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�� Introduction

Let � be a convex polyhedral domain in IR�� f�x� � L���� and A�x� be a su�ciently
smooth three by three symmetric matrix�valued function on �� satisfying the uniform
positive de�niteness condition� there exists an � � 	 such that

����T � � �TA�x�� � ��T � � �x � �� ��� � IR� � �
�
�

Throughout this paper� we use boldfaced letters to denote vectors in general in
the space IRN �

We consider the Dirichlet boundary value problem�

q�Aru  	� in � �

r � q  f� in � � �
���

u  	� on ���

where �� is the boundary of �� In applications of �uid �ow in porous media� u�x�
is referred to as pressure and q as to Darcy velocity vector� It is well known that
�
��� has a unique solution u�x� � H�

� ��� �H����� and that the following elliptic
regularity estimate holds true �cf� �
����

kuk��� � ckfk��� � �
���

where c is a constant dependent only on � and where k � k��� and k � k��� are the
L���� and H���� Sobolev norms� respectively de�ned by

kuk��� 

�Z
�
u�dx

��
�

� kuk��� 

�
�Z

�

X
j�j�m

j��uj�dx
�
A

�
�

� �
���

The problem �
��� can be discretized in various ways� Among the most pop�
ular and frequently used methods of approximation are the �nite volume method�
the Galerkin �nite element method and the mixed �nite element method� Each
of these methods has its advantages and disadvantages when applied to particular
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� Substructuring Preconditioning for Nonconforming Finite Elements

engineering problems� For example� for petroleum reservoir problems in geometri�
cally simple domains and heterogeneous media� the �nite volume method has proven
to be reliable� accurate and mass conserving cell�by�cell� Many engineering prob�
lems� e�g� petroleum recovery� ground�water contamination� seismoic exploration
etc� need very accurate velocity ��ux� determination in the presence of hetero�
geneities� anisotropy and large jumps in the coe�cient matrix A�x�� More accurate
approximation of the velocity can be achieved through the use of the mixed �nite
element method� As shown by Wiser and Wheeler in ��
�� the mixed �nite element
approximations with special quadratures on rectangular grids are equivalent to the
�nite volume methods and give superconvergent velocity calculations for smooth
solutions� Based on that equivalence� Bramble et al� in ��� have developed e�cient
multigrid solution procedures for structured grids� However� in general the tech�
nique of the mixed �nite element method leads to an algebraic saddle point problem
that is more di�cult and more expensive to solve� Although some reliable precondi�
tioning algorithms for these saddle point problems have been proposed and studied
�see� e�g� ��� 

� 
�� 
���� their e�ciency depends strongly on the geometry of the
domain� on the coe�cient matrix A�x� and on the type of the �nite elements used�

An alternative approach can be taken by developing hybrid methods� This ap�
proach has been studied in the pioneering work of Arnold and Brezzi ��� where the
continuity of the velocity vector normal to the boundary of each element is en�
forced by Lagrange multipliers� In general� the Lagrange multipliers on the element
boundaries turn out to be none other that the trace of the pressure u�x��

Now we explain brie�y the main idea of the Lagrange formulation of the mixed
�nite element method� Introduce the spaces

V  H�div� �� 

�
q �

�
L����

��
�r � q � L����

�
� W  L�����

then the weak formulation of the system �
��� is� �nd a pair �q� u� � V �W such
that

�r � q� w� � �A��q� p�� �u� r � p�  �f� w�� � w �W� p � V� �
���

The standard mixed �nite element approximation to �
��� reads as follows� let
�Vh � Wh � V � W be a �nite element space over the partition TT of � into
tetrahedra �or over the partition TC into cubes� �see Raviart�Thomas� Brezzi�Fortin
�
�� ���� The requirement �Vh � V implies that the normal component of the vector
q is continious accross the interelement boundaries �TT � the construction of Arnold
and Brezzi ��� is based on the idea of backing o� this continuity requirement and

de�ning the space Vh 
n
q � 	L�

h���

�

� qjT � �Vh� T � TT
o
� In order to introduce

the interelement continuity of the normal component of q we introduce the space of
the Lagrange multipliers

Lh 
n
� � L���TT � � �j�T � �Vh � � for each T � TT

o
�

where � is the normal to �T vector�
Now the approximation to �
��� using Lagrange multipliers is formulated for the

unknown triple �qh� uh� �h� � Vh � Wh � Lh� We skip the details of the weak
formulation of �
��� over Vh �Wh � Lh refering to �Brenner� Z� Chen� Arbogast �



�� Problem Formulation �

Chen� Arnold and Brezzi�� If the vectors Q� U and � correspond to the represen�
tation of qh� uh and �h with respect to the bases in Vh� Wh and Lh� respectively�
the algebraic form of this approximation is �see Brezzi � Fortin �����

B� M B C
BT 	 	
CT 	 	

�
CA
�
B� Q

U

�

�
CA  F� �
���

where M is a symmetric and positive de�nite matrix� Important feature of the
matrices M and B is that they are block diagonal since the unknown nodal values
of qh and uh over a given �nite element T are related to the nodal values on the
adjacent element only through the matrix C� Therefore� using element�by�element
elimination we can reduce this system to the form

S�  �� �
���

For the description of the structure and the particular form of the Shur comple�
ment S in the case of particular �nite element spaces we refer to �
� �� �� ���

The important discovery of Arnold and Brezzi ��� is that the system �
��� can
be obtained also from application to �
��� the Galerkin method with nonconforming
elements� Namely in ��� it is shown that the lowest�order Raviart�Thomas mixed
element approximations are equivalent to the usual P��nonconforming �nite element
approximations when the classical P��nonconforming space is augmented with P��
bubbles� Such a relationship has been studied recently for a large variety of mixed
�nite element spaces �
� �� ���

This equivalence between the hybrid mixed and the nonconforming �nite ele�
ment methods establishes a framework for preconditioning and�or solving the alge�
braic problem and for postprocessing the �nite element solution� Schematically this
framework includes the following three steps�

�a� forming the reduced algebraic problem for the Lagrange multipliers� which
is equivalent to the nonconforming problem�

�b� construction and study of e�cient methods� based on multigrid� multilevel
or domain decomposition� for solving or preconditioning the reduced problem�

�c� recovery of the solution u�x� and the velocity q from the Lagrange multipliers
that were already found�

The recent progress in each of the steps described above �see� e�g� ��	� 
�� 
	��
gives us an indication that the mixed �nite element method can be used as an
accurate and e�cient tool for solving general elliptic problems of second order in
domains with complicated geometry�

The goal of this paper is to construct� study and implement e�cient precon�
ditioners for the nonconforming �nite element approximations of problem �
��� on
arbitrary tetrahedral meshes�

�� Problem Formulation

We consider � to be a unit cube in IR� and A�x�  a�x� I to be a scalar matrix�
Let TT be a regular partitioning of � into tetrahedra T with a characteristic size
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h  diam�T � �see ����� Later on in Section � we introduce a special partitioning
of � in order to get better algebraic properties of the matrix of the corresponding
algebraic system �see Fig� 
��

We introduce the set Qh of barycenters of all faces of the tetrahedral partition

of �� and the set
�
Qh of those barycenters that are strictly inside �� The Crouzeix�

Raviart nonconforming �nite element space Vh consists of all piecewise linear func�
tions on TT that vanish at the barycenters of the boundary faces and are continuous

at the barycenters of
�
Qh� Note that the space Vh is not a subspace of H�

� ����
Now we de�ne the bilinear form on Vh by

ah�u� v� 
X
T�TT

Z
T
a�x�ru � rvdx� � u� v � Vh� ���
�

Thus the noncon�rming discretization of problem ���
� is given by seeking uh �
Vh such that

ah�uh� v�  �f� v�� � v � Vh � �����

where �f� v� denotes the L��inner product of two functions�
The natural degrees of freedom of Crouzeix�Raviart nonconforming elements are

the values at the barycenters of the faces of the tetrahedral elements� Denote the
vector of the unknown values corresponding to a function vh � Vh by v and assume
that its dimension is N � i�e�� v � IRN � Note� that all unknowns on faces on the
boundary with Dirichlet data are excluded�

Let �u�v� be a bilinear form de�ned on IRN by

�u�v�N  h�
X
x�

�

Qh

u�x�v�x�� u� v � Vh� �����

It is clear that ��� ��N is equivalent to the L��inner product on Vh� i�e� there exists a
constant c � 	 such that

c��kvk�� � kvk � ckvk��� v � Vh �����

where

kvk  �v�v�
�
�
N for v � Vh�

Then the discretization operator A � IRN � IRN �we shall call A sometimes
global �sti�ness� matrix� is de�ned by

�Av�w�N  ah�u�w�� u� v � Vh� �����

Similarly� we introduce the vector F as

�f� v�  �F�v�N � v � Vh�

Now� the problem ����� can be rewritten in a matrix form

Au  F �����

where A is symmetric and positive de�nite�



�� Matrix Formulation and Its Properties �

�� Matrix Formulation and Its Properties

Our goal is to introduce an algebraic formulation of the approximate problem using
a type of static condensation that eliminates some of the unknowns� In this way
we can reduce substantially the size of the problem� For this approach we need a
special partitioning of the domain into tetrahedra that have some regularity and
preserve the simplicity of the algebraic problem�

First� we partition � into cubes with size of the edges h  
�n and denote them
by C  C�i�j�k� where �x�i� x�j � x�k� is the right back upper corner of the cube� This
partitioning is denoted by TC �

Next� we divide each cube C  C�i�j�k� into two prisms P�  P
�i�j�k�
� and P� 

P
�i�j�k�
� as shown in Fig� 
 and denote this partitioning of � by TP �
Finally� we divide each prism into three tetrahedra as shown in Fig� 
 and denote

this partitioning of � into tetrahedra by TT �
Let P  P �i�j�k� � TP be a particular prism of the partition TP � Denote by V P

h

the subspace of restrictions of the functions in Vh onto P � These restrictions de�ne
vectors uP that are restrictions of a vector u � IRN � The dimension of V P

h we denote
by NP � Obviously� for prisms with no faces on �� the dimension NP  
	�
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Figure � Partition of cube into prisms and tetrahedra�

Local sti�ness matrices AP on prisms P � TP are de�ned by

�APuP �vP �N 
X
T�P

Z
T
a�x�ruh � rvh dx ���
�
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for any P � TP �
Then the global sti�ness matrix is determined by assembling the local sti�ness

matrices� The following equality holds true for any u�v � IRN �

�Au�v�N 
X
P�TP

�APuP �uP �N � �����

Now we consider a prism P of an arbitrary cube that has no face on the boundary
�� and enumerate the faces sj � j  
� � � � � 
	 of the tetrahedra in this prism as shown
in Fig� ��

Then the local sti�ness matrix of this prism for the case a�X� 	 
 has the
following form�

AP 
�h

�

�
����������������


 	 	 	 	 	 	 	 �
 	
	 
 	 	 	 	 	 	 	 �

	 	 
 	 	 	 �
 	 	 	
	 	 	 
 	 	 	 �
 	 	
	 	 	 	 
 	 	 	 �
 	
	 	 	 	 	 
 	 	 	 �

	 	 �
 	 	 	 � 	 �
 	
	 	 	 �
 	 	 	 � 	 �


�
 	 	 	 �
 	 �
 	 � �

	 �
 	 	 	 �
 	 �
 �
 �

�
�����������������

	 �h

�

�
A�� A��

A�� A��

�

�����
where

A�� 

�
���

� 	 �
 	
	 � 	 �


�
 	 � �

	 �
 �
 �

�
���� �

Along with matrix AP we introduce the following matrix BP de�ned on the
same space V P

h �

BP 
�h

�

�
A�� A��

A�� B��

�
� B�� 

�
���

� �
 �
 	
�
 � 	 �

�
 	 � 	
	 �
 	 �

�
���� � �����

It is easy to see that the following holds true�

Proposition �� kerAP  kerBP �

Remark� If the prism P � TP has a face on ��� the dimension of the matrix AP

will be less than 
	 and the modi�cation of B�� is obvious�

Then we de�ne the N �N matrix B by the following equality�

�Bu�v�N 
X
P�TP

�BPuP �vP �N � u�v � IRN � �����

Since matrix B will be used for preconditioning the original problem ����� it is
important to estimate the condition number of B��A�
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�b� P�

s�  �	� �� �� s�  �
� 	� �� s�  �
� 	� �� s�  �
� �� �� s�  �	� �� ��
s�  �	� �� �� s�  ��� �� �� s�  ��� �� �� s�  ��� �� �� s�	  ��� �� ��

Figure �� Local enumeration of faces in a prism�
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Using the fact that all element sti�ness matrices are nonnegative and following
�
��� we easily get the estimates�

max
u�IRN

�Au�u�

�Bu�u�
� max

P�TP

BPuP �uP ���	

�APuP �uP �

�BPuP �uP �
� �����

min
u�IRN

�Au�u�

�Bu�u�

 min

P�TP

BPuP �uP ���	

�APuP �uP �

�BPuP �uP �
� �����

In this way the estimates of the maximal eigenvalue �max and the minimal eigen�
value �min of the eigenvalue problem

Au  �Bu �����

are estimated from above and below by local analysis� solving the local problems

APuP  	BPuP � �BPuP �uP � � 	� P � TP � �����

Using superelement analysis it is easy to show that to get the minimal 	min and
the maximal 	max eigenvalues of ����� one has to consider the worst case when the
prism P � TP has no face on the boundary ��� i�e�� P � ��  ��

Then a direct calculation veri�es the following result�

Proposition �� Eigenvalues of problem ����� lie in the inverval ���p�� � �
p
���

Then the inequalities ����� and ����� yield�

Proposition �� Eigenvalues of problem ����� lie in the interval �� � p�� � �
p
��

and therefore
cond�B��A� � �� �

p
����

We stress that the condition number of the matrix B��A is bounded by a con�
stant independent of the step size of the mesh h�

Now we divide all unknowns in the system into two groups�


� The �rst group consists of all unknowns corresponding to faces of the prisms
in the partition TP � excluding� of course� the faces on �� �see Fig� ���

�� The second group consists of the unknowns corresponding to the faces of the
tetrahedra that are internal for each prism �these are faces s� and s�� on
Fig� ���

This splitting of the space IRN induces the following presentation of the vectors
vT  �vT� �v

T
� �� where v� � IRN� and v� � IRN� � Obviously� N�  N � �n�� Then

matrix B can be presented in the following block form�

B 

�
B�� B��

B�� B��

�
� dimB��  N�� ���
	�

Denote now by �B��  B�� � B��B
��
�� B�� the Schur complement of B obtained

by elimination of the vector v�� Then B��  �B�� � B��B
��
�� B��� so the matrix B

has the form

B 

�
�B�� �B��B

��
�� B�� B��

B�� B��

�
� ���

�



�� Multilevel Substructuring Preconditioner �

Note that for each prism P � TP the unknowns on the faces s� and s�� �see Fig� ��
are connected through the equation Bv  F � only with the unknowns associated
with this prism and therefore can be eliminated locally� i�e�� the matrix B�� is block
diagonal with ��� blocks and can be inverted locally �prism by prism�� Thus matrix
�B�� is easily computable�

�� Multilevel Substructuring Preconditioner

In this section we will propose two modi�cations of matrix B ���

� in the form

 B 

�
 B� �B��B

��
�� B�� B��

B�� B��

�

and consider their properties and computational schemes�

���� Group Partitioning of the Grid Points

For the sake of simplicity of representation of matrices and computational schemes

we introduce the following partitioning of all nodes of
�
Qh into three groups�

Let us denote by s
�i�j�k�
r�l�m the face of the cube C�i�j�k� with vertices r� l�m �see

