrices are nonnegative and following
[15], we easily get the estimates:

(Au, u) (APup,up)
: < —r 3.6
Jg%ﬁ(BUwu)__ rety (BPup,up)’ (3.6)
(BPup.up)#o
A APup,
min (Au, u) > min M. (3.7)
ueR™ (Bu, u) r<’p - (BYup.up)

(BPup.,up)+£o0
In this way the estimates of the maximal eigenvalue Apax and the minimal eigen-
value Apin of the eigenvalue problem

Au = A\Bu (3.8)
are estimated from above and below by local analysis, solving the local problems
APup = ,uBPup, (BPup, up) %0, P e Tp. (3.9)

Using superelement analysis it is easy to show that to get the minimal upj, and
the maximal jiax eigenvalues of (3.9) one has to consider the worst case when the
prism P € 7p has no face on the boundary 99, i.e., P NoQ = 0.

Then a direct calculation verifies the following result.

PROPOSITION 2. Eigenvalues of problem (3.9) lie in the inverval [2 — /3,2 + /3.
Then the inequalities (3.6) and (3.7) yield:

PROPOSITION 3. Eigenvalues of problem (3.8) lie in the interval [2 — /3,2 + /3]
and therefore
cond(B71A) < (2 +3)%

We stress that the condition number of the matrix B~'A is bounded by a con-
stant independent of the step size of the mesh h.
Now we divide all unknowns in the system into two groups:

1. The first group consists of all unknowns corresponding to faces of the prisms
in the partition 7p, excluding, of course, the faces on 9Q (see Fig. 2).

2. The second group consists of the unknowns corresponding to the faces of the
tetrahedra that are internal for each prism (these are faces sg and s1p on
Fig. 2).

This splitting of the space IRY induces the following presentation of the vectors
vl = (vI.vI), where vi € R™ and vy € RM2. Obviously, N = N — 4n?. Then
matrix B can be presented in the following block form:

Bi1 Bis )
B = , dimBi{; = Ny. 3.10
l By1 DBy ] / 1 ! (3.10)

Denote now by BH = By — B12B521B21 the Schur complement of B obtained
by elimination of the vector vo. Then By = Byy + B12B2_21B21, so the matrix B
has the form

B l Bu +B12B521B21 By ] ) (3.11)

By By
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Note that for each prism P € 7p the unknowns on the faces sg and s1g (see Fig. 2)
are connected through the equation Bv = F, only with the unknowns associated
with this prism and therefore can be eliminated locally; i.e., the matrix Bys is block
diagonal with 2x 2 blocks and can be inverted locally (prism by prism). Thus matrix
BH is easily computable.

4. Multilevel Substructuring Preconditioner

In this section we will propose two modifications of matrix B (3.11) in the form

B— By + B12B,5y' Byy By
By By

and consider their properties and computational schemes.

4.1. Group Partitioning of the Grid Points

For the sake of simplicity of representation of matrices and computational schemes

o
we introduce the following partitioning of all nodes of ()}, into three groups.
(’*11‘)

i the face of the cube C:'F) with vertices r.1,m (see

Let us denote by s

Fig. 3) and partition the nodes of @);, in the following manner:

FIGURE 3. Cube (k)

1. First, we group the nodes on the faces

2.5,k 0.7,k .. —
Sg’,'zll.s) and 551,,'51,'7): i, 7. k=1.,n.

We denote the unknowns at these nodes by Vléi’j’k), 0=1.24,5.k=1n.
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2. Then, we take the nodes on the faces perpendicular to the z, y, and 2 axes:

H
s

() st st i=2Zm k=

We denote the unknowns at these nodes by ngi’j’k), 0=1,2,i=2n,j k=
1,n;

() sy, P j=2m ik=Tn. (4.1)
We denote the unknowns at these nodes by Vyéi’j’k), (=1,2,7=2n,ik=
1,n;

Gii) s, SSIP i =Tm k=2Zm

We denote the unknowns at these nodes by Vzgi'"/"’k), ¢ =1,2,4j = 1,n,
E=2n.

3. At last, we take the remaining nodes on faces

(1~7-I") (I”J-I") (1-7~k) (I”J-I") . 1
S145 ¢ S3ds o S156 0 Siss o Ll k=L

We denote the unknowns at these nodes by VAEI';"j’L”), (t=1,n,4,j.k=1n.

