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Central to the understanding of problems in water quality and quantity for effective 
management of water resources is the development of accurate numerical models to 
stimulate groundwater flows and contaminant transfer. We discuss several important dif- 
ficulties arising in modeling of subsurface flow and present promising numerical proce- 
dures for alleviating these problems. Furthermore, we describe mixed-finite element 
techniques for accurately approximating fluid velocities, and review computational re- 
sults on a variety of hydrologic problems. 

kl 

1. INTRODUCTION 

.Y 

* -  

4 I 
i! 

In the past decade, water quality problems have assumed increasing im- 
portance in water resources engineering. An emerging awareness that our 
groundwater supplies face the threat of contamination from various sources has 
prompted vigorous research into mathematical methods for predicting contami- 
nant movements in underground water. In many respects the task of simulating 
contaminant flows in porous media is computationally more demanding than 

’ the more traditional problem of resolving supply issues. The fundamental rea- 
son for this increased difficulty is that in contaminant flows, the fluid velocity 
plays a crucial role, while water supply problems more typically concern a 
scalar field such as head or pressure. According to Darcy’s law, one must dif- 
ferentiate heads or pressures to get velocities, and this leads to at least two re- 
lated mathematical problems. First, any pathologic behavior in pressure or head 
manifests itself in even more severe behavior in velocity. Thus, for example, 
the relatively mild logarithmic’singularities in pressure or head that occur at 
pumped wells appear as simple poles in the velocity field. Second, standard 
numerical solutions of the flow equations commonly produce discrete approxi- 
mations to the pressure or head, and in differentiating these approximations to 
compute velocities one incurs a loss of accuracy that is typically one order in 
the spatial grid mesh. 

These difficulties are significant, for they can lead, in the first case, to non- 
convergent approximations to velocities near wells and, in the second case, to 
inferior predictions of the very aspect of groundwater motion that is most cru- 
cial in forecasting contaminant transport. In this paper we examine a mixed 
finite element method for the groundwater flow equations that mitigates these 
difficulties. The essential idea of the mixed method is that, by solving the 
second-order equation governing groundwater flow as a set of coupled first- 
order equations in velocity and head, one can compute both fields explicitly 
without sacrificing accuracy in the velocity through differentiation. The method 
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also admits natural choices of interpolating polynomials for the trial functions 
to guarantee the highest accuracy for a given number of degrees of freedom. 
Furthermore, in problems involving pumped wells, one can incorporate appro- 
priate singularities in the trial functions for velocity. The singular parts, being 
known, then contribute to the inhomogeneous terms in the systems of algebraic 
equations that arise through spatial discretization. This approach circumvents 
convergence difficulties near wells and leads to good global error estimates. 

Proper choice of trial functions is an essential feature of the mixed method 
presented here. In particular, the trial space used for the fluid velocity must 
yield an approximation whose divergence lies in the trial space for head; other- 
wise the favorable convergence rates cited below are no longer valid. Thus, the 
methods advanced here are distinct from other formulations that also treat 
velocity and head as principal unknowns but use trial functions belonging to the 
same continuity class for both [l]. 

b 

c 

II .  REVIEW OF THE MIXED METHOD 

Let us examine a model equation arising in the simulation of steady-state 
flow in a two-dimensional, horizontal, leaky aquifier. This type of problem is 
representative of the sorts of flow equations that need to be solved in conjunc- 
tion with species transport equations in groundwater contamination studies. The 
governing equation is 

I 
K 
b 

V (TVh) - -((h - h,) + Q = 0 

where h is the unknown head in the aquifier, T is the transmissivity, K is the 
hydraulic conductivity in the aquitard overlying the leaky aquifier, b is the thick- 
ness of the aquitard, ha is the head in the aquitard, and Q represents internal 
sources or sinks. If the sources or sinks are all wells, then we can idealize them 
as points: 

Here Qe stands for the strength of the 4-th source (negative for producing 
wells), and 6(x - Xe) is the Dirac distribution centered at spatial position Xe. 
The leakage term in (1) has the linear form proposed by Charbeneau and 
Street [2]. & 

In the mixed finite-element method we factor Darcy’s law from Eq. (l), 
giving a coupled - set of first-order equations: 

u + TVh = 0 ( W  

K 
b 

-v u - -(h - h,) + Q = 0 

where u is the superficial or Darcy velocity of the water. In typical boundary- 
value problems we solve Eqs. (2) on a bounded open set 0 C IR2 subject to 
boundary data of the form 
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x E anM u(x) ' v ( x )  = 0, 

h(x) = ha(x), x E aa,. 
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(3a) 

(3b) 
Thus the orientable boundary d f l ,  having unit outward normal vector v, admits 
a decomposition anN U anD into no-flow and prescribed-head segments. 
is a locus of points where normal fluid velocities vanish, while d f l D  is the 
boundary segment along which heads are known. 