Fig� �� and partition the nodes of
�
Qh in the following manner�

�
�
�
�
�
�
�
�
�

�
�
�
��

�
�
�
��

�
�
�
��


 	

� �

� �

� �

�
��x

y

z

Figure �� Cube c�i�j�k��


� First� we group the nodes on the faces

s
�i�j�k�
����	 and s

�i�j�k�
��	�
 � i� j� k  
� n�

We denote the unknowns at these nodes by V I
�i�j�k�
� � 
  
� �� i� j� k  
� n�




	 Substructuring Preconditioning for Nonconforming Finite Elements

�� Then� we take the nodes on the faces perpendicular to the x� y� and z axes�

�i� s
�i�j�k�
����� � s

�i�j�k�
����� � i  �� n� j� k  
� n�

We denote the unknowns at these nodes by V x
�i�j�k�
� � 
  
� �� i  �� n� j� k 


� n�

�ii� s
�i�j�k�
����	 � s

�i�j�k�
	���
 � j  �� n� i� k  
� n� ���
�

We denote the unknowns at these nodes by V y
�i�j�k�
� � 
  
� �� j  �� n� i� k 


� n�

�iii� s
�i�j�k�
����	 � s

�i�j�k�
��	�� � i� j  
� n� k  �� n�

We denote the unknowns at these nodes by V z
�i�j�k�
� � 
  
� �� i� j  
� n�

k  �� n�

�� At last� we take the remaining nodes on faces

s
���j�k�
����	 � s

�i�j�k�
����	 � s

�i�j�k�
��	�� � s

�i�j�k�
��	�� � i� j� k  
� n�

We denote the unknowns at these nodes by V A
�i�j�k�
� � 
  
� n� i� j� k  
� n�

���� Three Level Preconditioner� Variant I

Let us take an arbitrary cube C�i�j�k� that is partitioned into left and right prisms

�see Fig� 
� P
�i�j�k�
p � p  
� �� Below we skip indices !�i� j� k�" and !p" for simplicity of

notation in all cases where there is no ambiguity�

In the local numeration �Fig� �� matrices B� and B� correspond to prisms having
the form ������������ We rewrite these matrices in the ordering ���
� introduced
above in this section�



���� Three Level Preconditioner� I 



B� 

�
�h

�

�

�
����������������

� �
 �
 	 	 	 	 	 �
 	
�
 � 	 	 	 �
 	 	 	 �

�
 	 
 	 	 	 	 	 	 	
	 	 	 
 	 	 	 	 	 �

	 	 	 	 
 	 	 	 �
 	
	 �
 	 	 	 
 	 	 	 	
	 	 	 	 	 	 
 	 �
 	
	 	 	 	 	 	 	 
 	 �


�
 	 	 	 �
 	 �
 	 � 	
	 �
 	 �
 	 	 	 �
 	 �

�
�����������������

�

B� 

�
�h

�

�

�
����������������

� �
 	 	 �
 	 	 	 �� 	
�
 � 	 �
 	 	 	 	 	 �

	 	 
 	 	 	 	 	 �
 	
	 �
 	 
 	 	 	 	 	 	

�
 	 	 	 
 	 	 	 	 	
	 	 	 	 	 
 	 	 	 �

	 	 	 	 	 	 
 	 �
 	
	 	 	 	 	 	 	 
 	 �


�
 	 �
 	 	 	 �
 	 � 	
	 �
 	 	 	 �
 	 �
 	 �

�
�����������������

�

�����

The partitioning of nodes into groups ���
� induces block forms of matrices Bp�
p  
� ��

Bp 

�
B���p B���p

B���p B���p

�
� p  
� �� �����

where blocks B���p correspond to the unknowns of the ��d group and blocks B���p

correspond to the unknowns of the �rst and second groups�

We eliminate the unknowns of the ��d group from each matrix Bp� p  
� � which
is done locally on each prism� Then we get the matrices

�B���p  B���p �B���pB
��
���pB���p� p  
� ��
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where p  
 corresponds to a right prism and p  � to a left prism

�B���� 

�
�h

�

�

�
������������

��� �
 �
 	 �
�� 	 �
�� 	
�
 ��� 	 �
�� 	 �
 	 �
��
�
 	 
 	 	 	 	 	
	 �
�� 	 ��� 	 	 	 �
��

�
�� 	 	 	 ��� 	 �
�� 	
	 �
 	 	 	 
 	 	

�
�� 	 	 	 �
�� 	 ��� 	
	 �
�� 	 �
�� 	 	 	 ���

�
�������������
�

�B���� 

�
�h

�

�

�
������������

��� �
 �
�� 	 �
 	 �
�� 	
�
 ��� 	 �
 	 �
�� 	 �
��

�
�� 	 ��� 	 	 	 �
�� 	
	 �
 	 
 	 	 	 	

�
 	 	 	 
 	 	 	
	 �
�� 	 	 	 ��� 	 �
��

�
�� 	 �
�� 	 	 	 ��� 	
	 �
�� 	 	 	 �
�� 	 ���

�
�������������
�

�����
Together with �B���p� p  
� �� we de�ne on each cube matrices B��p� p  
� �� in the
following way�

B��� 

�
�h

�

�

�
������������

��� �
 �
 	 �
�� 	 �
�� 	
�
 ��� 	 �
�� 	 �
 	 �
��
�
 	 
 	 	 	 	 	
	 �
�� 	 
�� 	 	 	 	

�
�� 	 	 	 
�� 	 	 	
	 �
 	 	 	 
 	 	

�
�� 	 	 	 	 	 
�� 	
	 �
�� 	 	 	 	 	 
��

�
�������������
�

B��� 

�
�h

�

�

�
������������

��� �
 �
�� 	 �
 	 �
�� 	
�
 ��� 	 �
 	 �
�� 	 �
��

�
�� 	 
�� 	 	 	 	 	
	 �
 	 
 	 	 	 	

�
 	 	 	 
 	 	 	
	 �
�� 	 	 	 
�� 	 	

�
�� 	 	 	 	 	 
�� 	
	 �
�� 	 	 	 	 	 
��

�
�������������
�

�����
Both matrices �B���p and B��p� p  
� �� are irreducible and have the same kernel�
i�e�� ker �B���p  kerB��p� It is easy to show that eigenvalues of the spectral problems
�for both left and right prisms�

�B���pu  	B��pu� u � IR�� �B��pu�u� � 	� p  
� �� �����

belong to the interval 	 � �
� ���



���� Three Level Preconditioner� I 
�

Now we de�ne a new matrix on each prism�

 Bp 

�
B��p �B���pB

��
���pB���p B���p

B���p B���p

�
� p  
� �� �����

In the case when cube C has nonempty intersection with �� all considerations are
the same� matrices B��p� B���p� B���p� p  
� � will not have rows and columns
corresponding to the nodes on the boundary�

De�ne eigenvalue problems for each prism P �

BPu  �  BPu� �  BPu�u� � 	� P � TP � �����

Remark� For inner prisms� that is for prisms which have no face on ��� u � IR���
Because the eigenvalues of the problems ����� belong to the interval �
� ��� the same
is true for the problems ������ thus we can formlate the following�

Proposition �� Eigenvalues of the problems ����� belong to the interval �
� ���
Moreover� the eigenvalue problems on each prism

APu  �  BPu� �  BPu�u� � 	� P � TP � �����

has eigenvalues � that belong to the interval

� � ���
p
�� ��� �

p
����

Now we de�ne the symmetric positive�de�nite N� �N� matrix  B� by

�  B�u��v�� 
X
P�TP

�  BPu��P �v��P �� ���
	�

where the vectors v��u� � IRN� � and u��P �v��P are the restrictions of the vectors
u��v� on the prism P �

Along with matrix B in the form of ���

�� we introduce the matrix

 B 

�
 B� �B��B

��
�� B�� B��

B�� B��

�
� ���

�

Again� using superelement analysis and Proposition �� it is easy to prove the
following theorem�

Theorem �� Matrix  B� de�ned in ������� is spectrally equivalent to matrix A� i�e��

�  B � A � �  B�

with �  ���p�� and �  ��� �
p
��� Therefore�

cond�  B��A� � ��� �
p
���� ���
��

Instead of matrix B in the form of ���

� we will take the matrix  B in the form
of ���

� as the two�level preconditioner for matrix A� As we noted earlier� matrix
B�� is block�diagonal and can be inverted locally on prisms�
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Now consider the linear system

 B�u  f � ���
��

In terms of the partitioning ���
� of nodes� the matrix  B� has the block form

 B� 

�
C�� C��

C�� C��

�
� ���
��

where the block C�� corresponds to the nodes from group ���� which are on the faces
of tetrahedra perpendicular to the coorindate axis� It can be shown that matrix C��

is diagonal� In partitioning ���
�� we present u and f of ���
�� in the form

u 

�
u�
u�

�
� f 

�
f�
f�

�
� ���
��

Then� after elimination of the second group of unknowns�

u�  C��
�� �f� � C��u��

we get the system of linear equations

�C�� � C��C
��
�� C���u�  f� � C��C

��
�� f� 

 f�� ���
��

where the vector u� and the block C�� correspond to the unknowns from the �rst
group� which have only two unknowns per each cube� The dimension of vectors u�
and f� is equal to

dim�u��  �n�� ���
��

Because we have introduced a two�level subdivision of matrix  B�� original matrix
 B can be considered as a three�level preconditioner�

���� Computational Scheme� Variant I

Let us write explicity the equations from ���
�� in terms of the unknowns introduced
in ���
�� i�e�� in the terms of

fI
�i�j�k�
� � UI

�i�j�k�
� � 
  
� �� i� j� k  
� n�

fx
�i�j�k�
� � Ux

�i�j�k�
� � 
  
� �� i  �� n� j� k  
� n�

fy
�i�j�k�
� � Uy

�i�j�k�
� � 
  
� �� j  �� n� i� k  
� n�

fz
�i�j�k�
� � Uz

�i�j�k�
� � 
  
� �� k  �� n� i� j  
� n�



���� Computational Scheme� I 
�

To simplify the representation of these equations we write ���
�� for the case of
a�x� 	 
�

�

��� ��
�� 
���

�
UI�i�j�k��

��
� �in�

�

�� 	
	 


�
Ux�i�j�k� � �
� �i��

�

 	
	 