4.2. Three Level Preconditioner: Variant 1

Let us take an arbitrary cube C(=3:F) that is partitioned into left and right prisms
(see Fig. 1) P,El’j’k), p = 1,2. Below we skip indices ‘(7. j, k)" and ‘p’ for simplicity of
notation in all cases where there is no ambiguity.

In the local numeration (Fig. 2) matrices B; and Bj correspond to prisms having
the form (3.3)-(3.4). We rewrite these matrices in the ordering (4.1) introduced
above in this section:
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3 —-1|-1 0o o o0 0 0]-1 07
-1 310 0 0 -1 0 0] 0 -1
-1 0 1 0o 0 O o0 o0} 0 O

0 0| O 1 o o o0 0 0 -1

0o 0] 0 O 1 0 0 0]-1 0

0 -1 0 0 0 1 0 0] 0 O

o of 0 0 0 O 1 0| -1 0

o o0y 0 0 0 0 O 1 0 -1
-1 0y 0 0 -1 0 -1 0 3 0

0 -1 0 -1 0 0 0 -1 0 3/

3 -1 0 0 -1 0 0 0]-2 0]
-1 31 0 -1 0 0 0 0| 0 -1

0 0 1 0 0 0 0 0]-1 0

0 -1 0 1 0o o o0 0 0 O
-1 0 0 O 1 0o o0 0} 0 O

0o o0 0O 0 O 1 0 0] 0 -1

o o 0 0 0 O 1 0| -1 0

o of 0 O 0 0 O 1 0 -1
-1 0| -1 0 0 0 -1 0y 3 0

0 -1 0 0 0 -1 0 -1 0 3

11

(4.2)

The partitioning of nodes into groups (4.1) induces block forms of matrices B,

p=1,2:

- |

Bll,p
BQl,p

B12,p
B22,p

|

p=12

(4.3)

where blocks By, correspond to the unknowns of the 3-d group and blocks By,
correspond to the unknowns of the first and second groups.

We eliminate the unknowns of the 3-d group from each matrix B, p = 1, 2 which

is done locally on each prism. Then we get the matrices

> -1
Bll,p = Bll,p - B12,]JB22,pB21,p:

p=12
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where p = 1 corresponds to a right prism and p = 2 to a left prism

N 3h
Biig = (7)

.\ 3h
Biip = <7>

Together with Bu,p, P
following way:

8/3 —-1|-1 0 -1/3 0 —1/3 0
-1 8/3| 0 -1/3 0 -1 0 —1/3
—1 0 1 0 0 0 0 0
0 —1/3| 0 2/3 0 0 0 —1/3
~1/3 0 0 0 2/3 0 -1/3 0
0 —1] 0 0 0 1 0 0
~1/3 0 0 0 —-1/3 0 2/3 0
0 —1/3| 0 —1/3 0 0 0 2/3
8/3 —-1]|-1/3 0 -1 0 —1/3 0
-1 8/3 0 -1 0 —1/3 0 —1/3
—1/3 0o 2/3 0 0 0 —1/3 0
0 -1 0 1 0 0 0 0
-1 0 0 0 1 0 0 0
0 —1/3 0 0 0 2/3 0 —1/3
~1/3 0|-1/3 0 0 0 2/3 0
0 —1/3 0 0 0 —1/3 0 2/3

Substructuring Preconditioning for Nonconforming Finite Elements

C(4.4)
= 1,2, we define on each cube matrices By ,, p = 1,2, in the

83 —1]-1 0 -1/3 0 -1/3 0]

1 8/3| 0 —1/3 0 —1 0 —1/3

-1 0 1 0 0 0 0 0

B <3h> 0 -1/3| 0 13 0 0 0 0
Bin = |+

2 )| -1/3 0] 0 0 1/3 0 0 0

0 -1 0 0 0 1 0 0

~1/3 0| o 0 0 0 1/3 0

0 -1/3] 0 0 0 0 0 1/3

8/3  —1|-1/3 0 -1 0 -1/3 0

1 8/3 0 -1 0 —1/3 0 —1/3

~1/3 0] 1/3 0 0 0 0 0

B, — (3_]1) 0 -1 0 1 0 0 0 0

’ 2 -1 0 0 0 1 0 0 0

0 -1/3| o0 0 0 1/3 0 0

~1/3 0 0 0 o0 0 1/3 0

0 -1/3] o 0o 0 0 0 1/3

(4.5)

Both matrices Béngp and By p, p = 1,2, are irreducible and have the same kernel,
i.e., kerBy1, = kerDBy,. It is easy to show that eigenvalues of the spectral problems
(for both left and right prisms)

By pu = pBy pu,

u € R,

belong to the interval p € [1, 3].