The boundary-value problem formed by Eqs. (2) and (3) has a variational 
form that underlies the finite-element approximations. Let L2@) be the space 
of square-integrable functions on a, and define the trial spaces: 

V = {v E L2@) x L2(a)tV v E L2@) and v v = 0 on daN} 

(I 

D 

being the space of vector-valued velocity trial functions, and 

w = {w E L ~ ( S Z )  Iw = ha on an,} 
being the space of trial functions for the head. Observe that functions belonging 
to V not only obey the no-flux boundary conditions but also have divergences 
lying in L2(n). This inclusion, which is a natural mathematical feature of the 
problem, must be preserved in discrete analogs to ensure good error estimates. 
The variational version of our boundary-value problem is a set of integral equa- 
tions obtained using the inner products (f, g) = & fg dv and (f, g) = & f g dv: 
we seek u E V and h E W such that 

I (T 'u  + Vh,v) = 0 for all v E V 

K 
b 

- V * u - - ( h  - h , ) + Q , w  = O  f o r a l l w E W .  

Integrating by parts and observing the boundary values of the trial functions 
gives 

( ~ u ,  v> - (h,  v v> = -i,,, hv v d s  for all v E v (44  

(v U,W) + ( f h , w )  = ( f h ,  + Q,w) for all w E W .  (4b) 

Finite-element approximations to the boundary value problem given in 
Eqs. (2) and (3) are analogs of Eqs. (4) posed on finite-dimensional subspaces 

piecewise polynomial interpolating functions on a. The index k therefore indi- 
cates the mesh of partitions for finite-element interpolation. 

some notation. For simplicity let us choose SZ to be a rectangle, = I x J ,  
where I = (a ,  b) and J = ( c ,  d )  are open intervals in x and y, respectively. 
Consider partitions A,: a = xo < < x M  = b and A,,: c = y o  < * * *  < 
YN = d of I and J having mesh: 

k = max{xi - x j - l ,  yj - y j - l }  . 

c Vk and Wk of the trial spaces V and W. In particular, we choose subspaces of 

To define the specific subspaces used in this paper, we need to introduce c 

l l l l M  
1 S j j lN 
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We define piecewise polynomial space A.4: on a given partition A of any inter- 
val S to be the space of q-times continuously differentiable functions that, when 
restricted to a single interval in the partition, reduce to polynomials of degree 
not greater than p :  MP,(A) = {$ E C4 I $ is a polynomial of degree at most p on 
each subinterval of A}. Thus, for example, M!., is a space of piecewise con- 
stant functions that may be discontinuous between subintervals, while Mi is a 
space of continuous, piecewise linear functions. 

For our trial spaces, we choose tensor-product Raviart-Thomas [3] subspaces 
on the rectangle I x J .  In the lowest-degree case, we pick 

c 

W ,  = {wk E M!*(A.J @ M!,(A,) I wk = ha on ail,} 
V ,  = {v, E [Mi(A.J 0 M!,(A,)]  x [M!,(AJ @ Mi(A,)]Ivk v = 0 on ail,). 
In this case our trial function for the head h will be piecewise constant in the x 
and y directions. The trial function for velocity u will have two components: 
the x-component will be piecewise linear and continuous in the x direction and 
piecewise constant with jump discontinuities in the y direction, while the y- 
component will be piecewise constant in x and piecewise linear in y. For the 
next highest degree of approximation we choose 

Wk = {wk E Mi,(A, )  @ M!l(Ay) I wk = ha on a&} 

Notice that the degrees of the polynomials have increased by 1 over the first- 

Having chosen our trial spaces, we derive finite-element analogs of Eqs. (4) 
by forming trial functions h A k  € Wk and ilk E Vk whose values at the nodes 
(xi, yJ of the partition A, x A, are unknown. To solve for these unknown coef- 
ficients, we impose the Galerkin criteria: 

I order spaces, but the degrees of continuity remain the same. 