��

�
Ux�i���j�k�

��
� �jn�

�

 	
	 
��

�
Uy�i�j�k� � �
� �j��

�

�� 	
	 


�
Uy�i�j���k�

��
� �kn�



�
Uz�i�j�k� � �
� �k��




�
Uz�i�j�k��� 

�
�

�h

�
fI�i�j�k�� i� j� k  
� n�

���
��

�

�
Ux�i�j�k� �

�

 	
	 
��

�
UI�i���j�k� �

�

�� 	
	 


�
UI�i�j�k� 

�
�

�h

�
fx�i�j�k��

i  �� n� j� k  
� n�

�

�
Uy�i�j�k� �

�

�� 	
	 


�
UI�i�j���k� �

�

 	
	 
��

�
UI�i�j�k� 

�
�

�h

�
fy�i�j�k��

j  �� n� i� k  
� n�

�

�
Uz�i�j�k� � 


�
UI�i�j�k��� � 


�
UI�i�j�k� 

�
�

�h

�
fz�i�j�k��

k  �� n� i� j  
� n�
���
��

where the function �ik 

�

� i  k
	� i � k

is introduced to take into account the Dirich�

let boundary conditions� and any vector vr�i�j�k� 

�
vr

�i�j�k�
�

vr
�i�j�k�
�

�
� IR��

After eliminating the unknowns Ux
�i�j�k�
� � Uy

�i�j�k�
� � Uz

�i�j�k�
� from equations ���
���

we will have a block �seven�point� computational scheme with the �� ��blocks for

the unknowns UI
�i�j�k�
� �

From ���
�� we have
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Ux�i�j�k� 
�

�

�
�

�h

�
fx�i�j�k� �

�

�

�

 	
	 
��

�
UI�i���j�k� �

�

�

�

�� 	
	 


�
UI�i�j�k��

i  �� n� j� k  
� n�

Uy�i�j�k� 
�

�

�
�

�h

�
fy�i�j�k� �

�

�

�

�� 	
	 


�
UI�i�j���k� �

�

�

�

 	
	 
��

�
UI�i�j�k��

i� k  
� n� j  �� n�

Uz�i�j�k� 
�

�

�
�

�h

�
fz�i�j�k� �




�
UI�i�j�k��� �




�
UI�i�j�k��

i� j  
� n� k  �� n�
����	�

Substituting these expressions for Ux�i�j�k�� Uy�i�j�k�� and Uz�i�j�k� into ���
�� we get
the equations �


��� ��
�� 
���

�
UI�i�j�k�

��
� �i��

�



�
UI�i���j�k� �

�
��� 	
	 
�
�

�
UI�i�j�k�

�

��
� �in�

�



�
UI����j�k� �

�

�
� 	
	 ���

�
UI�i�j�k�
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� �j��
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�
UI�i�j���k� �

�
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	 ���

�
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� �jn�

�



�
UI�i�j��k� �

�
��� 	
	 
�
�

�
UI�i�j�k�

�

��
� �k��



�

�
UI�i�j�k��� �UI�i�j�k�

�
� �
� �kn�




�

�
UI�i�j�k�� �UI�i�j�k�

�
 F�i�j�k�� ij� k  
� n� ����
�

where

F�i�j�k� 

�
�

�h

�n
fI�i�j�k��

��
� �i��
�

�

�

�� 	
	 


�
fx�i���j�k� � �
� �in�

�

�

�

 	
	 
��

�
fx�i��j�k��

��
� �j��
�

�

�

 	
	 
��

�
fy�i�j���k� � �
 � �jn�

�

�

�

�� 	
	 


�
fy�i�j��k��

��
� �k��



�
fz���j�k��� � �
� �kn�




�
fz�i�j�k��

�
� i� j� k  
� n�

������



���� Three level preconditioner� II 
�

Thus� for solving the linear system with matrix  B� ���
��� we �rst solve problem
����
� for u� with ��n��n��seven�block�diagonal matrix and after that compute the
vector u� from ����	��

Unfortunately� the matrix of linear system ����
� has a rather complicated form
which makes the solution rather di�cult� Below we show that if on each prism

instead of matrices ����� we introduce another matrix B
�i�j�k�
� � then we will have as

a result a simlier matrix ����
�� In that case for solving the sytem for unknowns u��
we can use the method of separation of variables or another fast method�

���� Three�Level Preconditioner� Variant II

Instead of matrices ����� we introduce other matrices B��p  �B�� p  
� ��

�B� 

�
�h

�

�

�
������������

��� �
 ���� 	 ���� 	 �
�� �
��
�
 ��� 	 ���� 	 ���� �
�� �
��

���� 	 ��� 	 	 	 	 	
	 ���� 	 ��� 	 	 	 	

���� 	 	 	 ��� 	 	 	
	 ���� 	 	 ��� 	 	

�
�� �
�� 	 	 	 	 
�� 	
�
�� �
�� 	 	 	 	 	 
��

�
�������������
� ������

This matrix is irreducible and has the same kernel as matrices B���p� p  
� �� that
is

kerB���p  ker �B�� p  
� ��

Then we have the following

Proposition �� For any P � TP the eigenvalues of the spectral problems

B���Pu  	 �B�u� � �B��u�u� � 	�

belong to the interval

	 �
�
�




���

p
���

�

�
�� �

p
��

�
� ������

Again� we de�ne the matrices �BP �similar to ������

�BP 

�
�B� �B���PB

��
���PB���P B���P

B���P B���P

�
� P � TP ������

and consider the eigenvalue problems ������ For those problems we can formulate
the following statement�

Proposition �� Eigenvalues of the problems ����� with the new block �B� belong
to the interval de�ned in ������� For the same reason� eigenvalues of the spectral
problems ����� for each prism belong to the interval

� �
�
�




���

p
���� �

p
���

�

�
�� �

p
���� �

p
��

�
�
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Now we de�ne another symmetric positive�de�nite N��N��matrix �B�� using equality
���
	� with �BP instead of  BP � Then the new preconditioner �B is de�ned by

�B 

�
�B� �B��B

��
�� B�� B��

B�� B��

�
� ������

In the same way as in Section ���� using superelement analysis and Proposition
�� we prove the following�

Theorem �� Matrix �B de�ned in ����	� with the new blocks �B� in the form of

����
� is spectrally equivalent to matrix A� i�e��

� �B � A � � �B

with �  	
�� ���

p
�����p�� and �  �

	�� �
p
���� �

p
��� Therefore�

cond� �B��A� � �� ������

where �  ��� �
p
����

Let us now consider the linear system with matrix �B��

�B�u  f � ������

Similar to matrix  B�� matrix �B� can be represented in the block form

�B� 

�
C��

�C��
�C��

�C��

�
� ������

where block C�� coincides with the same block of matrix  B� ���
��� and matrix �C��

is diagonal�

���� Computational Scheme� Variant II

Again� we write equations ������ explicitly in terms of the unknowns introduced in
���
� for the case a�x� 	 
�

�

��� ��
�� 
���

�
UI�i�j�k� � �
� �i��

�

�
Ux�i���j�k� � �
� �in�
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�
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�
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� �k��



�

�

 


 


�
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�
fI�i�j�k�� i� j� k  
� n�
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���� Computational Scheme� II 
�

�

�
Ux�i�j�k���

�UI
�i���j�k� � �

�UI
�i�j�k� 

�
�

�h

�
fx�i�j�k�� i  �� n� j� k  
� n�

�

�
Uy�i�j�k���

�UI
�i�j���k� � �

�UI
�i�j�k� 

�
�

�h

�
fy�i�j�k�� j  �� n� i� k  
� n�

�

�
Uz�i�j�k���

�
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�
UI�i�j�k��� � �

�

�

 


 


�
UI�i�j�k�  �

�hfz
�i�j�k��

k  �� n� i� j  
� n�
����
�

Here the function �ij 

�

� i  j
	� i � j

is introduced to take into account the Dirichlet

boundary conditions� Eliminating unknowns Ux
�i�j�k�
� � Uy

�i�j�k�
� � Uz

�i�j�k�
� � 
  
� ��

from equations ����	�� we will get the block �seven�point� scheme with �� ��blocks

for the unknowns UI
�i�j�k�
� � 
  
� �� i� j� k  
� n� From ����
� we have

Ux�i�j�k� 
�

�

�
�

�h

�
fx�i�j�k� �




�
UI�i���j�k� �




�
UI�i�j�k�� i  �� n� j� k  
� n�

Uy�i�j�k� 
�

�

�
�

�h

�
fy�i�j�k� �




�
UI�i�j���k� �




�
UI�i�j�k�� j  �� n� i� k  
� n�

Uz�i�j�k� 
�

�

�
�

�h

�
fz�i�j�k� �




�
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�
UI�i�j�k��� �




�

�

 


 


�
UI�i�j�k��

k  �� n� i� j  
� n�
������

Substituting ������ into ����	� we get

�

��� ��
�� 
���

�
UI�i�j�k��

��
� �i��



�

�
UI�i���j�k� �UI�i�j�k�
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� �
� �in�
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��
UI�i�j�k�� �UI�i�j�k�

�
 F�i�j�k�� i� j� k  
� n�

������
where
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F�i�j�k� 

�
�

�h

��
fI�i�j�k� � �
� �i��




�
fx�i���j�k� � �
� �in�




�
fx�i�j�k�

��
� �j��



�
fy�i�j���k� � �
� �jn�




�
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fz�i�j�k�

�
�

������

For solving system ������ we introduce the rotation matrix Q  �p
�

�

 


�
 


�

and new vectors V�i�j�k�  �V
�i�j�k�
� V

�i�j�k�
� �T � i� j� k  
� n such that

V�i�j�k�  Q �UI�i�j�k�� i� j� k  
� n� ������

Then replacing UI�i�j�k� in ������ by

UI�i�j�k�  QT �V�i�j�k�� i� j� k  
� n� ������

and multiplying both sides of each matrix equation ������ by matrix Q we get the
following problem for the unknowns V�i�j�k��

�

	�� 	
	 ����

�
V�i�j�k��

��
� �i��



�

�
V�i���j�k� �V�i�j�k�

�
� �
� �in�
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V�i�j���k� �V�i�j�k�

�
� �
� �jn�




�

�
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�

��
� �kn�



�

�

 	
	 	