(B1pu.u) #0,

p=12,

(4.6)
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Now we define a new matrix on each prism:

—1
By + BiapBay ,Bary  Biay

B, = : =1,2. 4.7
BZl,p B22,p i b i ( )

In the case when cube C has nonempty intersection with €2 all considerations are
the same; matrices By, Bi2,y, D21y, p = 1,2 will not have rows and columns
corresponding to the nodes on the boundary.

Define eigenvalue problems for each prism P:

Bpu = pru, (Bpu, 11) #0, P e Tp. (48)

Remark. For inner prisms, that is for prisms which have no face on 9, u € IR'C.
Because the eigenvalues of the problems (4.6) belong to the interval [1. 3], the same
is true for the problems (4.8); thus we can formlate the following:

PRrROPOSITION 4. Eigenvalues of the problems (4.8) belong to the interval [1.3].
Moreover, the eigenvalue problems on each prism

Apu = vBpu, (Bpu,u) # 0, PeTp. (4.9)
has eigenvalues v that belong to the interval
ve2—V3,3(24+V3).
Now we define the symmetric positive-definite Ny x N; matrix By by

(Biuy,vi) = Y (Bpuip, vip), (4.10)
PcTp

where the vectors vi,u; € IRNl, and uy p, vy p are the restrictions of the vectors
ui, vy on the prism P.
Along with matrix B in the form of (3.11), we introduce the matrix

_ By + B19By,' By By

B 4.11
By By (411)

Again, using superelement analysis and Proposition 4, it is easy to prove the
following theorem.

THEOREM 1. Matrix B, defined in (4.11), is spectrally equivalent to matriz A; i.e.,
aB < A<fB,
with o = (2 —/3) and B = 3(2 4+ /3). Therefore,
cond(B14) < 3(2+V/3)% (4.12)
Instead of matrix B in the form of (3.11) we will take the matrix B in the form

of (4.11) as the two-level preconditioner for matrix A. As we noted earlier, matrix
By is block-diagonal and can be inverted locally on prisms.
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Now consider the linear system
Biu =f. (4.13)

In terms of the partitioning (4.1) of nodes, the matrix B; has the block form

: Cii Chia
B = X 4.14
! l Cyn Oy ] / (4.14)

where the block Cyy corresponds to the nodes from group (2), which are on the faces
of tetrahedra perpendicular to the coorindate axis. It can be shown that matrix Cys
is diagonal. In partitioning (4.1), we present u and f of (4.13) in the form

u f
u:[u;], :[f;]. (4.15)

Then, after elimination of the second group of unknowns,
uy = Co' (f — Coyuy)
we get the system of linear equations
(C11 — C12C3t Cor)uy = £ — C19Cy iy = £, (4.16)
where the vector u; and the block Ci; correspond to the unknowns from the first

group, which have only two unknowns per each cube. The dimension of vectors u;
and f; is equal to

dim(uy) = 2n3. (4.17)

Because we have introduced a two-level subdivision of matrix By, original matrix
B can be considered as a three-level preconditioner.

4.3. Computational Scheme: Variant I

Let us write explicity the equations from (4.13) in terms of the unknowns introduced
in (4.1), i.e., in the terms of

FIPR g =10 gk =Ton;

fal R Ry — 10, =T ik =T.n;
FylR gy =10 j=2m ik =Tn;
FRER R =10 k=2m ij=T,n
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To simplify the representation of these equations we write (4.13) for the case of
a(z) = 1.