(T-'il,vJ - (hk,V * VJ = - hkvk v d s  for all vk E vk (5a) 

These equations are just finite-dimensional analogs of the variational equations 
derived earlier. b 

In problems having pumped wells in SZ the velocity field will possess poles 
of order one. Error estimates relying on smoothness in the approximated solu- 
tion fail near these singularities, and as a result many standard finite-element 
approximations to fluid velocity do not converge near wells. To avoid poor 
polynomial approximations near wells we modify the trial function for the ve- 
locity to accommodate the singularities. Hence, we decompose Gk into a regular 
part and a singular part: iik = ii, + 0,. Since we know the strengths, locations, 
and local forms of the singularities, we can write 

.- 
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and 

b 

- (V us,wk) for all wk E wk. 
Evaluating the integrals appearing in these equations leads to a set of linear 
algebraic equations in the unknown nodal coefficients of C r  and h. 

111. THEORY 

As mentioned earlier, the class of methods just described has two advantages 
over traditional finite-element formulations: they retain high-order accuracy in 
the velocities by obviating differentiation, and they eliminate convergence 
difficulties near wells through the subtraction of singularities from trial func- 

’ tions. These advantages have their bases in theoretical error estimates. For the 
more traditional, straightforward projections of the variational analog of Eq. (1) 
onto interpolating subspaces, fluid velocities must be computed from heads as 
u = -TVh. Standard approximation theory [4] reveals that a piecewise poly- 
nomial method furnishing O( k’) approximations to h yields approximations to 
V h  that are only O(kr-’) as k --.) 0. Thus improvements in the accuracy of u 
require greater refinement of the finite-element partition than comparable im- 
provements in the accuracy of h. In contrast, the mixed method suffers no such 
disparity. Douglas, Ewing, and Wheeler [5] show that, in regions where the 
source term Q is smooth, the mixed method using the first- and second-order 
trial spaces described above has global error bounds of the form 

C 

and 

llli - 1,1112 5 M3k2 

116 - h112 5 M4k’ 

respectively, where M I ,  M 2 ,  Mj, M4 are constants for a given boundary value 
problem and 11-112 signifies the norm associated with the inner product ( a # . ) .  Thus 
refining the spatial partition in the mixed method yields comparable improve- 

c 
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ments in both heads and velocities. As Douglas, Ewing, and Wheeler [ 5 ]  
demonstrate , however, the inclusion relationship between the divergence of the 
velocity trial space and the head trial space is an essential fact in deriving these 
error estimates. 

The error estimates have implications for problems involving nonhomoge- 
neous media. In standard formulations with spatially heterogeneous trans- 
missivities the calculation u = -TVh calls for the multiplication of a function, 
T, that may be rapidly varying for physical reasons, with another, Vh, that may 
vary rapidly simply by virtue of its being the gradient of a spatially varying ap- 
proximation. Such a product of rapidly varying functions may be quite poorly 
behaved in numerical models. The mixed method avoids the numerical noise 
associated with differentiation of heads and therefore does not compound physi- 
cal fluctuations with artificial ones. 

Douglas, Ewing, and Wheeler [5 ]  also give theoretical justification to the 
subtraction of singularities. In this case both the first- and second-order 
schemes give global error estimates of the form 

1113 - ~ 1 1 2  5 MSk log@-') 

I l i  - hilt 5 M6k lOg(k-') 

where, again, ikfs and M6 are constants for a given boundary-value problem. 
These estimates ensure that the velocities predicted by the mixed method will 
converge to the exact velocities near pumped wells when the trial function Q 

I explicitly incorporates simple poles at the wells. 

IV. COMPUTATIONAL EXAMPLE 

To illustrate the effectiveness of the mixed method we shall examine a simple 
numerical example. Consider the equation 

V2h - (h - 1) + Q = 0 

on i2 = (0 , l )  X (0 , l )  with Q = 6(x - (1,l)) and u v = 0 on d\lZ. We 
shall examine various pressure and velocity solutions for this boundary- 
value problem. 