� �
V�i�j�k�� �V�i�j�k�

�
 Q � F�i�j�k�   F�i�j�k�� i� j� k  
� n�

������
It is easy to see that problem ������ is decomposed into the following two inde�

pendent problems�
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V
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V
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� � V
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���� Method of Separation of Variables �


and

��

�
V

�i�j�k�
� � �
� �i��
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�
V

�i���j�k�
� � V

�i�j�k�
�

�
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� �in�
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�
V

�i��j�k�
� � V

�i�j�k�
�
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� �j��
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�
V

�i�j���k�
� � V
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� �
� �jn�
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�
V

�i�j��k�
� � V

�i�j�k�
�
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  F
�i�j�k�
� � i� j  
� n� � k  
� n�

������
That is� we reduced the linear system ������ of dimension ��n�� to one linear system
of equations ������ of dimension n� and n linear systems of equations ������ of
dimension n�� For all these problems the method of separation of variables can be
used�

After we �nd the solution of these problems we easily retrieve vectors UI�i�j�k�

by using the relations �������

���� The Method of Separation of Variables

Let us consider the method of separation of variables for problems ������ and �������
Problem ������ can be repressented in the form

C���V  f � V� f � IR�n�� ����	�

with the matrix

C��� 



�
C�  I�  I� � I�  C�  I� � I�  I� C��

were I� is an �n� n��identity matrix and �n� n��matrix C� has the form

C� 



�

�
������

� �

�
 � �


� � �
� � �

� � �

�
 � �

�
 �

�
�������
� ����
�

If we represent matrix C� in the form

C�  Q�#�Q
T
� �

where #� is an �n � n��diagonal matrix and Q� is an �n � n��orthogonal matrix
�Q��

�  QT
� �� then matrix C��� can be rewritten in the form

C���  Q���#���Q����

where
Q���  Q� Q� Q��

#��� 



�
#�  I�  I� � I�  #�  I� � I�  I�  #��
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Remark� Q��� is an �n��n���orthogonal matrix and #��� is an �n��n���diagonal
matrix�

Then we can use the following method of solving system ����	��

�
�  f 
h
Q���

iT
f �

��� #���W   f �

��� V  Q���W�

������

Similarly� problem ������ can be rewritten in the form

C���u  b� u�b � IR�n�� ������

with the matrix
C���  K�  I� � I� K��

where �n� n��matrix K� has the form

K� 



�

�
������


	 �

�
 � �


� � �
� � �

� � �

�
 � �

�
 
	

�
�������
� ������

Representing matrix K� in the form

K�  R�D�R
T
� �

where D� is an �n�n��diagonal matrix and R� is an �n�n��orthogonal matrix� we
can rewrite matrix C��� in the form

C���  Q���#���Q���T �

where Q���  R�R� and #���  D�I�� I�D�� Then� for solving system ������
we will use the same method as �������

�
�  b 
h
Q���

iT
b�

��� #���W   b�

��� u  Q���W�

������

��	� Preconditioned Conjugate Gradient Method

We will solve system ����� by a preconditioned method of conjugate gradients in the
following form�

u�  	� u�k��  uk � 


Pk

h
 B���k � dk���uk � uk���

i
�

�k  Auk � f � Pk  kB���kkA
k�kk�

B��

� dk��� dk  Pk
k�k�k�

B��

k�kk�
B��

�

k  	� 
� � � � � k�� k��  	�

������



�� Results of the Numerical Experiments ��

It is well known that for a given accuracy  �� 
� in the sense of inequality

kuk�� � u�kA � ku� � u�kA� ������

where u�  A��f and u� � IRN is any initial vector� the number of iterations K�

can be chosen from the inequality

K� �

n
	 �
�




n q

�

where q 
p
���p
��

�the value of � is de�ned in ��������

So� we have�

Theorem �� The number of operations for solving system ����� by method

����	� with matrix  B de�ned in ����	� with accuracy  in the sense of ������ is

evaluated above by the expression cN��� ln
�
�
�

�
� where the constant c � 	 does not

depend on N �

Remark� If   
	�� then K� � �	 iterations�

�� Results of the Numerical Experiments

The method of preconditioning on the basis of multilevel substructuring as discussed
above was tested on the model problem

�$u  f� in �  �	� 
�� � IR��
uj��  	

with the nonconformal �nite element method of approximation�

The domain was divided into n� cubes �n in each direction� and each cube was
partitioned into � tetrahedra� The total dimension of the original algebraic system
was N  
�n� � �n��

The right hand side was generated randomly� The original algebraic problem
has been solved by the conjugate gradient method in the form of ������ with the
preconditioner in the form of ������ with accuracy   
	��� For comparison that
problem has been solved by the same method without preconditioning� The con�
dition number of matrix B��A was calculated from the relation between conjugate
gradients and Lanczos algorithm ��
����

The method was implemented in FORTRAN��� in DOUBLE PRECISION� All
experiments were carried out on a Sun Workstation� The results are summarized in
Table 
�
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Table �

CG Without

Preconditioning

CG With

Preconditioning

n N niter cond
time
�sec�

niter cond
time
�sec�

� ��� �	 �� 	�
� �� ���� 	���
� ���	 �� ��� ��
� �� 
	�� 
���

� ���
� 
�	 
	�� ���� �� 

��� 
���
�� ���	�� �		� % 
��� �� 
��� 
��

�	 ����		 �� 
���� ���
�	 
���			 �� 
���� ��
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