16/3 2 (ijk) _
[ -2 16/3]UI

sy /30 Gqk) _(1_sy| 1 0 (i—1.4.)
(1 é,,,,,,)[ 0 1]UX (1—611) 0 1/3 Ux

10 i c o 1/3 00 i
(1 =& (Gdk) _ (1 = §. (#:§—1.k)
(1= 6jn) [ 0 1/3 ] Uy (1—651) [ 0 1 ] Uy

1 . 1 . 2 o _
—(1=6,,)=-U (Gd:k) _ (1 = §1.4)=Ugltdk—1) — <_) Frlidik) ik =1.n.
( k ,)3 z ( L,1)3 z w ; i 7, ST,
(4.18)
4o i 1 0 ik 1/3 0 2
_ ("-,,/J") _ (" 1?.1-,1") — ("?.IJ") f) JE— ("‘J’k)
5 Ux [0 1/3]UI lo 1]UI (Sh B2
i=2n, j.k=1n
4 i 1/3 0 — 1 0 2 ;
1T (dk) _ (4j—1.k) _ (dgk) — (2 (4.5.k)
3UY l 0 1]UI [0 1/3]UI (Sh fy
j=2n, i,k=1n
2uggtiah) _ Lyptar-n _ Lgpar _ (l) £y 13)
3 3 3 3h
k=2mn, i,j=1n,
(4.19)
where the function 6;;, = { [1)’ 2 ; i is introduced to take into account the Dirich-
/ . U,,,,(’-I/J")
let boundary conditions, and any vector vr(i/-*) = %’i-'i.k) € R%
vry

After eliminating the unknowns U'J:gi"j’k), Uygi’j’k), Uzgi’j’k) from equations (4.18),

we will have a block “seven-point” computational scheme with the 2 x 2-blocks for

the unknowns UIK(i’j’k).

From (4.19) we have
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(i) fx(i’jﬂ’”’)+§ 10 UI('iij,k)Jr% 1/3 0 UTlEih).
3 4 4 ;

Uyliih) = 3 (3) pylid) ¢ 31 13 0 ypi-ie 3| 1 0 | ypydiin.
4 4 | 1
k

(4.20)
Substituting these expressions for Ux*/#) Uy and Uz*7F) into (4.18) we get
the equations

16/3 -2 (dk)
l —2 16/3]UI

1

4

(1_&, -1k 4 | 3/4 0 (i.7.k)
(1 a,,,l)< Ul +l 0 112 | UL
~(1 = 6in) <3UI<1+1JF’°>+ 1/012 3? A U1<w'»’f>>
) | 7
(1 [1/12 0 )i
(1 — s [ Lur@i-te (i.4.k)
(1—6j1) <4UI 0 g | U )
(1 [3/4 0 |k
(1 — s [ Lopti+im (i.4.k)
(1—06jn) <4UI +1 0 1/12 Ul )
—(1 = &p1) = Urlédk=1) + ULk — (1 — Skn) ~ Uplidk+1) + Uik
6 6

= Fl5F), ijk=T1n, (4.21)

where

(’I,,.’ Jx?) _ J— ('1'7]5]{)
Flidh) = <3h> {1 4

31 1/3°0 (i—1.7.k) 3110 (i+1.5.k)
+(1 - év.l)z l 0 1 ] fx + (1 - é'l,'n/)z 0 1/3 fx +

SRL A I LN PR SN IRVC RN PNCRAS D
SN PR A LGt o =
+(1 - ék1)§fz > +(1- élm)§fz > , i j. k=1n.

(4.22)
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Thus, for solving the linear system with matrix B; (4.13), we first solve problem
(4.21) for uy with (2n x 2n)-seven-block-diagonal matrix and after that compute the
vector ug from (4.20).

Unfortunately, the matrix of linear system (4.21) has a rather complicated form
which makes the solution rather difficult. Below we show that if on each prism
instead of matrices (4.5) we introduce another matrix Bgl""/"k), then we will have as
a result a simlier matrix (4.21). In that case for solving the sytem for unknowns uy,

we can use the method of separation of variables or another fast method.