Before discussing the numerical results, however, it is worth reviewing our 
choice of bases for the trial spaces Vk and Wk. For convenience let us tempo- 
rarily use the variable z.to stand for either x or y, let the partition in the z- 
direction be A,: zo < < za1, and call AzA = zA - zA-J = 1, . . . , A. 
Define the functions {v,,}$, = 1 as follows. If y is even, v,, is the standard 
piecewise linear chapeau function having vr(zfl) = tiyB. If y is odd, say = 
2X - 1, then v, is the piecewise quadratic given by 

0 

, 
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Now take M!,(AJ = span{v,};l,. To get a basis for M:(Az)  define the func- 
tions {WAO,  wxl}f=I as follows: 

(0, otherwise 

10, otherwise 
f 

where q, ( ~ 2  are the Gauss points (1 +, fi -')/2 in the unit interval (0,l) .  
Then Mi = span {wxo7 w ~ ~ } ~ = ~ .  With these definitions, we can form tensor- 
product bases for the spaces Wk and Vk introduced in Section II. 

Using these bases we can compute the matrix equation representing the dis- 
crete Galerkin approximation to the model problem. It happens that, while the 
matrix is sparse, positive-definite, and invertible, it is not particularly well 

FIG. 1. 
32 elements on a side. 

Head distribution computed using first-order elements on a square grid having 
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"X 

"4 

1 FIG. 2. 
having 32 elements on a side. 

x-velocity distribution computed using first-order elements on a square grid 

conditioned. Ewing and Koebbe [6] describe an application of preconditioned 
conjugate-gradient techniques to overcome the poor conditioning and speed the 
iterative solution of the linear system. 

computed using the 
lowest degree (first-order) elements on a square grid having 32 elements on a 
side. Figure 2 shows the corresponding field for the x-component of water ve- 
locity. These solutions exhibit a logarithmic drawdown in head near the produc- 
ing well together with a concomitant pole in u,. Figures 3 and 4 shows the head 
and x-velocity distributions computed for the same problem using the second- 
order trial space on a square grid having 16 elements on a side. Since the 
second-order method requires approximately twice as many degrees of free- 
dom per element in each coordinate direction, the number of nodal unknowns 
needed to generate Figures 3 and 4 is comparable to the number needed in 
Figures 1 and 2. The two pairs of plots are quite similar, as one might expect 
considering the parity in computational effort between the two cases. 

The method also performs well in problems with heterogeneous medium 
properties. Figure 5, for example, shows the x-velocity distribution that results 

Figure 1 shows the pressure or head distribution over 

7 

. .c 
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FIG. 3. 
having 16 elements on a side. 

Head distribution computed using second-order elements on a square grid 

when we use first-order elements and impose a nonuniform transmissivity hav- 
ing the form 

Thus T suffers a jump discontinuity along a line running diagonally through 42 
into the wellbore. The x-velocity away from the wellbore therefore remains 
small for y < x but increases rapidly toward the wellbore near the edge of the 
domain where y = 1. 

Figure 6 illustrates the x-velocity that results from using second-order ele- 
ments and a discontinuous aquitard head ha of the form 

\ 

l- x 5 0.5 
h,(x,y)  = { ’**’ 

0.01, x > 0.5. 
The contour plot of u, in Figure 7 shows more clearly the radial flow dominant 
near the well and the “ridgeline” pattern prevailing away from the well. While 
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FIG. 4. x-velocity distribution computed using second-order elements on a square grid 
having 16 elements on a side. 

heterogeneities of the forms given in Eqs. (7) and (8) are highly idealized, they 
provide simple yet relatively strenuous tests of the mixed method’s ability to 
model problems with nonuniform material properties. 

. 

V. CONCLUSIONS . 

We have seen that the mixed finite-element method is an attractive approach 
for solving groundwater flow equations, especially in contaminant transport 
problems where accurate water velocities are paramount. The method gives 
velocities that have the same order of accuracy as heads, affording rapid error 
reductions on grid refinement compared with the traditional finite-element ap- 
proach. Further advantages accrue through the explicit incorporation of source 
and sink singularities in the trial functions for velocity. Here the improvement 
over traditional discrete methods is more dramatic: the mixed method with 
subtracted singularities converges at wells, while traditional schemes do not. 

# 

- 

. 
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I 

I _ -  
FIG. 5. x-velocity distribution computed using first-order elements on a problem in 
which the transmissivity has a discontinuity along y = x.  

Finally, the mixed method gives good numerical results even in problems with 
rather severe heterogeneities in medium properties. 
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FIG. 6. x-velocity distribution computed using second-order elements on a problem 
where the acquitard head h, has a discontinuity along x = 0.5. 
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