4.4. Three-Level Preconditioner: Variant 11
Instead of matrices (4.5) we introduce other matrices By, = Bi,p=12:

8/3 —1]-2/3 0 —2/3 0 —-1/6 —1/6

-1 8/3 0 —2/3 0 —2/3 —1/6 —1/6

—2/3 0 2/3 0 0 0 0 0

- (3h 0 —2/3 0 2/3 0 0 0 0
Bl_(?) —2/3 0 0 0 2/3 0 0 o | (4%

0 —2/3 0 0 2/3 0 0

~1/6 —1/6 0 0 0 0 1/3 0

| —1/6 —1/6 0 0 0 0 0 1/3

This matrix is irreducible and has the same kernel as matrices By, p = 1, 2; that
is
kerBH,p = kerBl, p = ]_, 2.

Then we have the following

PROPOSITION 5. For any P € Tp the eigenvalues of the spectral problems
By pu= 1Biu. (Bl, u,u) #0,
belong to the interval
1€ [%(3—@),%(3%/5)]. (4.24)
Again, we define the matrices Bp (similar to (4.7))

~

Bp = PecTp (4.25)

B + B12,PB2721,]3B21,P B p
By p Byp |

and consider the eigenvalue problems (4.8). For those problems we can formulate
the following statement.

PROPOSITION 6. Eigenvalues of the problems (4.8) with the new block B; belong
to the interval defined in (4.24). For the same reason, eigenvalues of the spectral
problems (4.9) for each prism belong to the interval

ve |- VBE - VE). 23+ VA2 + V).
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Now we define another symmetric positive-definite N; X Ni-matrix Bh using equality
(4.10) with Bp instead of Bp. Then the new preconditioner B is defined by

; By + B3B! By By
B = 22 . 4.26
By By (4.26)

In the same way as in Section 4.2, using superelement analysis and Proposition
6, we prove the following:

THEOREM 2. Matriz B defined in (4.26) with the new blocks By in the form of
(4.23) is spectrally equivalent to matriz A; i.e.,

aB < A<pB
with o = (3 —V/3)(2 — V/3) and B = 2(3+ V/3)(2 + V/3). Therefore,
cond(B~'A) < v, (4.27)

where v = 5(2 + \/3)2.
Let us now consider the linear system with matrix Bj:

Biu=f. (4.28)

Similar to matrix Bl, matrix Bl can be represented in the block form

>

| Cn G

=1 2 A , 4.29
' l Cn Oy ] / (4.29)

where block Cy; coincides with the same block of matrix B (4.14), and matrix Co
is diagonal.

4.5. Computational Scheme: Variant II

Again, we write equations (4.28) explicitly in terms of the unknowns introduced in
(4.1) for the case a(z) = 1:

16/3 —2 (’*11‘) _ _ 5. z (7;_1’-7'$I‘7) _ _A. z (’*11‘)
[ 25 16/3 ] Ul (1 6,1)3[JX (1 é,,,,,/)3llx
2 (ij—1.k) 2 (ik)
—(1=8)5 Uy ™™ = (1 = ) SUy™
(4.30)

1 - 1 -
—(1 =)= l bl ] Uz (1~ é\kn)g l } } ] Uz(H7+)
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%Ux(ljk) 2Lk _ 2gyledk) <3h>fx(”k) i=2n. j.k=Tn
4o igk)  2rrpli—1k) _ 277r(ik) 2 (i.4.k) 5— —
§Uy R V) R 1 U) R 3 fy\»»* g =2,n, i, k=1n,
gUz(””—% l 1 1 ]UI(U k—1) _ 1 l ULk — 2 g,(i:k)
3

k=2n, 4ij=1n

(4.31)
Here the function ¢;; = { (1)3 Z ; i is introduced to take into account the Dirichlet
boundary conditions. Eliminating unknowns Ux(' ’L), Uy, (i3, k) Uz(' 'L) =12,
from equations (4.30), we will get the block “seven-point” scheme w1th 2 % 2-blocks
for the unknowns UIg"’]’k), ¢=1,2,4.j,k =1,n. From (4.31) we have

o 3/ 2 1 1 — _
(ak) — 2 [ 2 (k) (i—1.5,k) (4,4, 7») ; i =
Ux 1 <3h> + 2UI + 2UI ) .n,  J.k=1,n,
- 3/ 2 1 1 N _
Uyik) = = (—) (Gik) o Zgra—th) ¢ —urldh) 5 =975 ik =Tn,
y 1\35 +3 t3 J=2mn, a1, -y
o 3/ 2 1 1 1(1 1 ;
(tgk) — 2 (¢.4.k) (6.4.k=1) 4 = (¢.4.k)
Uz 2<3h) —l— 1 1]UI +4 1 1]UI
k= i,j=1n.

(4.32)
Substituting (4.32) into (4.30) we get

[16/3 —2 ]UIWM—

2 16/3
—(1- 6,:1% (UIC'?—LM) + UI(””j"k)) —(1- o},n)% (UI(""JFI*""”") + U1<""-'f¥’“>)
. 0}1)% <UI(1¢J71J<) n UI(i,j,k)) (- éjn)% <UI(-I:,,]'+1J<) n UI(.lt,,j,k)>

—(1- 0k1)112 l i i ] (UI("”-V'*"—U _|_UI('I?-,,7'J<¢)>

—(1 - 61@71)5 l 1 i ] (UI(mJ»-l-l) + UI("‘*”]")> — F("-JJ‘/)./ i .k =T.n,

(4.33)

where
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("‘-,,I/ﬁk) o J— (l,‘].k) — O )= (1715‘]-]{) — &)= (l,‘].k)
F (3]1) {fI +(1 01,1)2fx +(1 Om)fo
S PRTR A SN RS
+(1 - éll)ify I + (1 - é/n)gfy I

11 T 1{1 1 i T
(7’5.77]‘“71) — 5 — (7’5.7?]‘“)
1 1]fz +(1 0;{,,,/)4l1 1]fz }

(4.34)

For solving system (4.33) we introduce the rotation matrix @) = % l _} 1 ]

o1
+(1 - 0k;1)1

and new vectors V(-/k) = (Vl(i’j’k) V2('i"j’k))T, i, j. k = 1,n such that

vk — . ur@ih, i k=T n. (4.35)
Then replacing UI®7#) in (4.33) by
ULk = 7. vk i k=T, n, (4.36)

and multiplying both sides of each matrix equation (4.33) by matrix ) we get the
following problem for the unknowns V(=)

10/3 0 (ijk) _
l 0 22/3]V

(- 5].1)% (VU1 v (- @.n)% (V1) |y )

_(1 . 61‘:1)2 l 1 0 ] <V(Ii,’j"k_1) +V(I.}J€)>

1 . : _
—(1 - é‘kn)g l (1) 8 ] (V('I.-,,M/-I-l) + V(idik) ) Q- Flidk) — i, k) i .k =T n.

(4.37)
It is easy to see that problem (4.37) is decomposed into the following two inde-
pendent problems:

10 3.9, 1 i—1.4.k ik 1 : gk ik
?Vl( Jk) (1- 5i1)§ (Vl( 1.j.k) + Vl( JJ»)) —(1- 5m)§ <V1( +1.5,k) + Vl( JJ»))
7, 2,79,k . 1 2,7+1,k 2,7,k
—(1— é/l) (V( J—1.k) Vl( ,.l,l‘)) —(1- éjn)g (Vl( JH1E) + Vl( ,.l,l‘))
(1= )2 (V(' dk=1) Vl(fi,,j,k)) (1 = 640)~ (V(' dikt1) V(’ 1L))

~1(i’j’k)7 i.j,k=1n

(4.38)
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and

22

ik i—1.4.k ik 1 1.4,k ik
3V2(J)—(1—611) (V'Z( J)_'_‘/'2(3))_(1_6ln)§<‘/'2(+])+‘/2(])>

1
3
. 1 2,5—1.k 2.5,k . 1 2,5+ 1.k 2.5,k
(1= 81)3 (V970 4 v — (1 - bjn)g (VAR v

= F5H i =Tm, VEk=Tn
(4.39)
That is, we reduced the linear system (4.33) of dimension (2n?) to one linear system
of equations (4.38) of dimension 73 and n linear systems of equations (4.39) of
dimension n?. For all these problems the method of separation of variables can be
used.
After we find the solution of these problems we easily retrieve vectors UIlh)
by using the relations (4.36).

4.6. The Method of Separation of Variables

Let us consider the method of separation of variables for problems (4.38) and (4.39).
Problem (4.38) can be repressented in the form

c®v=¢f  V,feR"™ (4.40)
with the matrix
1
cB) = §CO®IO®IO+IO®CO @Io+ Iy @ Iy @ Cy,

were Iy is an (n X n)-identity matrix and (n x n)-matrix Cj has the form

3 -1
. -1 2 -1
Co=z| | (1.41)
-1 2 -1
-1 3
If we represent matrix Cy in the form
Co = QoMo -

where Ag is an (n x n)-diagonal matrix and @y is an (n x n)-orthogonal matrix
(Qy" = QF), then matrix C®) can be rewritten in the form

CB) = QBIANG QB

where

Q¥ = Qo ® Qo ® Q.

1
AB) — §A0®IO®10+10®A0®IO+IO®IO®A0~
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Remark. Q) is an (n® x n?)-orthogonal matrix and A®) is an (n? x n?)-diagonal

matrix.

Then we can use the following method of solving system (4.40):

. T
(1) =[] t.
2) A®W =Tf (4.42)
(3) V = QBW.
Similarly, problem (4.39) can be rewritten in the form
CPu=b, ubeR™ (4.43)
with the matrix
C® = Koo I+ Iy © Ko,
where (n x n)-matrix K( has the form
10 -1
) -1 9 -1
K0:§ ) (4.44)
-1 9 -1
-1 10
Representing matrix Ky in the form
Ko = RyDyRY,

where Dy is an (n x n)-diagonal matrix and Ry is an (n x n)-orthogonal matrix, we
can rewrite matrix C?) in the form

C® = Q@AD"

where Q?) = Ry @ Ry and A®) = Dy @ Iy + Iy ® Dy. Then, for solving system (4.43)
we will use the same method as (4.42):

(2) A®W =b, (4.45)

4.7. Preconditioned Conjugate Gradient Method

We will solve system (2.9) by a preconditioned method of conjugate gradients in the
following form:

. N R o
up =0, ulFth) = b - — [B_lék — dj_1(u" - uk_l)} :
Py
gk 1€ 12, (4.46)
¢F = Aub — P,:M—d,,, = P> et
T e

k=0,1.....k;  k_1=0.
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It is well known that for a given accuracy ¢ (¢ < 1) in the sense of inequality
[ *t — a4 < eflu® - u¥||a, (4.47)

where u* = A~'f and u® € RY is any initial vector, the number of iterations K,
can be chosen from the inequality

where g = @_} (the value of v is defined in (4.27)).

So, we have:

THEOREM 3. The number of operations for solving system (2.9) by method
(4.46) with matriz B defined in (4.26) with accuracy ¢ in the sense of (4.47) is
evaluated above by the expression ¢N*/31n (%), where the constant ¢ > 0 does not
depend on N.

Remark. If e = 107 then K. < 60 iterations.

5. Results of the Numerical Experiments

The method of preconditioning on the basis of multilevel substructuring as discussed
above was tested on the model problem

—Au=f, inQ=(0,1)C IR
ulog =0

with the nonconformal finite element method of approximation.

The domain was divided into n3 cubes (n in each direction) and each cube was
partitioned into 6 tetrahedra. The total dimension of the original algebraic system
was N = 12n3 — 6n2.

The right hand side was generated randomly. The original algebraic problem
has been solved by the conjugate gradient method in the form of (4.46) with the
preconditioner in the form of (4.26) with accuracy ¢ = 107%. For comparison that
problem has been solved by the same method without preconditioning. The con-
dition number of matrix B~'A was calculated from the relation between conjugate
gradients and Lanczos algorithm ([13]).

The method was implemented in FORTRAN-77 in DOUBLE PRECISION. All
experiments were carried out on a Sun Workstation. The results are summarized in
Table 1.
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Table 1
CG WiTHOUT CG WitH
PRECONDITIONING PRECONDITIONING
n N Niter | cond time Niter | cond fime
(sec) (sec)
4 672 40 66 0.18 22 | 9.84 0.22
8 5760 73 265 2.18 24 | 10.7 1.27
16 | 47616 130 | 1062 49.2 24 | 11.94 15.7
32 | 387072 | 200< | — 1248 25 12.2 163
40 | 758400 25 | 12.26 376
50 | 1485000 25 | 12.33 771
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